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On gradient at in�nity of semialgebrai funtionsby Didier D’Acunto (Pisa) and Vincent Grandjean (Bath)Abstrat. Let f : Rn → R be a C2 semialgebrai funtion and let c be an asymptotiritial value of f . We prove that there exists a smallest rational number ̺c ≤ 1 suh that
|x| · |∇f | and |f(x)− c|̺c are separated at in�nity. If c is a regular value and ̺c < 1, then
f is a loally trivial �bration over c, and the trivialisation is realised by the �ow of thegradient �eld of f .1. Introdution. As a onsequene of the fundamental paper of Thom(f. [Th℄) about onditions ensuring the loal topologial triviality ofa smooth mapping, given a polynomial f : Cn → C, there exists a �nitesubset of values Λ ⊂ C suh that the funtion f indues a loally trivial �-bration from Cn \f−1(Λ) onto C\Λ. The smallest suh subset of C, denotedby B(f), is alled the set of bifuration values of the funtion f . It ontainsthe usual ritial values of f . Unfortunately, there may exist regular valuesthat are also bifuration values. But Thom did not give any way to �nd theseregular bifuration values.A few years later, Pham, in relation to onvergene of osillating integrals,exhibited a ondition ensuring that a omplex polynomial f trivialises over aneighbourhood of a regular value c ∈ C: the Malgrange ondition (f. [Ph℄).Roughly speaking, this ondition means that the norm of the gradient isnot too small in a neighbourhood of the germ at in�nity of the given level
f−1(c).The set of values at whih the Malgrange ondition is not satis�ed isatually �nite (see [Ti1℄). Moreover the Malgrange ondition fails at anybifuration value that is also regular. Finally, Parusi«ski proved that for aomplex polynomial with isolated singularities at in�nity, any regular value2000 Mathematis Subjet Classi�ation: Primary 32Bxx, 34Cxx; Seondary 32Sxx,14P10.Key words and phrases: semialgebrai funtions, gradient trajetories, �ojasiewizinequalities, Malgrange ondition.Supported by the European researh network IHP-RAAG ontrat number HPRN-CT-2001-00271 [39℄



40 D. D'Aunto and V. Grandjeanat whih the Malgrange ondition fails is a bifuration value (see [Pa℄). Yet,in full generality, we still do not know if this property is true for any omplexpolynomial.Now, let us turn to the ase of a real polynomial f . As in the omplexsituation, the set of bifuration values, as de�ned above, is �nite, as also isthe set of values at whih the Malgrange ondition is not satis�ed (see [Ve℄,[Ti1℄). Again, no regular bifuration value satis�es the Malgrange ondition.As in the omplex ase, this hopefully ensures a �bration theorem outsidethese speial �bres and the ritial �bres. But in the real ase, the resultof Parusi«ski is no longer true. A regular value of a real plane polynomialat whih the Malgrange ondition fails is not neessarily a bifuration value(see the King�Tib r�Zaharia and Parusi«ski examples in Setion 5).When the Malgrange ondition is satis�ed at a regular value c, the fun-tion is loally trivial over a neighbourhood of c. Moreover, this trivialisationan be realised by the �ow of the gradient vetor �eld ∇f .At the early stage of this work, we expeted that, at least in the realplane ase, trivialising by ∇f in a neighbourhood of a regular value c andhaving the Malgrange ondition satis�ed at c were equivalent onditions. Butthis belief was erroneous, as shown by the Parusi«ski example in Setion 5.Nevertheless, these examples have led us to try to understand morelosely the onnetions between the behaviour of the trajetories of the gra-dient �eld ∇f , the asymptoti geometry of the neighbouring levels of thelevel c and the failure of the Malgrange ondition at c. We have been par-tiularly interested in the trajetories leaving any ompat subset of Rn andalong whih f tends to a �nite value c at in�nity. We will not explore herethe very di�ult problem of the qualitative behaviour of suh trajetories,but they have led us to the disovery of the Kurdyka��ojasiewiz exponentat in�nity for c and its orresponding gradient-like inequality in a neighbour-hood of the level c at in�nity, a notion that atually improves the Malgrangeondition onsiderably, and with a geometri ontent losely onneted tothe foliation by the levels of f .In this artile we will work with C1 (or C2 depending on the ontext)semialgebrai funtions, sine most of the results we are interested in, orig-inally stated in the polynomial ase, are also available in the semialgebraiframe.Conventions. Let u and v be two germs at in�nity of single real variablefuntions. We write u ∼ v to mean that the ratio u/v has a non-zero �nitelimit at in�nity. We write u ≃ v when the limit of u/v at in�nity is 1.2. Asymptoti ritial values and the embedding theorem. Let
f : Rn → R be a C1 semialgebrai funtion. Just as in the introdution,



Gradient at in�nity of semialgebrai funtions 41the �bres of f exhibit only �nitely many topologial types ([Ve℄ or [KOS℄).The values at whih the topology hanges are alled bifuration values (oratypial values) of f . Any other value is alled a typial value. The set ofatypial values is �nite and denoted by B(f). In this set, we distinguish twosorts of values: the usual ritial values, denoted by K0(f), and K∞(f), theasymptoti ritial values, at whih the Malgrange ondition fails:Definition 2.1. The funtion f satis�es the Malgrange ondition (M)at a value t ∈ R if there exists a onstant C > 0 suh that for su�ientlylarge x and f(x) su�iently lose to t the following inequality holds:(M) |x| · |∇f(x)| ≥ C.Equivalently, c ∈ K∞(f) if there exists an unbounded sequene {xν}ν

∈ Rn suh that f(xν) → c and |xν | · |∇f(xν)| → 0.Remark 2.2. The previous de�nition and the notion of ritial valuesat in�nity also make sense for any C1 real funtion de�ned on an unboundedopen subset of Rn, as well as for omplex polynomials.Let K(f) = K0(f) ∪ K∞(f) be the set of generalised ritial values.In the real ase, ondition (M) ensures the trivialisation via the gradient�eld ∇f . To be more preise, assume that f denotes a C2 semialgebrai fun-tion. Let Φ be the loal �ow of ∇f/|∇f |2 de�ned as the mapping satisfyingthe following onditions:
dΦ

dt
(x, t) =

∇f

|∇f |2
◦ Φ(x, t) and Φ(x, 0) = x.Let us begin by stating an embedding theorem, whih is fundamental tothis work. Let c be a regular value of f . Let t be any regular value suh that

[t, c[ ∩K(f) = ∅ if t < c, or ]c, t] ∩ K(f) = ∅ if t > c. Then we have:Theorem 2.3 ([D'A2℄). There exists a C1 injetive open immersion
φ : f−1(c) → f−1(t). More preisely , the �ow of ∇f/|∇f |2 embeds eahonneted omponent of f−1(c) into a onneted omponent of f−1(t).Remark 2.4. The mapping φ is in fat the restrition to f−1(c)×{t} ofthe mapping Φ. Suh an embedding φ maps di�eomorphially the ompatonneted omponents of f−1(c) onto those of f−1(t).If the �ow of ∇f , over a neighbourhood of a regular value c, does nottrivialise f , then there is at least a trajetory of ∇f that never reahes thelevel c. More preisely, we introdue the followingDefinition 2.5. An integral urve of ∇f , leaving any ompat subsetof Rn and suh that the funtion f has a �nite limit c along a half-branh atin�nity of this trajetory, is alled an integral urve (or trajetory) of in�nitelength at c.



42 D. D'Aunto and V. Grandjean3. Kurdyka��ojasiewiz exponent at in�nity for an asymptotiritial value. The standard �ojasiewiz gradient inequality states that if
f : U → R is an analyti funtion in a neighbourhood U of the origin 0 ∈ Rnsuh that ∇f(0) = 0, then there exist U0 ⊂ U and positive numbers ̺ and
C suh that

|∇f | ≥ C|f − f(0)|̺ on U0.The in�mum of the exponents ̺ suh that |∇f | |f − f(0)|−̺ has a positivelimit along any sequene onverging to 0 is alled the �ojasiewiz exponentof f and is a rational number lying in ]0, 1[.Remark 3.1. Let f : Cn → C be a polynomial. There is already a notionof �ojasiewiz exponent at in�nity, meaningful in this setting (see [Ha℄).Namely, if c is a regular value of f , the �ojasiewiz exponent at in�nity for cis the supremum of the real numbers θ for whih there exists C > 0 suhthat for all x with |x| ≫ 1 and |f(x) − c| ≪ 1,
|∇f(x)| ≥ C|x|θ.Let Lc(f) be this supremum. It is again a rational number and c is anasymptoti ritial value if and only if Lc(f) < −1.Our purpose is to ompare |∇f(x)| with |f(x) − c| for an asymptotiritial value c of a semialgebrai funtion. The following result providesan analog at in�nity of the standard �ojasiewiz gradient inequality statedabove. This is the �rst important result of this artile; to the best of ourknowledge, it has not been known before.Proposition 3.2. Let f be a C1 semialgebrai funtion. If c ∈ Im f ,then there exist real numbers C, R, τ > 0 and a smallest rational number

̺c ≤ 1 suh that for all x ∈ Rn with |x| > R and |f(x) − c| < τ , we have
|x| · |∇f(x)| ≥ C|f(x) − c|̺c .Proof. By the urve seletion lemma, it su�es to prove this fat onsemialgebrai urves having a half-branh at in�nity. For simpliity we willonly onsider values t < c. Let G be a semialgebrai half-branh at in�nity,along whih f tends to c ∈ R at in�nity. We an assume that f is inreasingalong G. Let [c− τ, c[∋ t 7→ g(t) ∈ Rn be a semialgebrai parametrisation ofthe germ of G at in�nity satisfying f ◦ g(t) = t for eah t. Then there exista rational number η > 0 and a positive real number K suh that
|g(t)| ≃ K|t − c|−η as t → c.By usual semialgebrai arguments, we get

|g′(t)| ≃ Kη|t − c|−(1+η) as t → c.Taking derivatives with respet to t, we obtain
(f ◦ g)′(t) = 〈∇f(g(t)), g′(t)〉 = 1.



Gradient at in�nity of semialgebrai funtions 43Thus, we dedue
|∇f(g(t))| ≥

1

2Kη
|t − c|η+1,and(3.1) |g(t)| · |∇f(g(t))| ≥

1

4η
|t − c|.Sine the funtion t 7→ f(g(t)) is semialgebrai, there exists a rational num-ber ν suh that

|g(t)| · |∇f(g(t))| ∼ |t − c|ν .From inequality (3.1) we obtain ν ≤ 1.Let ̺c be the in�mum of these exponents ν. De�ne
Ec =

{

q ∈ Q : lim
|x|→+∞

|x| · |∇f(x)|

|f(x) − c|q
∈ R∗

+, lim
|x|→+∞

f(x) = c

}

.We easily verify that Ec is a semialgebrai subset of R ontained in Q, heneit is �nite (for details see [KMP, Proposition 4.2℄). Thus ̺c is rational.Sine there is yet a �ojasiewiz exponent at in�nity (f. Remark 3.1),we will refer to ̺c as the Kurdyka��ojasiewiz exponent at in�nity of thefuntion f for the value c.Remark 3.3. Let us mention that Proposition 3.2 also holds when f :
V → L is a semialgebrai C1 funtion, de�ned on a losed and onnetedsemialgebrai C1 submanifold V of Rn, equipped with the semialgebraiRiemannian metri indued from the Eulidean one.The Malgrange ondition orresponds to a value c of the given funtionfor whih the Kurdyka��ojasiewiz exponent at in�nity for c is less than orequal to 0. The following proposition is just a rewriting of ondition (M):Proposition 3.4. Let f be a C1 semialgebrai funtion. Let c ∈ Im f .Then c is an asymptoti ritial value of f if and only if the Kurdyka��ojasiewiz exponent at in�nity of f for c is positive.Let c ∈ K∞(f) \K0(f) and let ̺c be the Kurdyka��ojasiewiz exponentat in�nity for c. This number ontains interesting information about the kindof value (typial or not) that c ould be, as shown by the followingTheorem 3.5. Let f be a C2 semialgebrai funtion. If ̺c < 1, then fis a loally trivial �bration over c. Moreover , the �bration an be realised bythe �ow of ∇f/|∇f |2.Proof. For simpliity we shall again only work with values t < c. Let
c0 < c be suh that [c0, c] ∩ K(f) = {c}, and let R, C > 0 be real numberssuh that the assertion of Proposition 3.2 holds in f−1([c0, c[) ∩ {|x| > R}with onstant C. Let x0 ∈ f−1(c0) ∩ {|x| > R} and let γ be a (maximal)



44 D. D'Aunto and V. Grandjeantrajetory of ∇f parametrised by the levels of f . So γ satis�es the di�erentialequation(3.2) γ′(t) = X(γ(t)), γ(c0) = x0 ∈ f−1(c0),where X = ∇f/|∇f |2. Thus, for eah t ∈ [c0, c[, we obtain f ◦ γ(t) = t.Integrating (3.2) between c0 and t < c, we obtain(3.3) t\
c0

γ′(s) ds =

t\
c0

X(γ(s)) ds.From (3.3), we get a �rst inequality(3.4) |γ(t)| ≤ |γ(c0)| +
t\
c0

ds

|∇f(γ(s))|
.Using Proposition 3.2 we have(3.5) |γ(t)| ≤ |γ(c0)| +

t\
c0

|γ(s)|

C|s − c|̺c
ds.Then the Gronwall Lemma gives(3.6) |γ(t)| ≤ |γ(c0)| exp

t\
c0

ds

C|s − c|̺c
,whih atually yields(3.7) |γ(t)| ≤ |γ(c0)| exp

(c − c0)
1−̺c − (c − t)1−̺c

C(1 − ̺c)
.Hene |γ(t)| has a �nite limit as t tends to c. This implies that the embedding

φ of Theorem 2.3 is essentially a di�eomorphism from f−1(t) onto f−1(c).This ends the proof.Remark 3.6. Note that Theorem 3.5 also holds under the assumptionsof Remark 3.3, provided the C1 regularity of f is replaed by C2 regularity.Corollary 3.7. If c is a regular value and a bifuration value, then theKurdyka��ojasiewiz at in�nity for c is equal to 1.Proof. Sine we annot trivialise the funtion f over a neighbourhoodof c, from Theorem 3.5, the exponent has to be 1.When c belongs to K∞(f)\B(f), the funtion f indues a loally trivial�bration over a neighbourhood of c. Moreover, this trivialisation is providedby the �ow of ∇f/|∇f |2 when the Kurdyka��ojasiewiz exponent at in�nityfor c is stritly less than 1. From the view point of De�nition 2.5, Theorem3.5 an be stated in another way:Corollary 3.8. Let Γ be a trajetory of ∇f of in�nite length at c.Then the Kurdyka��ojasiewiz exponent at in�nity of c is equal to 1.



Gradient at in�nity of semialgebrai funtions 454. Kurdyka��ojasiewiz exponent of omplex polynomials. Let
f : Cn → C be a omplex polynomial. As mentioned in Setion 2, we ande�ne the set K∞(f) of asymptoti ritial values, whih is a �nite subsetof C ([Ti1℄). Again, we write K(f) = K0(f)∪K∞(f), the set of generalisedritial values. If t ∈ C \ K(f) then f is a loally trivial �bration over t([Ti1℄, [Ti2℄).There also exists an analog of the Embedding Theorem 2.3 in the omplexase. Namely, if c ∈ K∞(f) \ K0(f) and t ∈ C \ K(f) then we haveTheorem 4.1 ([D'A2℄). There exists an embedding ϕc,t : f−1(c) →
f−1(t).Let grad f be the polynomial vetor �eld in Cn whose omponents are
(∂f(z)/∂z1, . . . , ∂f(z)/∂z1), where z = (z1, . . . , zn) is a system of oordi-nates in Cn. Denote by ‖w‖ the norm of the omplex vetor w ∈ Cn. Theproof of Theorem 4.1 (see [D'A2℄ for details) ombined with the proof ofProposition 3.2 givesProposition 4.2. There exist C > 0 and a rational number 0 < ̺ ≤ 1suh that for su�iently large ‖z‖ and su�iently small |f(z) − c|, we have

‖z‖ · ‖ grad f(z)‖ ≥ C|f(z) − c|̺.As before, the in�mum of suh exponents ̺ is positive and rational.Again, we denote it by ̺c, and all the Kurdyka��ojasiewiz exponent atin�nity of f for c.The omplex situation is muh more rigid than the real one. When thefuntion f has only isolated singularities at in�nity, knowing ̺c deideswhether the regular value c is typial or atypial. Under this hypothesis,Parusi«ski proved that any asymptoti ritial value is a bifuration value[Pa℄, that is, B(f) = K∞(f) ∪ K0(f).Theorem 4.3. Let f be a omplex polynomial with only isolated singu-larities at in�nity. A regular value c is a bifuration value if and only if theKurdyka��ojasiewiz exponent at in�nity ̺c is equal to 1.Proof. If ̺c =1, then c is an asymptoti ritial value, and by Parusi«ski'sresult [Pa℄, it is neessarily a bifuration value.Let c be a regular bifuration value. So the embedding ϕc,t : f−1(c) →
f−1(t) is not onto for any typial value t ∈ C.We identify C with R2 and write f = P + iQ, where P and Q arerespetively the real and imaginary parts of f . We equip Cn, when identi�edwith R2n, with the usual Eulidean struture. Then ‖grad f‖ = |∇P | =
|∇Q|.Assume now that ̺c < 1. Let c0 be a typial value of f suh that the realline L ⊂ R2 through c and c0 passes through no other generalised ritial



46 D. D'Aunto and V. Grandjeanvalue, that is, L ∩ K(f) = {c}. Let VL = f−1(L). This is a smooth realalgebrai hypersurfae of R2n. Let fL be the restrition of f to VL. Thefuntion fL is thus a smooth semialgebrai funtion, so K∞(fL) is �nite. Byde�nition, fL is a submersion.We endow VL with the Riemannian struture indued by the Eulideanstruture of R2n and denote by ∇VL
the gradient with respet to the metriindued on VL. After a rotation in C = R2, we an assume, writing c = a+ib,that the line L is {y = b}, where (x, y) is a system of oordinates of R2. Thenobviously VL = Q−1(b), and sine ∇P and ∇Q are orthogonal vetor �eldsin R2n, we dedue that

∇VL
fL = ∇VL

(P|VL
) = (∇P )|VL

, so ‖grad f(v)‖ = |∇VL
fL(v)|, ∀v ∈ VL.From Remark 3.3, the Kurdyka��ojasiewiz exponent of fL at in�nity for c,denoted by ̺L

c , is well de�ned, and we have just proved that ̺L
c ≥ ̺c. If

̺c < 1, by Remark 3.6, the �bre f−1
L (c) is di�eomorphi to f−1

L (c0). Thus
f−1(c) is also di�eomorphi to f−1(c0), whih is impossible sine c is abifuration value. Hene ̺c = 1.5. Examples. In this setion we produe some examples that illustratethe results stated before. All the polynomials presented below have oneasymptoti ritial value. Eah example desribes a di�erent phenomenon.Example 5.1 (Broughton example). Let

f(x, y) = y(xy − 1).We immediately �nd that f has no ritial point. The set {∂yf = 0} is the al-gebrai urve {2xy−1 = 0} and f(x, 1/2x) → 0 as x → ∞, and 0 ∈ K∞(f).Estimating the funtion |x| · |∇f(x)| along this half-branh at in�nity showsthat the Kurdyka��ojasiewiz exponent at in�nity ̺0 is equal to 1.Sine0 is theonlygeneralisedritial value,wededueB(f)=K∞(f)={0}.Denoting by φt the embedding of Theorem 2.3, we observe that the om-plement of φt(f
−1(0)) in f−1(t) is non-empty for all t > 0. Taking −f insteadof f , we have a similar result for all t < 0.In this example the following is true: in the upper half-plane, there is aunique integral urve of ∇f whih is of in�nite length at 0.

{f=t}

PC

Fig. 1. Phase portrait of ∇f



Gradient at in�nity of semialgebrai funtions 47Example 5.2 (King, Tib r & Zaharia example). Let
g(x, y) = −y(2x2y2 − 9xy + 12).This funtion indues a smooth loally trivial �bration (see [TZ, Proposition2.6℄).We obtain K(g) = K∞(g) = {0}, and B(g) is empty. Any level {−y(2x2y2

− 9xy + 12) = t} is homeomorphi to a line.We ompatify R2 to RP2, with oordinates [x : y : z]. The point [1 : 0 : 0]is the unique point at in�nity of eah �bre of g, and {∂yg = 0} is the unionof the algebrai urves PC1 := {xy − 1 = 0} and PC2 := {xy − 2 = 0}. Asin the Broughton example, estimating the funtion |x| · |∇f(x)| along PC1(or PC2) shows that the Kurdyka��ojasiewiz exponent at in�nity for 0 isequal to 1.For this funtion, there are in�nitely many trajetories of in�nite lengthat 0, meaning the trivialisation by the gradient near the value 0 is impossible.Let PCv = {4xy − 9 = 0} be the polar urve in the vertial diretion.These three polar urves give enough information on the dynamis at in�nityof the gradient �eld. A trajetory has at most one intersetion point witheah of the polar urves PC∗ (with ∗ = 1, 2, v). The phase portrait of ∇gis organised around two speial integral urves (one between the x-axis and
PC1, the other one between PC2 and PCv), whih atually are branhingpoints of the spae of leaves of the foliation by ∇g. For any level t > 0, thesame kind of phenomenon ours beause of the symmetry of g.A quik study of the signs of ∂xg and ∂yg, and the study of the in�etionpoints of the trajetories give enough information to draw the phase portraitof Fig. 2.

∇f

γ

PC1

PC2

PCv

{g=t}

{g=0}

Fig. 2. Phase portrait of ∇g



48 D. D'Aunto and V. GrandjeanExample 5.3 (Parusi«ski example). Let
h(x, y) = y11 + (1 + (1 + x2)y)3.Eah �bre of this funtion is homeomorphi to a line. Hene, by [TZ, Propo-sition 2.6℄, h is a loally trivial �bration. On the urve PCv := {∂xh = 0} =

{1 + (1 + x2)y = 0}, we see that 0 belongs to K∞(h). Moreover we �nd that
K(h) = K∞(h) = {0}.We ompatify R2 to RP2, with oordinates [x : y : z]. Eah �bre of hadmits [1 : 0 : 0] as a unique point at in�nity.In this example, the gradient �eld realises the trivialisation.The gradient vetor �eld of h is given by
∇h(x, y) = 6xy(1 + y + x2y)2

∂

∂x
+ (11y10 + 3(1 + x2)(1 + y + x2y)2)

∂

∂y
.Note that any level h−1(t), with |t| ≪ 1, is atually the graph of somefuntion xt of y, and we have

xt(y) =

√

t1/3 − 1 − y

y
+ h.o.t. ≃ k(t)

y1/2
,with k(t) < 0.Let ̺0 be the Kurdyka��ojasiewiz exponent at in�nity for 0. Let G beany semialgebrai urve along whih h is negative and tends to 0. The urve

G is the graph of a funtion, say κ, of the variable x. Thus we must have
κ(x) ∼ −xν for a rational number ν < 1. We assume x ≫ 1.If ν 6= −2, it is easy to verify that

|(x, κ(x))| · |∇h(x, κ(x))| ≥ x3.Thus the Kurdyka��ojasiewiz exponent along any suh urve is non-positive.Assume ν = −2. Then we dedue κ(x) ≃ −x−2. So there exists η > 1suh that ∂xh(x, κ(x)) ∼ x−η, thus ∂yh(x, κ(x)) ≥ 3x3−η, and so
|(x, κ(x))| · |∇h(x, κ(x))| ≃ x∂yh(x, κ(x)).We an verify that there is a positive onstant C suh that:(1) if η ≥ 23 then

x∂yh(x, κ(x)) ≥ C|h(x, κ(x))|19/22;(2) if η ∈ ]47/3, 23[ then
x∂yh(x, κ(x)) ≥ C|f(x, κ(x))|(4−η)/22 ≥ C|h(x, κ(x))|19/22;(3) if η ∈ ]1, 47/3] then

x∂yh(x, κ(x)) ≥ C|f(x, κ(x))|(8−2η)/(3−3η) ≥ C|h(x, κ(x))|2/3.



Gradient at in�nity of semialgebrai funtions 49Taking κ(x) := −(1 + x2)−1, we an verify that along y = κ(x),
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