Probability distribution solutions of a general linear equation of infinite order, II

by TOMASZ KOCHANEK and JANUSZ MORAWIEC (Katowice)

Abstract. Let (Ω, \mathcal{A}, P) be a probability space and let $\tau : \mathbb{R} \times \Omega \to \mathbb{R}$ be a mapping strictly increasing and continuous with respect to the first variable, and \mathcal{A} -measurable with respect to the second variable. We discuss the problem of existence of probability distribution solutions of the general linear equation

$$F(x) = \int_{\Omega} F(\tau(x,\omega)) P(d\omega).$$

We extend our uniqueness-type theorems obtained in Ann. Polon. Math. 95 (2009), 103–114.

1. Introduction. Throughout the paper, (Ω, \mathcal{A}, P) is a probability space and $\tau : \mathbb{R} \times \Omega \to \mathbb{R}$ is a mapping such that for every $x \in \mathbb{R}$ the function $\tau(x, \cdot)$ is \mathcal{A} -measurable, and for every $\omega \in \Omega$ the function $\tau(\cdot, \omega)$ is strictly increasing and continuous.

We investigate the set of probability distribution (p.d.) solutions of the linear functional equation

(1.1)
$$F(x) = \int_{\Omega} F(\tau(x,\omega)) P(d\omega)$$

extending the results obtained in [KM]; for the background of equation (1.1) see the references therein.

As explained in detail in [KM, $\S 2],$ we may restrict our considerations to the case where

(1.2)
$$\{x \in \mathbb{R} : \tau(x, \omega) = x \text{ for almost all } \omega \in \Omega\} = \emptyset.$$

This follows from [MR, Theorem 2]; also by that theorem, we know that (1.2) forces every p.d. solution F of (1.1) to be automatically continuous.

²⁰¹⁰ Mathematics Subject Classification: Primary 60E05, 39B12; Secondary 39B22.

 $Key\ words\ and\ phrases:$ linear functional equations, iterative functional equations, probability distribution solutions.

From now on we assume (1.2). For any interval $J \subset \mathbb{R}$ we define $\mathcal{C}(J) = \{F \colon \mathbb{R} \to [0,1] \mid F \text{ is a weakly increasing (and continuous)}$ solution of (1) such that $F(\inf J) = 0$ and $F(\sup J) = 1\}$,

with the notation $F(-\infty) = \lim_{x \to -\infty} F(x)$ and $F(+\infty) = \lim_{x \to +\infty} F(x)$.

We say that a set $S \subset \mathbb{R}$ is τ -invariant if $S \neq \emptyset$ and for every $x \in S$ we have $\tau(x, \omega) \in S$ for almost all $\omega \in \Omega$. Put

$$\mathcal{S}_1 = \{ I \subset \mathbb{R} : I \text{ is a minimal compact } \tau \text{-invariant interval} \}, \\ \mathcal{S}_2 = \Big\{ I \subset \mathbb{R} \setminus \bigcup \mathcal{S}_1 : I \text{ is a maximal } \tau \text{-invariant half-line} \Big\},$$

and $S = S_1 \cup S_2$. In view of the definition and our assumption (1.2), the family S consists of pairwise disjoint non-degenerate closed proper subintervals of \mathbb{R} . Therefore, since $\bigcup S_1$ is closed (cf. the proof of [KM, Claim 7]), $\bigcup S$ is closed as well. This implies that $\mathbb{R} \setminus \bigcup S$ is a non-empty open set. Indeed, $\bigcup S = \mathbb{R}$ would imply that the set of all end-points of the intervals from S is a countable perfect set, which is impossible.

By virtue of [KM, Corollary 2, Remarks 1 and 2], we find that:

- (i) Every p.d. solution F of (1.1) is constant on each member of S.
- (ii) For each open component J of the set $\mathbb{R} \setminus \bigcup S$ the class $\mathcal{C}(J)$ has at most one element.
- (iii) If F is a p.d. solution of (1.1) and J is an open component of $\mathbb{R} \setminus \bigcup S$ with $\mathcal{C}(J) = \{G\}$, then

$$G = \frac{F - F(\inf J)}{F(\sup J) - F(\inf J)}.$$

(iv) The existence of any p.d. solution of (1.1) is equivalent to $\mathcal{C}(J) \neq \emptyset$ for at least one open component J of $\mathbb{R} \setminus \bigcup S$.

These four statements show that in order to describe every p.d. solution F of equation (1.1) we should be able to decide whether $\mathcal{C}(J) \neq \emptyset$ and, if so, to describe the unique member of $\mathcal{C}(J)$, for every open component J of $\mathbb{R} \setminus \bigcup S$. This is the aim of the present paper.

2. Some lemmas. We start with two auxiliary lemmas which yield certain connections between solutions of any of the two inequalities:

(2.1)
$$F_0(x) \ge \int_{\Omega} F_0(\tau(x,\omega)) P(d\omega),$$

(2.2)
$$F_0(x) \le \int_{\Omega} F_0(\tau(x,\omega)) P(d\omega)$$

and solutions of equation (1.1).

LEMMA 2.1. If $F_0: \mathbb{R} \to [0,1]$ is an increasing solution of (2.1) (or (2.2)), then the sequence $(F_n)_{n \in \mathbb{N}}$ of functions $F_n: \mathbb{R} \to [0,1]$ defined by the formula

(2.3)
$$F_n(x) = \int_{\Omega} F_{n-1}(\tau(x,\omega)) P(d\omega) \quad \text{for } n \in \mathbb{N}, \, x \in \mathbb{R}$$

is decreasing (respectively increasing), hence it is pointwise convergent to a certain $F \colon \mathbb{R} \to [0, 1]$.

Moreover, the function F is either constant or

(2.4)
$$\frac{F - F(-\infty)}{F(+\infty) - F(-\infty)} \in \mathcal{C}(\mathbb{R}).$$

Proof. If F_0 satisfies (2.1), then by the definition, $F_1 \leq F_0$. In particular, $F_1(\tau(x,\omega)) \leq F_0(\tau(x,\omega))$ for all $x \in \mathbb{R}$ and $\omega \in \Omega$. After integration we get $F_2 \leq F_1$ and, by induction, $F_n \leq F_{n-1}$ for every $n \in \mathbb{N}$. Analogously, if F_0 satisfies (2.2), then $F_{n-1} \leq F_n$ for every $n \in \mathbb{N}$. Let $F = \lim_{n \to \infty} F_n$. Since F_0 is increasing, each F_n and F itself are increasing as well. Moreover, Fsatisfies (1.1). Thus, in view of [MR, Theorem 2], either F is constant or (2.4) holds.

In the following we consider the product space $(\Omega^{\infty}, \mathcal{A}^{\infty}, P^{\infty})$ and the iterates $\tau^n \colon \mathbb{R} \times \Omega^{\infty} \to \mathbb{R}$ defined (cf. [BJ], [BK], [D]) by putting

$$\tau^{1}(x,\omega_{1},\ldots) = \tau(x,\omega_{1}),$$

$$\tau^{n+1}(x,\omega_{1},\ldots) = \tau(\tau^{n}(x,\omega_{1},\ldots),\omega_{n+1}) \quad \text{for } n \in \mathbb{N}.$$

It is easily seen that for each $n \in \mathbb{N}$ we have

$$\tau^{n+1}(x,\omega_1,\ldots)=\tau^n(\tau(x,\omega_1),\omega_2,\ldots)$$

and the *n*th iterate $\tau^n(x,\omega)$ depends only on the first *n* coordinates of ω . Hence it is justified to write $\tau^n(x,\omega_1,\ldots,\omega_m)$ instead of $\tau^n(x,\omega_1,\ldots)$, if $m \ge n$.

LEMMA 2.2. Assume $x_0, y_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$.

(i) If $x_0 \in \mathbb{R}$ and $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \chi_{[x_0, +\infty)}$, then $F_n(x) = P^{\infty}(\tau^n(x, \omega) \ge x_0) \quad \text{for } n \in \mathbb{N}, x \in \mathbb{R}.$

If (x_0, y_0) is a component of $\mathbb{R} \setminus \bigcup S$, then F_0 satisfies (2.1).

(ii) If $y_0 \in \mathbb{R}$ and $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \chi_{[y_0, +\infty)}$, then

 $F_n(x) = P^{\infty}(\tau^n(x,\omega) \ge y_0) \quad \text{for } n \in \mathbb{N}, x \in \mathbb{R}.$

If (x_0, y_0) is a component of $\mathbb{R} \setminus \bigcup S$, then F_0 satisfies (2.2).

Proof. Since the proofs of both assertions (i) and (ii) are similar, we show only the first one.

For any $x \in \mathbb{R}$ we have

$$F_1(x) = \int_{\Omega} \chi_{[x_0, +\infty)}(\tau(x, \omega_1)) P(d\omega_1)$$

= $P(\tau(x, \omega_1) \ge x_0) = P^{\infty}(\tau^1(x, \omega_1, \ldots) \ge x_0).$

Assuming that the desired formula holds true for a fixed $n \in \mathbb{N}$ and every $x \in \mathbb{R}$, we get

$$F_{n+1}(x) = \int_{\Omega} F_n(\tau(x,\omega_1)) P(d\omega_1)$$

= $\int_{\Omega} P^n(\tau^n(\tau(x,\omega_1),\omega_2,\dots,\omega_{n+1}) \ge x_0) P(d\omega_1)$
= $\int_{\Omega} P^n(\tau^{n+1}(x,\omega_1,\dots,\omega_{n+1}) \ge x_0) P(d\omega_1)$
= $P^{n+1}(\tau^{n+1}(x,\omega_1,\dots,\omega_{n+1}) \ge x_0)$
= $P^{\infty}(\tau^{n+1}(x,\omega_1,\dots) \ge x_0).$

Now, suppose (x_0, y_0) is a component of $\mathbb{R} \setminus \bigcup S$. Then x_0 is a right end-point of some τ -invariant interval. Hence $\tau(x_0, \omega) \leq x_0$ for almost all $\omega \in \Omega$. Therefore, if $x < x_0$ then $\tau(x, \omega) < \tau(x_0, \omega) \leq x_0$ for almost all $\omega \in \Omega$, hence $F_0(\tau(x, \omega)) = 0$ for almost all $\omega \in \Omega$ and (2.1) holds; if $x \geq x_0$ then $F_0(x) = 1$ and again (2.1) holds.

3. The case $S \neq \emptyset$. Obviously, recursion (2.3) may produce a nontrivial solution of equation (1.1) only if the initial function F_0 is nonconstant. Lemma 2.2 guarantees that in the case $S \neq \emptyset$ it is always possible to find a suitable solution of (2.1) or (2.2). We will exploit this fact in the next lemma.

Throughout this section we assume $S \neq \emptyset$.

LEMMA 3.1. Assume $J = (x_0, y_0)$ is a component of $\mathbb{R} \setminus \bigcup S$.

- (i) If $x_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}$, $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \chi_{[x_0, +\infty)}$ and $F = \lim_{n \to \infty} F_n$, then $\mathcal{C}(J) = \{F\}$.
- (ii) If $x_0 \in \mathbb{R}$, $y_0 = +\infty$, $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \chi_{[x_0, +\infty)}$ and $F = \lim_{n \to \infty} F_n$, then $F \neq 0$ implies $\mathcal{C}(J) = \{F\}$, whereas F = 0 implies $\mathcal{C}(J) = \emptyset$.
- (iii) If $x_0 = -\infty$, $y_0 \in \mathbb{R}$, $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \chi_{[y_0, +\infty)}$ and $F = \lim_{n \to \infty} F_n$, then $F \neq 1$ implies $\mathcal{C}(J) = \{F\}$, whereas F = 1 implies $\mathcal{C}(J) = \emptyset$.

Proof. (i) Since J is a bounded component of $\mathbb{R} \setminus \bigcup S$, we infer that x_0 and y_0 are (respectively right and left) end-points of some τ -invariant

intervals. Consequently,

$$P(\tau(x,\omega) \le x_0) = 1, \quad P(\tau(y,\omega) \ge y_0) = 1 \quad \text{for } x \le x_0, \ y \ge y_0$$

A simple induction yields

 $P^{\infty}(\tau^n(x,\omega) \le x_0) = 1, \ P^{\infty}(\tau^n(y,\omega) \ge y_0) = 1 \quad \text{ for } n \in \mathbb{N}, \ x \le x_0, \ y \ge y_0,$

which, in the light of Lemma 2.2, means nothing else than

 $F_n|_{(-\infty,x_0]} = 0$ and $F_n|_{[y_0,+\infty)} = 1$ for $n \in \mathbb{N}$.

By Lemma 2.1, $F \in \mathcal{C}(J)$.

(ii) Analogously to the proof of (i) we can show that $F|_{(-\infty,x_0]} = 0$ and either F is constant or the function $F/F(+\infty)$ belongs to $\mathcal{C}(J)$. Now it is enough to prove that $\mathcal{C}(J) \neq \emptyset$ implies $F(+\infty) = 1$.

Let $G \in \mathcal{C}(J)$. Obviously, $G \leq F_0$. Therefore

$$G(x) = \int_{\Omega} G(\tau(x,\omega)) P(d\omega) \le \int_{\Omega} F(\tau(x,\omega)) P(d\omega) = F_1(x)$$

for $x \in \mathbb{R}$ and further, by induction, $G \leq F_n$ for every $n \in \mathbb{N}$. Hence $G \leq F$, which implies $F(+\infty) = 1$.

(iii) The proof runs analogously to the proof of (ii).

As a consequence of Lemmas 2.2 and 3.1 we obtain the following theorem.

THEOREM 3.2. Assume $S \neq \emptyset$ and $J = (x_0, y_0)$ is a component of $\mathbb{R} \setminus \bigcup S$.

- (i) If $x_0 \in \mathbb{R}$ and $y_0 \in \mathbb{R}$, then $\mathcal{C}(J) \neq \emptyset$. The unique member of $\mathcal{C}(J)$ is given by $F = \lim_{n \to \infty} F_n$, where $(F_n)_{n \in \mathbb{N}}$ is defined by (2.3) with $F_0 = \chi_{[x_0, +\infty)}$.
- (ii) If $x_0 \in \mathbb{R}$ and $y_0 = +\infty$, then $\mathcal{C}(J) \neq \emptyset$ if and only if

$$\lim_{x \to +\infty} \lim_{n \to \infty} P^{\infty}(\tau^n(x, \omega) \ge x_0) > 0.$$

In that case the unique member of $\mathcal{C}(J)$ is given by $F = \lim_{n \to \infty} F_n$, where $(F_n)_{n \in \mathbb{N}}$ is defined by (2.3) with $F_0 = \chi_{[x_0, +\infty)}$.

(iii) If $x_0 = -\infty$, $y_0 \in \mathbb{R}$, then $\mathcal{C}(J) \neq \emptyset$ if and only if

$$\lim_{y \to -\infty} \lim_{n \to \infty} P^{\infty}(\tau^n(y, \omega) < y_0) > 0.$$

In that case the unique member of $\mathcal{C}(J)$ is given by $F = \lim_{n \to \infty} F_n$, where $(F_n)_{n \in \mathbb{N}}$ is defined by (2.3) with $F_0 = \chi_{[y_0, +\infty)}$.

Unfortunately, the two necessary and sufficient conditions appearing in assertions (ii) and (iii) are hard to verify in concrete situations. Nevertheless, there are clear conditions which are necessary for $\mathcal{C}(J) \neq \emptyset$.

THEOREM 3.3. Assume $J = (x_0, y_0)$ is a component of $\mathbb{R} \setminus \bigcup S$.

- (i) If $x_0 \in \mathbb{R}$, $y_0 = +\infty$ and $\mathcal{C}(J) \neq \emptyset$, then almost all functions $\tau(\cdot, \omega)$ are unbounded from above.
- (ii) If $x_0 = -\infty$, $y_0 \in \mathbb{R}$ and $\mathcal{C}(J) \neq \emptyset$, then almost all functions $\tau(\cdot, \omega)$ are unbounded from below.

Proof. Since the proofs of (i) and (ii) are similar, we only show (i).

Suppose that there exists $M \in \mathbb{R}$ such that $\alpha = P(\tau(\cdot, \omega) \leq M) > 0$. Define a sequence $(\xi_n)_{n\geq 0}$ by the formula

(3.1)
$$\xi_n = \inf\{x \in \mathbb{R} : F_n(x) = 1\},\$$

where $(F_n)_{n\in\mathbb{N}}$ is given by (2.3) with $F_0 = \chi_{[x_0,+\infty)}$ (we put $\xi_n = +\infty$ if the underlying set is empty). By Lemma 2.2(i), F_0 satisfies (2.1), hence Lemma 2.1 implies that the sequence $(F_n)_{n\in\mathbb{N}}$ is decreasing. Therefore $(\xi_n)_{n\geq 0}$ is increasing, and since $\xi_0 = x_0$, it follows that $x_0 \leq \xi_{n-1} \leq \xi_n$ for $n \in \mathbb{N}$.

We will show that

(3.2)
$$\xi_n = \inf\{x \in \mathbb{R} : P(\tau(x,\omega) \ge \xi_{n-1}) = 1\} \quad \text{for } n \in \mathbb{N}.$$

The case $\xi_n = +\infty$ is trivial, since then formula (2.3) implies that there is no $x \in \mathbb{R}$ with $P(\tau(x, \omega) \ge \xi_{n-1}) = 1$. Thus we may assume $\xi_n < +\infty$, and consequently $\xi_{n-1} < +\infty$. Denote the right-hand side of (3.2) by η_n . The equality

(3.3)
$$F_n(x) = \int_{\Omega} F_{n-1}(\tau(x,\omega)) P(d\omega) = 1,$$

jointly with (3.1), implies that $P(\tau(x,\omega) \ge \xi_{n-1}) = 1$ for every $x > \xi_n$. Therefore $P(\tau(\xi_n,\omega) \ge \xi_{n-1}) = 1$, i.e. $\xi_n \ge \eta_n$. For the converse inequality fix any $x \in \mathbb{R}$ with $P(\tau(x,\omega) \ge \xi_{n-1}) = 1$. Then (3.3) yields $F_n(x) = 1$, hence $\xi_n \le x$. This shows that $\xi_n \le \eta_n$.

Let $\xi = \lim_{n\to\infty} \xi_n$. If ξ were finite then, in view of (3.2), we would have $\tau(\xi,\omega) \geq \xi$ for almost all $\omega \in \Omega$, which means that ξ is a left end-point of some τ -invariant interval. This, however, is impossible, since $\xi \geq x_0$ and $(x_0, +\infty) \subset \mathbb{R} \setminus \bigcup S$. Therefore $\xi = +\infty$, hence there is $n \in \mathbb{N}$ such that $\xi_n > M$. In view of (3.1), we have $F_n(M) < 1$. For every $x \in \mathbb{R}$ we thus obtain

$$F_{n+1}(x) = \int_{\Omega} F_n(\tau(x,\omega)) P(d\omega) = \int_{\tau(x,\omega) \le M} + \int_{\tau(x,\omega) > M} \\ \le \alpha F_n(M) + (1-\alpha) < 1.$$

Consequently, $F_{n+1}(+\infty) < 1$. Hence we also have

$$\lim_{x \to +\infty} \lim_{n \to \infty} F_n(x) < 1,$$

which in the light of Lemma 2.2(i) and Theorem 3.2(ii) implies $C(J) = \emptyset$. Thus the proof has been completed. 4. The case $S = \emptyset$. Throughout this section we assume $S = \emptyset$.

LEMMA 4.1. If $F \in \mathcal{C}(\mathbb{R})$, then $F(\mathbb{R}) \subset (0,1)$.

Proof. Put $x_0 = \inf\{x \in \mathbb{R} : F(x) = 1\}$ and suppose $x_0 \in \mathbb{R}$. Then it follows from

$$1 = F(x_0) = \int_{\Omega} F(\tau(x_0, \omega)) P(d\omega)$$

that $F(\tau(x_0,\omega)) = 1$ for almost all $\omega \in \Omega$, thus $\tau(x_0,\omega) \ge x_0$ for almost all $\omega \in \Omega$, which contradicts $S = \emptyset$. Similarly we can prove that F(x) > 0 for every $x \in \mathbb{R}$.

LEMMA 4.2. If $x_0 \in \mathbb{R}$, $F \in \mathcal{C}(\mathbb{R})$ and $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \chi_{[x_0, +\infty)}$, then

(4.1)
$$\frac{F(x) - F(x_0)}{1 - F(x_0)} \le F_n(x) \le \frac{F(x)}{F(x_0)} \quad \text{for } n \in \mathbb{N}, x \in \mathbb{R}.$$

Proof. Iterating equation (1.1) and using Lemma 2.2(i) we get

$$F(x) = \int_{\Omega^{\infty}} F(\tau^n(x,\omega)) P^{\infty}(d\omega) = \int_{\tau^n(x_0,\omega) \ge x_0} + \int_{\tau^n(x_0,\omega) < x_0} \\ \le P^{\infty}(\tau^n(x,\omega) \ge x_0) + F(x_0) P^{\infty}(\tau^n(x,\omega) < x_0) \\ = F_n(x) + F(x_0)(1 - F_n(x))$$

for $n \in \mathbb{N}$, $x \in \mathbb{R}$. By Lemma 4.1 we obtain the first estimate in (4.1). To show the second one we write

$$F(x) \ge \int_{\tau^n(x_0,\omega)\ge x_0} F(\tau^n(x,\omega)) P^{\infty}(d\omega)$$

$$\ge F(x_0)P^{\infty}(\tau^n(x,\omega)\ge x_0) = F(x_0)F_n(x)$$

for $n \in \mathbb{N}, x \in \mathbb{R}$.

LEMMA 4.3. If $x_0 \in \mathbb{R}$ and $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \chi_{[x_0, +\infty)}$, then the function $\underline{F} : \mathbb{R} \to [0, 1]$ defined by

$$\underline{F}(x) = \liminf_{n \to \infty} F_n(x)$$

is increasing and satisfies

(4.2)
$$\underline{F}(x) \ge \int_{\Omega} \underline{F}(\tau(x,\omega)) P(d\omega),$$

whereas the function $\overline{F} \colon \mathbb{R} \to [0,1]$ defined by

$$\overline{F}(x) = \limsup_{n \to \infty} F_n(x)$$

is increasing and satisfies

(4.3)
$$\overline{F}(x) \le \int_{\Omega} \overline{F}(\tau(x,\omega)) P(d\omega).$$

Proof. It is obvious that \underline{F} and \overline{F} are increasing. Inequalities (4.2) and (4.3) immediately follow from the Fatou lemma applied to the sequences $(F_n)_{n\in\mathbb{N}}$ and $(1 - F_n)_{n\in\mathbb{N}}$, respectively.

From now on $x_0 \in \mathbb{R}$ is fixed and \underline{F} , \overline{F} stand for the two functions defined in Lemma 4.3.

LEMMA 4.4. In each of the following cases:

(a) $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \underline{F}$ and $F = \lim_{n \to \infty} F_n$;

(b) $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \overline{F}$ and $F = \lim_{n \to \infty} F_n$,

we have:

(i) If F is non-constant, then $\mathcal{C}(\mathbb{R}) = \{F\}.$

(ii) If F is constant, then $\mathcal{C}(\mathbb{R}) = \emptyset$.

Proof. Both in case (a) and (b), Lemma 4.3, jointly with Lemma 2.1, implies that $F \colon \mathbb{R} \to [0, 1]$ is a well-defined function such that (2.4) holds provided F is non-constant. Now it is enough to show that $\mathcal{C}(\mathbb{R}) \neq \emptyset$ implies both $F(-\infty) = 0$ and $F(+\infty) = 1$.

Let $G \in \mathcal{C}(\mathbb{R})$. By Lemma 4.2,

$$\frac{G(x) - G(x_0)}{1 - G(x_0)} \le \underline{F}(x) \le \overline{F}(x) \le \frac{G(x)}{G(x_0)} \quad \text{ for } x \in \mathbb{R}.$$

Substituting $\tau(x, \omega)$ for x, integrating both sides and applying a simple induction we arrive at the inequalities

$$\frac{G(x) - G(x_0)}{1 - G(x_0)} \le F_n(x) \le \frac{G(x)}{G(x_0)} \quad \text{for } x \in \mathbb{R},$$

where F_n may be defined either as in case (a) or as in case (b). In both cases we may pass to the limits as $n \to \infty$ and then $x \to \pm \infty$ to obtain $F(-\infty) = 0$ and $F(+\infty) = 1$.

As a consequence of Lemma 4.4 we obtain the following theorem.

THEOREM 4.5. We have $\mathcal{C}(\mathbb{R}) \neq \emptyset$ if and only if the limit

(4.4)
$$F(x) = \lim_{n \to \infty} P^{\infty}(\tau^n(x, \omega) > x_0)$$

exists for every $x \in \mathbb{R}$ and the function F is a probability distribution. In that case $\mathcal{C}(J) = \{F\}$.

Proof. Assume first that formula (4.4) defines a p.d. function $F : \mathbb{R} \to [0, 1]$. Then, by virtue of Lemma 2.2(i), we infer that $F = \lim_{n \to \infty} F_n$, where $(F_n)_{n \in \mathbb{N}}$ is given by (2.3) with $F_0 = \chi_{[x_0, +\infty)}$. Thus it follows immediately from (2.3) that F is a solution of (1.1). Hence $\mathcal{C}(\mathbb{R}) = \{F\}$.

Now, assume that there exists a function $G \in \mathcal{C}(\mathbb{R})$ and let us distinguish cases (a) and (b) of Lemma 4.4. By using Lemmas 4.3 and 2.2(i), we obtain what follows.

CASE (a). For any $x \in \mathbb{R}$ we have

$$F_1(x) = \int_{\Omega} \underline{F}(\tau(x,\omega)) P(d\omega) \le \underline{F}(x) = \liminf_{n \to \infty} P^{\infty}(\tau^n(x,\omega) \ge x_0).$$

Since Lemmas 2.1 and 4.3 imply that the sequence $(F_n)_{n \in \mathbb{N}}$ is decreasing, we infer that

(4.5)
$$F_m(x) \leq \liminf_{n \to \infty} P^{\infty}(\tau^n(x,\omega) \geq x_0) \quad \text{for } m \in \mathbb{N}, x \in \mathbb{R}.$$

By Lemma 4.4, $\lim_{m\to\infty} F_m = G$ and hence (4.5) yields

(4.6)
$$G(x) \le \liminf_{n \to \infty} P^{\infty}(\tau^n(x, \omega) \ge x_0) \quad \text{for } x \in \mathbb{R}.$$

CASE (b). For any $x \in \mathbb{R}$ we have

$$F_1(x) = \int_{\Omega} \overline{F}(\tau(x,\omega)) P(d\omega) \ge \overline{F}(x) = \limsup_{n \to \infty} P^{\infty}(\tau^n(x,\omega) \ge x_0).$$

Since Lemmas 2.1 and 4.3 imply that the sequence $(F_n)_{n\in\mathbb{N}}$ is increasing, we infer that

(4.7)
$$F_m(x) \ge \limsup_{n \to \infty} P^{\infty}(\tau^n(x,\omega) \ge x_0) \text{ for } m \in \mathbb{N}, x \in \mathbb{R}.$$

By Lemma 4.4, $\lim_{m\to\infty} F_m = G$ and hence (4.7) yields

(4.8)
$$G(x) \ge \limsup_{n \to \infty} P^{\infty}(\tau^n(x, \omega) \ge x_0) \quad \text{for } x \in \mathbb{R}.$$

Inequalities (4.6) and (4.8) show that the limit F(x) given by (4.4) exists and for every $x \in \mathbb{R}$ we have F(x) = G(x), which completes the proof.

The last result, which is analogous to Theorem 3.3, gives a necessary condition for $\mathcal{C}(\mathbb{R}) \neq \emptyset$.

THEOREM 4.6. If $\mathcal{C}(\mathbb{R}) \neq \emptyset$, then almost all functions $\tau(\cdot, \omega)$ are unbounded from below and from above.

Proof. Suppose first that there exists $M \in \mathbb{R}$ such that $P(\tau(\cdot, \omega) \leq M) > 0$. Let $(F_n)_{n \in \mathbb{N}}$ and F be as in Lemma 4.4(a). Define a sequence $(\xi_n)_{n \geq 0}$ by formula (3.1). If $\xi_0 = -\infty$ then obviously we have $\underline{F} = F = 1$, hence Lemma 4.4(ii) implies $\mathcal{C}(\mathbb{R}) = \emptyset$. Thus we may assume $\xi_0 > -\infty$. In view of inequality (4.2) and Lemma 2.1, the sequence $(F_n)_{n \in \mathbb{N}}$ is decreasing. As in the proof of Theorem 3.3, we deduce that

$$\xi_n = \inf\{x \in \mathbb{R} : P(\tau(x,\omega) \ge \xi_{n-1}) = 1\} \ge \xi_{n-1} \quad \text{for } n \in \mathbb{N},$$

and we may consider $\xi = \lim_{n\to\infty} \xi_n$. If ξ were finite then we would have $\tau(\xi,\omega) \geq \xi$ for almost all $\omega \in \Omega$, which contradicts the fact that $\mathcal{S} = \emptyset$. Therefore $\xi = +\infty$ and, by the argument of the proof of Theorem 3.3, we infer that $F(+\infty) < 1$. Hence, in view of Lemma 4.4, we must have $\mathcal{C}(\mathbb{R}) = \emptyset$.

Now, suppose that for some $m \in \mathbb{R}$ we have $\alpha = P(\tau(\cdot, \omega) \ge m) > 0$. Let $(F_n)_{n \in \mathbb{N}}$ and F be as in Lemma 4.4(b). Define a sequence $(\nu_n)_{n \ge 0}$ by the formula

(4.9)
$$\nu_n = \sup\{x \in \mathbb{R} : F_n(x) = 0\}$$

 $(\nu_n = -\infty \text{ if the underlying set is empty})$. If $\nu_0 = +\infty$ then obviously $\overline{F} = F = 0$, hence Lemma 4.4(ii) implies $\mathcal{C}(\mathbb{R}) = \emptyset$. Thus we may assume $\nu_0 < +\infty$.

In view of inequality (4.3) and Lemma 2.1, the sequence $(F_n)_{n\in\mathbb{N}}$ is increasing. Therefore $(\nu_n)_{n\geq 0}$ is decreasing: $\nu_n \leq \nu_{n-1} \leq \nu_0 < +\infty$ for $n \in \mathbb{N}$. Just as above we conclude that $\lim_{n\to\infty} \nu_n = -\infty$, hence $\nu_n < m$ for some $n \in \mathbb{N}$. By (4.9), we have $F_n(m) > 0$. For every $x \in \mathbb{R}$ we thus obtain

$$F_{n+1}(x) = \int_{\Omega} F_n(\tau(x,\omega)) P(d\omega) \ge \int_{\tau(x,\omega)\ge m} \ge \alpha F_n(m) > 0.$$

Consequently, $F_n(-\infty) > 0$ and also $F(-\infty) > 0$. In view of Lemma 4.4, we infer that $\mathcal{C}(\mathbb{R}) = \emptyset$.

Acknowledgments. This research has been supported by the scholarship from the UPGOW project co-financed by the European Social Fund (the first author), and the Silesian University Mathematics Department – Functional Equations program (the second author).

References

- [BJ] K. Baron and W. Jarczyk, Random-valued functions and iterative functional equations, Aequationes Math. 67 (2004), 140–153.
- [BK] K. Baron and M. Kuczma, Iteration of random-valued functions on the unit interval, Colloq. Math. 37 (1977), 263–269.
- [D] Ph. Diamond, A stochastic functional equation, Aequationes Math. 15 (1977), 225–233.
- [KM] T. Kochanek and J. Morawiec, *Probability distribution solutions of a general linear* equation of infinite order, Ann. Polon. Math. 95 (2009), 103–114.
- [MR] J. Morawiec and L. Reich, The set of probability distribution solutions of a linear functional equation, ibid. 93 (2008), 253–261.

Tomasz Kochanek, Janusz Morawiec Institute of Mathematics Silesian University 40-007 Katowice, Poland E-mail: tkochanek@math.us.edu.pl morawiec@math.us.edu.pl

> Received 20.7.2009 and in final form 29.1.2010

(2048)