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Non-trivial solutions for a class of (pi,...,p,)-biharmonic
systems with Navier boundary conditions

by SHAPOUR HEIDARKHANI (Kermanshah and Tehran)

Abstract. Using a recent critical point theorem due to Bonanno, the existence of a
non-trivial solution for a class of systems of n fourth-order partial differential equations
with Navier boundary conditions is established.

1. Introduction. This paper deals with the existence of at least one
non-trivial solution for the following nonlinear elliptic system of n fourth-
order partial differential equations under Navier boundary conditions
(11) {A(AuﬂpiQAui) = AFy, (z,u,...,u,) in §2,

' u; = Au; =0 on 912
for 1 < i < n, where n > 1 is an integer, p; > max{1l, N/2} for 1 <i < n,
2 C RN (N >1) is a non-empty bounded open set with smooth boundary
902, A >0, F: 2 xR" — R is a function such that F(-,t1,...,t,) is
measurable in (2 for all (¢1,...,t,) € R?, F(z,-,...,-) is C! in R for every
x € {2 and for every p > 0,

n
sup Y |Fy(x,t, .. ta)| € LN2),
[(t1,--5tn) <0 i=1
and F,,, denotes the partial derivative of F' with respect to u; for 1 <i <mn.
The system is called (p1, ..., pn)-biharmonic.

Fourth-order nonlinear equations furnish a model to study traveling
waves in suspension bridges, so they are important to physics. Due to
this, many researchers have discussed the existence of at least one solu-
tion, or multiple solutions, or even infinitely many solutions for fourth-
order boundary value problems by using lower and upper solution meth-
ods, Morse theory, the mountain-pass theorem, constrained minimization
and concentration-compactness principle, fixed-point theorems and degree
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theory, and variational methods; we refer the reader to [1, 2 420} 24] and
references therein.

As an example, we point out the following special case of our main
results.

THEOREM 1.1. Let p > max{l, N/2}. Let h : 2 — R be a positive and
essentially bounded function and g : R — R be a non-negative function such
that limy_,o+ g(t)/tP~! = +oco. Then for each X in

1 v
sup

07
] pkP § o h(x) dz >0 S(fﬁg(f) de

where
k= sup T%en ]u(a;)l/ ;
wEW2:2(2)NWy P (2)\{0} (§ [ Aus () P da) /7

the problem
{ A(|Au|P~2 Au) = Mh(x)g(u) in 12,
u=Au=0 on 012
has a non-trivial weak solution in WP (§2) N Wol’p(Q).

In the present paper, our motivation comes from the recent paper [7].

2. Main results. First, for the reader’s convenience we recall Theo-
rem 2.5 of |21] as given in 3| Theorem 5.1] (see also |3, Proposition 2.1] for
related results), which is our main tool to transfer the existence of a weak
solution of into the existence of a critical point of the Euler functional:

For a given non-empty set X, and two functionals &, ¥ : X — R, we
define

Supu€¢7l(}'f‘1 ,2[) Lp(u) - Y/(v)

r1,T9) = inf ,
/8( ! 2) ve®d—1(r1,r2]) o — @(U)
plrra) = sup ¥(v) = SUPued-1(]—o0,m[) ¥ (1)
1,72) — ;
ve®—1(Jr1,r2]) @(U) — T

for all 71,79 € R, 71 < ro.

THEOREM 2.1 (|3, Theorem 5.1]). Let X be a reflexive real Banach
space, D : X — R be a sequentially weakly lower semicontinuous, coercive
and continuously Gateaux differentiable functional whose Gateaux deriva-
tive admits a continuous inverse on X*, and ¥ : X — R be a continuously
Gateauz differentiable functional whose Gateaur derivative is compact. Put
I, =& — M\ and assume that there are ri,r9 € R, r1 < rg, such that

B(rla 7/‘2) < P(Tla TZ)-
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Then for each X € 11/p(r1,72),1/8(r1,72)] there is ug x € ®~(Jr1, r2) such
that Iy(up ) < In(u) for all w € ®=(Jr1,r2]) and I{(ug) = 0.

From now on, X will denote the Cartesian product of n Sobolev spaces
W2Pi(Q2) N Wy PH(02) for i = 1,...,n, e, X = (WAPL(2) N WP (2)) x
coox (WP (02) 0 Wol’p”((z)) endowed with the norm

n
(... un)ll = Z HuZHPz
i=1

where
_ 1/pi
llly, = (§ 14wi(@) P de)
Q

forl1 <i<n.

We say that u = (uq,...,u,) is a weak solution to the system (L.1]) if
u=(ug,...,uy) € X and
Q

| A () [Pi2 Aug () Avg () de

n

i=1
n
- A S ZFui(:U,ul(:c),. yUn(2))vi(x) de =0
2 i=1
for every (v1,...,v,) € X.
For all v > 0 we define
n |t.’pi
(2.1) K(ry):{t:(tl,...,tn)ER”:Z;gfy}.
i=1
Put
(2.2) k:= max{ sup T%en |1Z($)|pz 1<i < n}
wi €W2Pi (2)NWy " (2)\{0} il

If p; > max{1,N/2} for 1 < i < n, since the embedding W?2Pi(£2) N
Wol’pi(Q) — C%(2) for 1 < i < n is compact, one has k < oo.
Fix 2% € 2 and pick s1, s9 with 0 < s; < s9 such that

B(2°, s1) € B(2°,s9) C 12

where B(x2°, s;) denotes the (open) ball with center at 2 and radius of s;
fori=1,2.
Put

2 N/2(N _ N\ 1/pi
(23) 09 =0i(N,pi,s1,82) := 12(N +2)°(s1 + 52) <lm (52— 51 )>

(s9 — 51)3 I'(l14+ N/2)
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for 1 <i<mnand

(24) 02 = ei(N,pi,Sl,Sg) =

3N krN/2((s1 + s9)N — (2s1)M)\ VP 4s,
(52— 51)(51 + 52) < N1+ N/2) > BN < o

1251 ErN/2((s1 4+ s2)N — (251)N) Ui 451
(52— 51)2(s1 + 52) < SNI(1+ N/2) ) N2 o

for 1 < i < n, where I' denotes the Gamma function. For given two positive
constants v and 7 with v # > T[T ;. pj(70:)P", put

$ o SUPte k(v I, po) (@5 1) d — SB(m(le) F(z,7,...,7)dz
v—2 i I, e pi(Toi)Pi .

ar(v) =

THEOREM 2.2. Assume that there exist a non-negative constant v and
two positive constants vo and T with

v < Z H pj(Tei)pi and Z H pj(TJZ')pi < V2
i=1 j=1, j#£i i=1 j=1, j#i
such that
(A1) F(z,t) > 0 for each (z,t) € (2\ B(2°,s1)) x [0, 7]™;
(A2) ar(12) < ar(11).
Then for each \ in
} 1 1 1 1
k H?:l Di aT(”l)’ k H?:l Di G/T(V2)

the system (1.1) admits a non-trivial weak solution uy = (uo1, - .., uon) € X
such that

vi/k <Y T pillueills: < va/k.

i=1 j=1,j#i

Proof. To apply Theorem 2.1} we introduce the functionals &,¥ : X — R
for u = (u1,...,u,) € X as follows:

n ’U,(L' pl:
P(u) = Z} ”p”p W (u) = §2F(x,u1(x), L un(z)) dr.

It is well known that @ and ¥ are well defined and continuously differentiable
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with derivatives at v = (uy,...,u,) € X given by
P (u)(v) = S Z | Au ()P 2 Auy () Avg () di,
2 i=1
V' (w)(v) = | Y Fu (@01 (2),. . un(@))vi(z) do,
2i=1
for every v = (v1,...,v,) € X; moreover ¥ is sequentially weakly upper

semicontinuous. Lemma 2.1 of [11] shows that ¢’ admits a continuous inverse
on X*, and since @’ is monotone, we infer that @ is sequentially weakly lower
semicontinuous (see |23, Proposition 25.20(d)]). Furthermore, ¥’ : X — X*
is a compact operator (for details, see [14]).

Set w(z) = (wi(x),...,wy(z)) where for 1 <i <mn,
0 if € 2\ B(2°, s2),
T(3(1* — 53) — 4(s1 + s2) (I — 83) + 65152(1> — 52))
wz(a:) = (SQ — 81)3(51 + 82)

if z € B(2°, s2) \ B(2?, 51),
. if z € B(20, s1),

where [ = dist(z, 2%) = \/Zfil(% — 29)2, and define

i and V2
rn=-——pm— and r9=——r——.
' k Hz‘:1 Di 2 k Hizl Dbi
We have
0 if z € 2\ B(2°,s2) UB(2, 51),
owi(z) | 127(1%(x; — 29) — (51 + s2)l(wi — 29) + s189(x; — 20))
Ox; (s2 = 51)%(s1 + s2)
if z € B(z,s9) \ B(2?, 51),
(0 if z € 2\ B(2°,52) UB(a, 51),
0w (x) _ ) 127(syso + (21 — 51 — s9) (@i — a?)? [l — (s2 4 s1 — 1)])
Oz} (52 — 51)3(s1 + 52)
L if z € B(z%,ro) \ B(z%,71),
and
0 if € 2\ B(2°,50) UB(a, s1),
i wi(z) ) 120((N + 2)12 — (N + 1)(s1 + $2) + Nsys2)
i—1 895? (82 — 81)3(81 + SQ)

if z € Bz, s2) \ B(zY, s1).
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It is easy to see that w = (wy,...,w,) € X and, in particular,

(127)Pi 2 N/2

(2.5)  fwilly; = (52 — 51)3Pi(s1 + s2)Pil(N/2)

52

x| (N +2)€2 — (N +1)(s1+ 52)€ + NsysofPieN 1 dg

S1

for 1 < i < n. Hence, from (2.3)—(2.5) we get
(2.6) (T0:)P" [k < [Jwil |5} < (r0:)P [k

for 1 < ¢ < n. However, bearing in mind the assumptions on v, o and T,
we see that

r1 < @(w) < 7.
From (2.2) for each (uq,...,u,) € X,

sup [u; (z)[P* < kl|ugl[};

TES?
fori=1,...,n, so
(2.7) - Z’ i |p1 <k2HUszz
. p
erZ 1 =1

for each u = (uy,...,uy,) € X, and so using (2.7), we see that

P (]—00, 1)) = {(ul,...,un) eX: ZM < 7”‘2}

i=1

N

n ) Di
{(ul,...,un)EX:ZW<kr2 foralleQ},

and it follows that

sup V(u) = sup S F(z,u(z)) dx
ued=1(]=00,r3[) ued=l(—oorsl) o
< S sup F(x,t)dz.
QteK(krz)

Since for 1 < i < n, 0 < w;(x) < 7 for each = € (2, condition (A1) ensures
that

| P(zw(@)de+ | F(z,w(z))dz > 0.
O\ B(29,s2) B(29,s2)\B(29,s1)
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Therefore, taking (2.6]) into account, one has
SUPyeg -1 (|—oo,ra)) ¥ (1) — ¥(w)
ro — @(w)
< $ 2 SUPLe K (k) F () dz — W (w)
N ro — P(w)
- (k ﬂp) SQ SUDte K (kro) F(x,t)dx — SB(IO781) F(z,7,...,7)dx
R Z V2 = 2liny H?:1,j¢i pj(T0)Pi

B(ri,re) <

= <k‘ le) ar(v2).
i=1
On the other hand, by a similar reasoning,
W(w) — SUPyed—1(]—oc0,r1[) W(u)
b(w) —ry
> W(“’) - S_Q SuptEK(kTQ) F((I}, t) dx
- b(w) —ry

N <k ﬁ ) SB(a:O,sl) F(z,7,...,7)dz -, SUDte K (ki) F(x,t)dx
= Di n n .
ey >ict [, ji Pi(TO0)PE — 11

p(ri,re) >

= (k: ﬁpl> ar(vy).
=1

Hence, from assumption (A2), one has f(ri,r2) < p(ri,re). Therefore, ap-
plying Theorem taking into account that the weak solutions of the
system are exactly the solutions of the equation @' (u) — AW/ (u) = 0,
we obtain the conclusion. =

Now we point out the following consequence of Theorem

THEOREM 2.3. Assume that assumption (Al) in Theorem holds.
Suppose that there exist two positive constants v and T with

n n
Z H pji(To)Pt < v
i=1 =1,
such that
SQ SUPe K () TT7, pi) F(z,t)dx _ SB(:):O,31) F(z,7,...,7) dx.
v i I, jpipi(Toi)P’
(A4) F(x,0,...,0) =0 for every x € (2.

(A3)
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Then for r:=v/k[]i pi and each X in

1 >ic1 H?:l,j;éi pj(Toi)Pi
k H;:L:]_ pl SB(ﬁo,Sl) F(‘T7 T, ey T) dx’

1 v
k H?:l Di SQ SUP¢e K (kr) F('x: t) dx
the system (1.1) admits a non-trivial weak solution uy = (uo1, - .., uon) € X

such that sup,en >y |ui(x)[Pi /pi < kr.

Proof. Applying Theorem [2.2] we have the conclusion, by picking 14 = 0
and vo = v. Indeed, owing to our assumptions, one has

(1- it Hj:l,;'#i”f (”’")pi) S Supse (1) F (2, t) d

v—> i [Ijo, e pi(Toi)Pi
§osuprek ey F(@,t) dz
14
SB(IO,Sl) F(z,7,...,7)dx

i [, jes Py (7o )P

ar(v) <

= a,(0).

In particular,

$osupick (k) Fl@,t) do
> .
Hence, Theorem taking ([2.3) into account, yields the result. =

a-(v) <

We now point out the following special case of the previous results when
F does not depend on z € §2. To be precise, let F' : R* — R be a C'! function
in R" such that F(0,...,0) =0.

Consider the following nonlinear elliptic system of n fourth-order partial
differential equations under Navier boundary conditions:

{A(|Au1]7’22Auz) = )\Fui(ul,...,un) in £2,
u; = Au; =0 on 912
for 1 <i < n. Given two positive constants v and 7 with

S I pitror #v,

i=1 j=1,j#i

(2.8)

m(£2) max;c g (/117 , pi) F(t) — sNaN2 /(1 + NJ/2)F(r,...,T)
V=3 H?:l,j;éipj(TUi)pi

We have the following existence results.

br(v) ==
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COROLLARY 2.4. Assume that there exist a non-negative constant vy and
two positive constants vy and T with with vi < 370 [17_ ;. pj(70:)P" and
>y [y jzipi(T0i)Pt < va such that

(B1) F(t) > 0 for each t € [0,7]™;

(BQ) bT(VQ) < bT(Vl).

Then for each X\ in

1 1 1 1
k1T pi 0r (1) K TT, i b7 (v2) [

the system admits a non-trivial weak solution ug = (up1, ..., uon) € X

such that vi/k <370 TIi-1 ju pilluoillbi < vo/k.

Proof. Set F(x,t) = F(t) for all x € 2 and t; € R for 1 <14 < n. Since
m(B(2°,51)) = S{V%, Theorem H yields the conclusion. m

We point out the following consequence of Theorem [2.2] when n = 1.

Let f: 2 x R — R be an L?-Carathéodory function. Let F be defined
by F(z,t) = ng(x,s) ds for each (z,t) € 2 x R. Put

12(N +2)2(s1 + s2) (k:WN/Q(séV — sf))l/p

(29) o =0(N.ps1,5) = —— 53 I(1+N/2)

and

(210) 0= 0(N,p,s1,5) =

3N ErN/2((s1 4 s2)N — (2s)M)\ P . 45,
(52— 51) (51 + 52) ( 2N (1 + N/2) ) N < s

1251 krN/2((s1 + s2)N — (251)N)\ VP EN > 451
(52 — 51)2(s1 + 52) ( ONT(1+ N/2) > B s s

where
max_ ¢ [u()]

k= sup .
wewza@awiran oy (o [Aui(@)lP d)t/?

Given two positive constants v and 7 with v # (o7)P, put

o SUDjy <, F(z,t)dz — SB(xom) F(z,7)dx

v—(To)P

cr(v) ==
THEOREM 2.5. Assume that there exist a non-negative constant vy and

two positive constants vy and T with vy < (170)P and (T0)P < vy such that

(C1) F(z,t) > 0 for each (z,t) € (2\ B(x°,s1)) x [0,7];
(C2) cr(v2) < cr(11).
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Then for each A € Lﬁ CT(IVI), 1# le)[ the problem

{ A(|Au|P~2Au) = Mf(x,u) in 2,
u=Au=0 on 012
has a non-trivial weak solution ug € W2P(£2) N Wol’p(Q) such that

vi/k < | |Aug(2)]P dz < 1 /k.
2

(2.11)

The last result gives the existence of a non-trivial weak solution in
W2P(02)N VVO1 P(£2) to the problem (2.11)) in the autonomous case.

Let f : R — R be a continuous function, and put F(t) = SE f(&) d¢ for
all ¢ € R. The following result is a direct consequence of Theorem

THEOREM 2.6. Assume that there exist a non-negative constant v and
two positive constants va and T with v1 < (T0)P and (t0)P < va such that

(D1) f(t) >0 for each t € [—vo, max{va, T}];

N/ N/
() ") - Y rim F () _ MDF@) - o e F )
vo — (To)P v — (To)P '

Then for each \ in
1 vy — (to)P 1 vy — (10)P

- N/ Yy T 1o N/
PR m(@)F (1) = s ey F(7) PR m(@)F (v2) = s refevy

F(r)
the problem
{A(Au|p_2Au) =Af(u) in 2,
u=Au=20 on 02
has a non-trivial weak solution ug € W2P(£2) N Wol’p(ﬂ) such that
vi/k < | |Aug(2)]P dx < 1 /k.
9
Finally, we prove the theorem in the introduction.

Proof of Theorem 1.1. For fixed A as in the conclusion, there exists a
positive constant v such that

A< L Y
pkP SQ h(z) dz Séﬁg(g) d§.

Moreover, lim,_,g+ g(t)/tP™1 = +oo implies lim, o+ Sgg(ﬁ) d§/tP = Ho0.
Therefore, one can choose a positive constant 7 satisfying 7 < ¢/v/o and

such that .
oP 1 SO g(£> dé

<
ApkP SB(SCO781) h(z) dx TP
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Hence, the conclusion follows from Theorem [2.5] with 14 = 0, v, = v and

f(z,
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t) = h(x)g(t) for every (z,t) € 2 xR. m
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