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Infinitely many solutions for the p(z)-Laplacian equations
without (AR)-type growth condition

by CHAO J1 (Shanghai) and FEI FANG (Xiamen)

Abstract. Under no Ambrosetti—-Rabinowitz-type growth condition, we study the
existence of infinitely many solutions of the p(z)-Laplacian equations by applying the
variant fountain theorems due to Zou [Manuscripta Math. 104 (2001), 343-358].

1. Introduction. Fountain theorems and their dual forms are effective
tools in studying the existence of infinitely many large or small energy solu-
tions (see [W]), and Palais—-Smale condition ((P.S.) condition, for short) and
its variants play an important role in these theorems and their applications.
Moreover, we know that, in order to verify (P.S.) condition, the following
Ambrosetti-Rabinowitz superquadraticity condition is often needed:

(1.1) 30 > 2,0 < 0F(x,u) <uf(zr,u), Vu € R\ {0} and a.e. z € £2,

where f is the nonlinear term and F' is a primitive function, and 2 is a
bounded or unbounded domain. For the p(x)-Laplacian equations, we use
the following condition which is a generalization of (1.1) to the variable
exponent case:

(1.2)  30>p", 0<0F(z,u) <uf(z,u), Vu € R\ {0} and a.e. z € £,

where pt = esssup, o p(x); (1.2) is called the Ambrosetti-Rabinowitz-type
growth condition ((AR)-type growth condition, for short) and means that
lim| )00 F(z,u)/|u|® = 400, that is, f is superlinear. However, there are
many functions which are superlinear but do not satisfy (1.2) for any 6 > p*.
For example, the function f(x,t) = t*@)~Y(a(z)Int + 1) (with F(z,t) =
t*@ Int), where a € C1(2) = {h € C(R) : h(z) > 1 for any = € 2},
does not satisfy (1.2) if 2a~ > p™ > a™, where o~ = min g a(z), a® =

max, o o(z).
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On the other hand, in order to verify (1.2), it is an annoying task to
compute the primitive function of f and sometimes it is almost impossible:
take for instance

f(x,u) _ ua(z)—2<u + esinsinsiHU)’ u>0,

where a(-) € C(12).

The purpose of the present paper is to study the existence of infinitely
many solutions of p(x)-Laplacian equations by applying some variant foun-
tain theorems; thus we can free ourselves of (1.2). Unlike the p-Laplace
and Laplace equations, p(z)-Laplace equations are inhomogeneous, thus the
problems involving them are more complicated. We refer to [R] [ZH]| for ap-
plied background, to [FZO. [KR] for the variable exponent Lebesgue—Sobolev
spaces and to [FH [FJ, [FZN| lJ] for p(x)-Laplacian equations and the corre-
sponding variational problems.

The paper is organized as follows. In Section 2 we present some pre-
liminaries on variable exponent spaces and some variant fountain theorems
due to Zou [ZO]. In Section 3, infinitely many large energy solutions for the
symmetric p(z)-Laplacian Dirichlet problem are considered. In Section 4, we
study infinitely many small energy solutions for the p(x)-Laplacian equation
with concave and convex nonlinearities.

2. Preliminaries. Let 2 C RY (N > 2) be a bounded domain with
smooth boundary 02, and throughout this paper, we always assume p(-) €

C1(£2), ¢, ¢;, C and C; are positive constants which may vary from line to
line. Set

PO (02)

= {u : u is a measurable real-valued function on {2 with S luP®) da < oo},
(9}
with the norm
[ul o) = ulpy = inf{A >0 | Ju/AP@) do <1
Q

and (LPO)(02),]- |p(-)) becomes a Banach space, called a generalized Lebesgue
space.

THEOREM 2.1 ([FZN]).
1) (LPO(0Q),]- p()) s a separable, uniformly convex Banach space, and

its conjugate space is LIO)(2) where 1/q(x) + 1/p(z) = 1. For any
u € LPO)(2) and v € LIV (82), we have

H UV dﬂf‘ < <pl + ql> |u‘p(~)|v‘Q(')'
(%
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(ii) If p1,p2 € C+(R2) and p1(z) < pa(x) for any x € 2, then LP20)(R2)
— LPO)(2) and the imbedding is continuous.

TueoREM 2.2 ([FZO, [FZN, KR]). Let u,u;, € LPO)(02), and set p(u) =
§ o [u(@) P da.
(i) Foru;éO [ulpy = A& p(u/A) = 1.
(1) Julyy <1 (= 15> 1) 65 o <1 =15
+
(iii) If \u|p( > 1, then \u]p < p(u) < ]u\gg).
(iv) If |ulpy < 1, then |u|p < p(u) < |u|§(_).
(V) hmk—>00 |uk|p ) — =0« hmk—)oo p(uk) =0.
1) limy o0 [uglp) = 00 & limg o0 puy) = o00.

(v
The space W1P()(£2) is defined by
WO(2) = {u e LPO(2) : [Vu] € 1P0(2)}
and it can be equipped with the norm
ull = lulpy + [ Vulpey,  Yue WHO(02).
We denote by Wol’p(')(rz) the closure of C§°(£2) in W'P() () and set

Np(z)
p*(x) ={ N —p(a)’ p(z) <N,
00, p(x) > N.

THEOREM 2.3 ([FZN]).
(i) WhrO)(02) and Wol’p(')(Q) are separable, reflexive Banach spaces.
(i) If g € C1(2) and q(z) < p*(z) for all x € 12, then the imbedding of
WP (2) in LI (02) is compact and continuous.
(iii) There is a constant C > 0 such that

luly) < C|Vulyy,  Vue WyPH(0).

By Theorem 2.3(iii), we know that [Vul,.) and [|u|| are equivalent norms
on I/VO1 #() (£2). We will use [Vul,.y to replace [|u|| in the following discussions.

Let X be a Banach space with the norm || - [| and X = P,y X; with
dim X; < oo for any j € N. Set Y}, = @?:0 X, Zy, = m and
By ={uveY;:|ul| <pr}, Nip={ueZy:|ul|=rr} forpy>mr,>0.
Consider the C! functional ¥y : X — R defined by

Uy (u) := A(u) — AB(u), X€1,2].

Assume that
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(F1) ¥\ maps bounded sets to bounded sets uniformly for A € [1,2].
Furthermore, ¥ (—u) = =Wy (u) for all (A\,u) € [1,2] x X.

(F») B(u) >0 for all u € X; A(u) — oo or B(u) — oo as |lu]| — oo; or

(F}) B(u) <0 for all u € X; B(u) = —o0 as ||u| — oo.

Let, for k > 2,

I, .= {y € C(By, X) : v is odd and v|pp, = id},
ck(A) := inf max I\(y(u)),

’YEFkUEBk
bp(A) == inf Iy (u),
)=, D
ar(A) == max  I)(u).

u€Yy, [lull=pk
The following are variant fountain theorems.
THEOREM 2.4 ([ZO]). Assume (F1) and (F») (or (F3)) hold. If bp(\) >

ax(X) for all X € [1,2], then cx(X) > bi(N) for all X € [1,2]. Moreover, for
a.e. X € [1,2], there exists a sequence {uk(\)}>, such that

sup [[uf (N)|| < 0o, W (uE(N) =0 and Wx(uF(N) = (X)) asn — oco.

THEOREM 2.5 ([ZQl). Assume that the C! functional ¥y, : X — R de-
fined by

Uy(u) == A(u) — AB(u), A€][l,2],
satisfies

(Th) ¥n maps bounded sets to bounded sets uniformly for A € [1,2].
Furthermore, W\(—u) = —Wy(u) for all (A\,u) € [1,2] x X.
(Tz) B(u) > 0; B(u) — oo as ||u|| = oo on any finite-dimensional sub-

space of X.
(T5) There exist py > ri > 0 such that
ar(A) == inf Uy(u) >0>bg(N):= max  ¥y(u)
UEZ, ||lull=pk UEY, [Jull=rk
for all X € [1,2] and
di(X) = Uy (u) = 0 ask — oo uniformly for A € [1,2].

in
u€Zy, ||lul|<px
Then there exist Ay, — 1 with u(\,) € Yy, such that

W/’\n\yn (u(An)) =0, &y (u(M\y)) = ck € [dr(2),bk(1)] as n — oo.

In particular, if {u(\n)} has a convergent subsequence for every k, then
Uy has infinitely many nontrivial critical points up € X \ {0} satisfying
Ui (ug) — 07 as k — oo.
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3. The symmetric p(z)-Laplacian Dirichlet problem. We first
study the existence of infinitely many solutions of the equation

(3.1) {—&wvwwﬂﬂvw:fwm>inm
' w=0 on Jf2,

where 2 € RY is a bounded domain with smooth boundary. We assume
that

(L1) f € C(2 xR) and
|f(z,t)] < C1 + Colt|*™@71, V(x,) € 2 xR,

where o € C(£2) and a(z) < p*(x).
(L2) liminfy, o f(z, u)u/|u|’ > >0 uniformly in = € £2, where § > p™.
(L3) f(x,u)/uP" 1 is increasing in u for u large enough.
(L4) f(z,u)u>0and f(z,—u) = —f(z,u) for z € 2 and u € R.

For now on we write X = Wol’p(')(ﬂ). Define

1
I(uw) = \ —|Vu|P™ doe — \ F(z,u) da.
gp(iv) é

It is easy to see that I € C1(X,R) and

(I'(u),v) = S IVulP® =2y dr — S f(z,u)vde, Vu,ve X.
Q Q

So the critical points of I are the weak solutions of (3.1).

THEOREM 3.1. Assume that (L1)—(L4) hold. Then (3.1) has infinitely
many solutions {uy} satisfying

1
S—|Vuk|p($)dx— SF(x,qu:c—)oo as k — oo.
5 p(x) p

REMARK 3.2. The result was first proved by Fan and Zhang [FZN] under
the condition (1.2).

EXAMPLE 3.3. f(z,u) = |u|*®) =3y (|u| + e3°3%5¥) is an example sat-
isfying (L1)—(Ly) if o= > pt.

As X is a separable and reflexive Banach space, there exist (see [FZN])
{en}r2; € X and {f,}5°; C X* such that
1 ifn=m,

h®“2{0ﬁn¢m
X =span{e,:n=1,2,...}, X*=span” {ep:n=12,...}.
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For £k =1,2,..., denote

k 59
Xk = Span{ek}, Yk = @Xj, Zk = @X]

and
By ={uveYy:|ul| <pr}, Np={ueZy:|ul|=rr} forpy>r>0.
For k > 2, let I}, ck(X), br(X) and ax(A) be defined as in Section 2. Now

consider

- (1 V@ de — A | F(a,u) de = A(u) = AB(u),
D Q

where A € [1,2]. By (L4), it is easy to see that B(u) > 0 and A(u) — oo as
|lu|| = oo, In(—u) = —Iz(u) for all A € [1,2] and u € X.

LEMMA 3.4 ([FZN]). If a € C+(2), a(z) < p*(z) for any x € 2, denote
Bu(a)) = sup{lulacy | ull = 1, u € Z}.
Then limg_, 00 Br(a(-)) = 0.
Theorem 3.1 follows directly from the next lemmas.

LEMMA 3.5. Under the assumptions of Theorem 3.1, there exist A, — 1
asn — 0o, ¢ > by, >0 and {z,}02, C X such that

If\n(zn) =0, I)\n(zn) c [Ek,Ek].
Proof. By (L1) and (Lg), for every € > 0, there exists C, such that
f(z,u)u > Celul? — 6]u|p+, Vu e X.

Since all norms are equivalent in Yy, it is easy to see, for some p; > 0 large
enough, that ay(\) := max,ey,  |jul|=p, Ir(v) < 0 uniformly for A € [1,2]. On
the other hand, from Lemma 3.4, fi(a(-)) — 0 as k — oo. Therefore, for
u € Zy, |lul| =y = (Catpp )/ =) by (Ly), we have

1 x
In(u) = S m!VUPD( )daz—)\SF (x,u)dx
Q 2
1
— S |VulP®) dz — ex S |u|*®) do — ¢
Q Q

> ||ulf?/pT — c)\]u\ggi —cg for some & € 2

_ ) Ml /pt —es = if ula(y <1,
lul/p* = caBy ull*r —ca if Julogy > 1

- + +
> [lull” /pt = By llull* —cs
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1 1 _p
- <+ - +><0a+ﬁf:*>w+ — ¢
P [0

1/ 1 1 _p-
23 (p+ - a+><0a+ﬂ?+>pp—a+ = by if k is large,
which implies that bi(A) := infyez, jujzy IN(1) > by — 00 as k — oo
uniformly for A € [1,2]. Therefore, by Theorem 2.4, for a.e. A € [1,2], there

exists a sequence {uf(\)}22, such that

Dol < oo, I(up(A) =0 and  Iy(us(N) = cx(X) = be(A) = by,

as n — oo. Moreover, since cx()\) < sup,ecp, I(u) =: ¢ and the embedding
X < L*0)(02) is compact [FZN], the sequence {uk(\)}>2, has a convergent
subsequence. Hence, there exists z§ such that I{(2f) = 0 and I,(2}) €
[bk, Cr]. It is clear that we may find A, — 1 and {z,} as desired. =

LEMMA 3.6. The sequence {z,}22  is bounded.

Proof. Assume that ||z,|| — oo as n — 00. Set wy, := 2z, /||zn||. Then, up
to a subsequence,

wp(z) ~w(z) in X, n— oo,
wn(z) = w(z) in L8O(02), n — oo,
wp(z) > w(z) forae. z € 2, n— oo

CASE 1: w # 0 in X. Since I} (z,) =0, we have

<c

SMW

[[zn [P+

if n is large. On the other hand, by Fatou’s lemma and (Ls),

dr — oo

S M dx = S \wn(x”mm

lzn [P+ [2n[P+

0 wn (z)#0

as n — oo. This is a contradiction.
CASE 2: w =0 in X. We define

I, (thzn) = trél[gul(] I, (tzy).

For any ¢ > 1 and @, = (2ptc)'/?” w,, we have, for n large enough,

In, (tnzn) = I, (@n) > 2¢ = My | F(2,@,) dz > ¢,
9]
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which implies that lim, oo I, (tn2,) = 0o. Furthermore, (I S\n (tnzn)stnzn)
=0, and it follows that

1
— Vitnzn
g(p(x) p*)‘ " )
+ A S <+tnznf(x,tnzn) — F(x,tnzn)> dx — oo.
p
Q
By condition (L), h(t) = (1/p™)t?" f(x,s)s — F(x,ts) is increasing in ¢ €

[0,1], hence (1/pT)f(x,s)s — F(x,s) is increasing in s > 0. Invoking the
oddness of f, we have

| <p(1x) ~ pi) V2P d + A | <pl+znf(:c, o) — Fla, Zn)) i

(9} (9}
1 1
>\ — - Vitnzn P dz + A, <tnznf T, tnzn) — F(x,thzn ) dx
§Z<p($) p*)’ | é pt ( )~ F )
— 00.

We get a contradiction since

1
— V2 |P@ da + A,
g(p(ﬂf) p*)' |
1

p+

nf(zy2n) — F(x, 2) | do
G )
= Iy, (2n) — <I$\n(zn)7zn> =1I,(zn) € [Bkyék]- m

4. The p(z)-Laplacian equation with concave and convex nonlin-
earities. Now we consider the following quasilinear elliptic equation with
concave and convex nonlinearities:

an | div(VaP@-2Vu) = f(z,u) + glz,u) in 2,
' u=0 on 012,

where £2 € RY is a bounded domain. We want to find infinitely many small
negative energy solutions. The following hypotheses are assumed for (4.1):

(S1) f,g € C(2 x R,R) are odd in u.
(S2) There exist s,s; € C(2) and 1<s™ < st <p~, 1<s] <sf <p~,
c1,co,c3 > 0 such that
a|ulf® < flz,w)u < colu)™ + es|ul**@  for ae. x € 2 and u € R.
(S3) There exists o € C(2) with p™ < o~ < o™ and a(z) < p*(z) such
that
lg(z,u)] < C1 + Colu|*®~1 V(z,t) € 2 xR.

Moreover, lim,_o g(z, u)/u?" ~! = 0 uniformly for z € £2.
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(S4) Assume one of the following conditions holds:

(1) limyy o0 g(2, u)/ufP” ~1 = 0 uniformly for = € £2.

(2) limyy|yeo g(z, u)/[ufP” ~1 = —oco uniformly for = € £2. Further-

~1 are increasing in u for

more, f(z,u)/uP ~1 and g(x,u)/uP"
u large enough.

g(z,u)
up” —1
is increasing in u for u large enough. Moreover, there exists

B(:) € C+(2) with 8~ > max{p™, s*, s} such that

(3) limyy|yo0 g(z, u)/[ufP” ~1 = oo uniformly for = € 2, and

lim inf g(xv ’U,)U — p_G(SU, U)

= o0 uniformly for x € (2.

ExaMPLE 4.1.
fl@u) = [uf@2uln 2+ [u]),  g(z,u) = plu/* ™ Puln(l + |u]),

where s € C(2) and 1 < s~ < sT < p~ for ae. v € 2 and u € R,
a € C(2) with p* < a= < a® and a(z) < p*(x). Then (S1), (S2), (S3)
and (S4)(2) hold if p < 0; (S1), (S2), (S3) and (S4)(3) hold if ¢ > 0 and
B > max{p*,st, s]} is a constant; if we assume g(z,u) = |u|*®) 2y, a” > 2
for |u| < 1, g(z,u) = clulP” " ~luln(l + |ul),a” > 2 for |u| > 1 (here
c=1/In2), then (S7), (S2), (S3) and (S4)(1) hold.

Define

1
D(u) = S ——|VulP® dz — S F(z,u)dr — S G(z,u)dz.
o P(@) P P
It is clear that & € C'(X,R) and the critical points of @ are the weak
solutions of (4.1).

The following is the main result of this section.

THEOREM 4.2. Assume that (D1)—(Dy) hold. Then (4.1) has infinitely
many solutions {uy} satisfying

S :[Vuk]p(x) dx — S F(x,uy)dx — S G(z,up)dr — 0" as k — oo,
oP z) [0 12
where F and G are the primitive functions of f and g respectively.
We consider
B(u) = | L\vw(@ dv — | G(z,u)dz — \ | F(z,u) dx = A(u) — AB(u),
5 p(z) 4 4
where A € [1,2]. Then B(u) > 0 and B(u) — oo as |lu]| — oo on any
finite-dimensional subspace. Let n > k > 2. By (S3), for any € > 0, there
exists C, such that

1G(z,u)| < Celul*® + eulP+,  Vue X.
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Therefore, for ||u|| small enough,

D) 2 13— crluls) — calull
Assume that s~ < s; and let

Br(s(-)) = sup  |uls), Br(si() = sup  |ulg (.

UEZ, [|lul|=1 uEZp, |[ul|=1

Then B (s(-)) = 0, Br(s1(-)) — 0 as k — oo. Then for v € Zg and

- S. _ 1
ul| = pr. := (dep™ By (s(-)) +4ep™ B (s1())) P,
we have ®y(u) > pf /(4p™) > 0. On the other hand, if u € Vi with |Ju]

small enough, we have

1 _
Dy (u) < —|ullP + Ce S [u|®) dz: + S ulP" dz — Aey S lul*® dz
p 0 17 2

1 _ _
< =l + Cellul + el = dealful* <.

The above arguments imply that bx(A) < 0 < ag(A) for X € [1,2]. Further-
more, for u € Zj, with |lul]] < pi, we see that &y(u) > —c18; (s())p; —

czﬁz;(sl(-))pf — 0 as k — o0. So, di(\) — 0 as k — oo, and applying
Theorem 2.5, we have the following lemma.

LEMMA 4.3. There exist A, — 1, u(\,) € Yy, such that

D\ v, (u(Mn)) =0, D, (u(An)) = ek € [di(2),b6(1)]  as n — oco.
Theorem 4.2 is a consequence of Lemma 4.3 and Lemma 4.4 below.
LEMMA 4.4. The sequence {u(\,)} is bounded in X.

Proof. Since @) |y, (u(\n)) = 0, we have

VIVu(An) P& do — | gl u(hn))u(An) do = A | f(z, (M) u(Xn) dz = 0.
2 02 2

If, up to a subsequence, ||u(\,)|| — oo as n — oo, then
1< S 9(z, u(An))u(An) — Anf(z, u(An))u(An)

- dz.
p4 [[u(An) [P

By (Su)
o L < § )
o) <) T

where o(1) — 0 as n — oo. This is a contradiction if (S4)(1) holds.

dz,
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Otherwise, set wy, = u(An)/||w(An)||. Then

wp(z) ~w(z) in X, n— oo,
wn(z) & w(z)  in L*O(02), n — oo,
wn(z) = w(z) for ae. z € 2, n — oco.

If w# 0in X and lim, g(z,u)/uP” ~t = —oco in (S4)(2), then, for n
large enough, by Fatou’s lemma, we have

—g(@, u(An))u(An), -
—1+40(1) > (g} O |wn [P da,
>c+ S —9(@; ulhn))u(An) lwn|P dz — oo,

=
ooz Al

a contradiction. Therefore w = 0 in X. Similar to the proof of Lemma 3.2,
if we define

Py, (thu(An)) = tlg[aa}l{} Dy, (tu(An)),

then
li_>m Dy, (thu(Ay)) = 00, <Q5£\n(tnu()\n)),tnu(>\n)) =0.
n o0

It follows that

so = Tim @y (tru(An)) — pl_@'/\n(tnu(/\n)),tnu()\n»

n—oo

1 1
< ( - p_) [Vt u(An)|P® da

5 \p(z)

1
+)\n§2 <ptnu()\n)f(x,tnu()\n)) — F(x,tnu()\n))) dr

1
+ é) <p_tnu()‘n)g(matnu()‘n)) - G(x’t”u()\"))) dz.

If (S4)(2) holds, we have
i_suf(a:, su) — F(xz,su) + i_sug(a:, su) — G(z,su) <c
p p

for all s > 0 and u € R, a contradiction.
If (S4)(3) holds, then
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which implies that

1
(SZ <pu()\n)g($,u(>\n)) - G(x,u()\n))> dz — .

However, by the property of u(\,), we have

(1) 2 | (o= L) )P o
0§ (SEun ) - Flauin) ) da
(9}
+ 1 (SEuOmgteun) = Gleurn) ) da
2

> | (Cubgte un) - Glau(hn))) do
2

_ S <1 — 1) IVu(A)P®) dz — c||u||s+ — C”U\|51+’
o\pm p(x)

— 00,

which contradicts the preceding estimate. So the sequence {u(Ay,)} is bound-
edin X. m
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