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The �ojasiewiz exponent of -holomorphi mappingsby Maciej P. Denkowski (Kraków and Bordeaux)Abstrat. The aim of this paper is to study the �ojasiewiz exponent of -holo-morphi mappings. After introduing an order of �atness for -holomorphi mappingswe give an estimate of the �ojasiewiz exponent in the ase of isolated zero, whih is ageneralization of the one given by Pªoski and earlier by Ch¡dzy«ski for two variables.1. Introdution. Sine most of our onsiderations are of loal naturewe may plae ourselves sine the beginning in C
m. Let A ⊂ Ω be an analytisubset of an open set Ω ⊂ C

m. We assume that A is a losed set in Ω.(1.1) Definition ([�2℄, [Wh℄). A mapping f : A → C
n is alled -ho-lomorphi if it is ontinuous and the restrition of f to the subset RegAof regular points of A is holomorphi. We denote by Oc(A,C

n) the ring of-holomorphi mappings, and by Oc(A) the ring of -holomorphi funtions.This is a way of generalizing the notion of holomorphiity to sets havingsingularities. The following theorem motivates this generalization:(1.2) Theorem ([Wh, 4.5Q℄). A mapping f : A → C
n is -holomorphii� it is ontinuous and its graph Γf := {(x, f(x)) | x ∈ A} is an analytisubset of Ω × C

n.It is worth noting that by a reent result of N. Shherbina [Sh℄ the pluripo-larity of the graph is su�ient (unlike for instane sub- or semianalytiity:
f(x) := |x| for x ∈ C has semianalyti graph whih is not omplex analyti).By (1.2) the zero set of a -holomorphi funtion is analyti.We suppose hereafter that the reader is aquainted with basi proper-ties of -holomorphi mappings (see [Wh℄; -holomorphi stands in fat forontinuous weak holomorphi). We will write brie�y �nbhd� for �neighbour-hood�.Note that a mapping is -holomorphi i� all its omponents are -holo-morphi. If A is analyti and f ∈ Oc(A), then it is also easy to see that2000 Mathematis Subjet Classi�ation: 32B15, 32B10, 32B30, 32A17.Key words and phrases: omplex analyti sets, -holomorphi mappings, �ojasiewizexponent, regular separation, intersetion theory.[63℄
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dimaA = dim(a,f(a)) Γf for a ∈ A. Eah regular point a ∈ A gives a regularpoint (a, f(a)) on the graph. Above a singular point a ∈ SngA one has eithera singular point of the graph, or a regular point b := (a, f(a)) for whih thetangent spae TbΓf ontains {0}×C (in that ase see Theorem (1.3) below).Finally, it is lear that a -holomorphi mapping has an irreduible graph i�its domain is an irreduible set, whih is also valid for germs. Many of thetheorems onerning holomorphi funtions have a straightforward analoguefor -holomorphi funtions, at least as long as they do not involve di�erentialstruture.We also assume that the reader is aquainted with the intersetion theoryas presented in [T2℄ and [Dr℄.We �nish this setion by giving a haraterization of holomorphi germson an analyti germ. It may be known, but for the onveniene of the readerwe provide a proof. We denote by TZar

a X the Zariski tangent spae of ananalyti germ Xa at a point a ∈ C
m (see [Wh℄).(1.3) Theorem. Let f ∈ Oc(Aa,C

n) be a -holomorphi germ on theanalyti germ Aa at a ∈ C
m. Then f is holomorphi (i.e. has a holomorphiextension to a nbhd of a in C

m) i� TZar
(a,f(a))Γf ∩ ({0} × C

n) = {0}.Before proving this theorem we reord the following lemma (we assumesubmanifolds to be analyti):(1.4) Lemma. Let Γ ⊂ C
m × C

n be a k-dimensional submanifold with
k ≤ m and suh that TaΓ ∩ ({0} × C

n) = {0}. Then there exists an m-dimensional submanifold Γ̃ suh that Γ̃a ⊃ Γa (as germs at a), TaΓ̃ ⊃ TaΓand still TaΓ̃ ∩ ({0} × C
n) = {0}.One proves this lemma by taking a biholomorphism straightening Γ in anbhd U ∋ a and rewriting the ondition on the tangent spae.Proof of Theorem (1.3). For simpliity assume that a = f(a) = 0. For the�if� part take F ⊃ f , a holomorphi extension of f to a nbhd of zero in C

m.Taking a submersion desribing ΓF it is easy to see that TZar
0 Γf∩({0}×C

n) ⊂
T0ΓF ∩ ({0} × C

n) = {0}.To prove the �only if� part observe �rst that the assumption leads to
m ≥ dimTZar

0 Γf . There exists a submanifold Γ suh that Γ0 ⊃ (Γf )0 and
T0Γ = TZar

0 Γf . By Lemma (1.4) we �nd an m-dimensional submanifold Γ̃whose germ at zero ontains the germ Γ0 and whose tangent spae at zeromeets {0}×C
n only at zero. By the impliit funtion theorem Γ̃ is then thegerm of the graph of a holomorphi funtion over C

m.
Note. Example (2.4) in the following setion shows that one annotreplae in this theorem the Zariski tangent spae by the tangent one of thegraph.



�ojasiewiz exponent of -holomorphi mappings 652. The �ojasiewiz exponent of -holomorphi maps. The notionof regular separation of losed sets an be found in [�1℄, [T1℄. We reall thatany two analyti sets X and Y are separated at points a ∈ X ∩ Y withsome exponent α > 0 (depending on the point; we say that X and Y are
α-separated at a), i.e. in a nbhd U ∋ a we have

dist(z,X) + dist(z, Y ) ≥ cdist(z,X ∩ Y )αfor some c > 0. We introdue the �ojasiewiz exponent for analyti sets:
L(X,Y ; a) := inf{α > 0 | X and Y are α-separated at a}where a ∈ X ∩ Y and X,Y are analyti subsets of the open set Ω ⊂ C

m.From the inequality dist(z,X)+dist(z, Y ) ≤ 2 dist(z,X∩Y ) it follows easilythat L(X,Y ; a) ≥ 1 if X or Y has empty interior. In the ase of an isolatedintersetion one an �nd an elegant haraterization of this exponent in [T1℄(for the general ase see [Cg℄, [CgT℄).We use regular separation to prove the following simple theorem whihis basi for our further onsiderations (we are working in the ase m ≥ 1).(2.1) Theorem. Let f ∈ Oc(A,C
n) with A ⊂ Ω and Ω ⊂ C

m open. Foreah a ∈ f−1(0) the mapping f satis�es ondition (s) at the point a, i.e.there exist a nbhd U of a and onstants c, α > 0 suh that
(∗) |f(x)| ≥ cdist(x, f−1(0))α, x ∈ U ∩A,where the distane omes from any of the usual norms on C

m.Condition (∗) is learly a ondition on germs. If U is small enough to have
dist(x, f−1(0)) < 1, then (∗) holds for any exponent α′ ≥ α. It is thereforenatural to study the best exponent, i.e. the �ojasiewiz exponent :

L(f ; a) := inf{α > 0 | f satis�es ondition (s) at a with exponent α}.If Aa =
⋃r

j=1A
(j) is the deomposition of the germ Aa into irreduibleomponents, then L(f ; a) ≤ maxr

j=1 L(f |A(j) ; a), where f |A(j) denotes therestrition of f to A(j). If a is isolated in the �bre f−1(0) or, more generally,if the germ (f−1(0))a is ontained in ⋂
j A

(j), then equality holds.However, the inequality may also be strit: take for instane in C
3 thesets A(1) := {y2 = x3} ×C, A(2) := {y = 0} and the -holomorphi funtion

f(x, y, z) de�ned to be y/x on A(1)\{x = y = 0}, and 0 on the whole of A(2).Then L(f ; 0) = 1/3, L(f |A(1); 0) = 1/2 and obviously L(f |A(2) ; 0) = 0.Note that the �ojasiewiz exponent is a biholomorphi invariant exatlyas in the holomorphi ase, i.e. for any biholomorphisms ϕ and ψ the map-pings f and ψ ◦ f ◦ ϕ have the same exponent at a and ϕ−1(a) respetively(this permits the notion to be applied on manifolds as well). It does notdepend on the norm hosen and one heks that it is intrinsi.Due to the generalized mean value theorem we obtain:



66 M. P. Denkowski(2.2) Theorem. Let A be an analyti set of pure dimension k in an openset Ω ⊂ C
m and let F : Ω → C

n be holomorphi. Let a ∈ A. If F (a) = 0and F does not vanish identially on the germ Aa, then L(F |A; a) ≥ 1.(2.3) Remark. As already notied, a -holomorphi mapping whih isnot holomorphi an have an exponent smaller than 1: Indeed, let A :=
{(x, y) ∈ C

2 | y2 = x3} and onsider the -holomorphi funtion f(x, y) :=
y/x for (x, y) ∈ A, x 6= 0, and f(0) := 0. An easy omputation leads to
L(f ; 0) = 1/2.One may wonder whether the fat that the �ojasiewiz exponent issmaller than 1 haraterizes �purely� -holomorphi funtions (i.e. non-holo-morphi ones). One may hope that at least for an irreduible urve germ Γat a there should be the equivalene: f ∈ Oc(Γ ) \ O(Γ ) and f−1(0) = {a}i� L(f ; a) < 1. However, the following example shows that this is not true:(2.4) Example. Consider the analyti urve A := {(x, y) ∈ C

2 | y3 = x4}and the -holomorphi funtion f(x, y) := y2/x for (x, y) ∈ A, x 6= 0, and
f(0) := 0. Then ϕ(t) = (t3, t4) is a Puiseux parametrization of A at zeroand ψ(t) = (t3, t4, t5) a Puiseux parametrization of Γf at zero. It is easyto see that in this ase TZar

0 Γf = C
3 (while the tangent one C0(Γf ) is

C×{(0, 0)}) and so by Theorem (1.3), f is not holomorphi at zero. However,
L(f ; 0) = 5/3 (one may ompute this diretly as in the previous example orapply Theorem (3.2) proved later on).We ould also ask if for an analyti urve Γ , irreduible at zero andhaving a singularity at zero, one ould have for f ∈ Oc(Γ ) non-onstant, theequivalene L(f ; 0) < 1 i� 0 ∈ RegΓf and {0} × C ⊂ T0Γf .As a matter of fat it su�es to modify slightly the previous example tosee that this does not hold either. Take A = {y4 = x5} ⊂ C

2 and f(x, y) =
(y/x)3, f(0) = 0. Then ζ(t) = (t4, t5, t3) is a Puiseux parametrization ofthe graph and so Γf has a singularity at zero, but it is also easy to see that
L(f ; 0) = 3/4 (and here also f is not holomorphi).Nonetheless the onverse impliation does hold�see end of Setion 3.It may be useful to give a haraterization of those -holomorphi map-pings whose exponent is smaller than 1. This exponent is losely related tothe separation exponent of the graph and the domain.(2.5) Theorem. Suppose that f ∈ Oc(A,C

n) does not vanish identiallyon Aa and let a ∈ f−1(0). Then
L(f ; a) ≤ L(Γf , A× {0}; (a, 0)) ≤ max{1,L(f ; a)},whih means that the following assertions are then equivalent :(i) L(f ; a) ≤ 1;(ii) L(Γf , A× {0}; (a, 0)) = 1.



�ojasiewiz exponent of -holomorphi mappings 67If moreover a is isolated in the �bre f−1(0), then the above two onditionsare equivalent to the third one (f. [T1℄) onerning the tangent ones:(iii) C(a,0)(Γf ) ∩ C(a,0)(A× {0}) = {(0, 0)}.Proof. The equivalene (ii)⇔(iii) an be found in [T1, 3.4℄. We will show(a) L(f ; a) ≤ L(Γf , A× {0}; a),(b) L(Γf , A× {0}; a) ≤ max{1,L(f ; a)}.Let α ≥ L(Γf , A×{0}; a) and l ≥ L(f ; a) be good exponents. As in the proofof Theorem (2.1) the regular separation of the graph and A × {0} leads to
|f(x)| ≥ const · dist(x, f−1(0))α, x ∈ U ∩A. Hene we obtain (a).On the other hand, we have (∗) in a nbhd of a. If that nbhd is smallenough to have |f(x)| < 1, we get
dist((x, f(x)), f−1(0)×{0}) = dist(x, f−1(0))+ |f(x)| ≤

1

c
|f(x)|1/l + |f(x)|,that is,

(
c

c+ 1
dist((x, f(x)), f−1(0) × {0})

)max{1,l}

≤ |f(x)|,whih in view of Lemma 1.2 from [CgT℄ (f. [�1, part 18℄) gives (b).
Note. As a onsequene of (2.2) and (2.3) one has the equality L(f ; a) =

L(Γf , (Ω × {0}); (a, 0)) for f ∈ O(Ω,Cn) non-onstant in an open set Ω,
f(a) = 0. Note however that in the -holomorphi ase it is not su�ientto ompute the �ojasiewiz separation exponent for the graph and A if wewant to have omplete information about L(f ; a).Using the main theorem of [P1℄ one an easily obtain the rationalityand an upper bound for the �ojasiewiz exponent of a -holomorphi map-ping with isolated zeroes. We denote by m0(g) the (geometri) multi-pliity at zero of a holomorphi map germ g : (Cm, 0) → (Cn, 0). When
n = m it is de�ned to be the overing number (multipliity) µ0(π|Γg) of thebranhed overing π|Γg (see [Ch℄ or [�2℄) where π(x, y) = y and 0 is theunique point in its �bre. If n ≥ m, we de�ne m0(g) as the improper inter-setion index i(Γg · (Cm × {0}); 0) (f. [ATW℄). One heks that m0(g) =
i(Γg · (Cm × {0}); 0) also in the proper intersetion ase. This de�nitionalso makes sense when applied to -holomorphi mappings having an iso-lated zero. It is still a biholomorphi invariant (f. [ATW℄). In what follows,
degaX stands for the lassial degree of the analyti set X at a point a ∈ X(see [Ch℄).(2.6) Theorem. Let A be an analyti set of pure dimension k ≥ 1 in anopen set D ⊂ C

m. Let f ∈ Oc(A,C
n) be suh that f−1(0) = {0}. Then



68 M. P. Denkowski(i) the greatest lower bound in the de�nition of L(f ; 0) is attained andit is of the form p/q with 0 < p ≤ m0(f), p, q ∈ N;(ii) L(f ; 0) ≤ m0(f) − deg0 Γf + 1.Proof. First we onsider the ase n = k, applying diretly the main resultof [P1℄. We reall a piee of notation from that work:
q0(Z, π) := sup{q ∈ R | Z ∩ (U × V ) ⊂ {(x, y) ∈ U × V | |y| ≤ c|x|q}for some nbhd U × V of zero and a onstant c > 0},where Z is an analyti subset of pure dimension k in a nbhd of zero in
C

k ×C
m−k and suh that 0 is isolated in the �bre π−1(0)∩Z for the naturalprojetion π(x, y) = x, (x, y) ∈ C

k × C
m−k.Consider now the natural projetion π : D × C

k → C
k. Observe that Γfis of pure dimension k. We shall see that L(f ; 0) = 1/q0(Γf , π).Note �rst that Γf ∩ (D × {0}) = {(0, 0)} implies that π is proper whenrestrited to Γf in a nbhd of 0 ∈ C

m. We thus have a branhed overingand one easily heks that its multipliity is i(Γf · (D × {0}); 0). The maintheorem of [P1℄ then yields(i) the supremum in q0(Γf , π) is attained and is of the form b/a with
a, b natural, a ≤ i(Γf · (D × {0}); 0),(ii) q0(Γf , π) ≥

1

i(Γf · (D × {0}); 0) − deg0 Γf + 1
.Let now q > 0 be one of the numbers whih are taken into aount whenomputing q0(Γf , π), and V × U the nbhd and c > 0 the onstant attahedto it. We may assume that V and U are suh that f(V ) ⊂ U . We have

Γf ∩ (V × U) ⊂ {(x, y) ∈ V × U | |x| ≤ c|y|q}. That means that
1

c
|x|1/q ≤ |f(x)|, x ∈ V ∩A,whih leads to L(f ; 0) ≤ 1/q0(Γf , π).On the other hand, let α be an exponent for f , i.e. |f(x)| ≥ c̃ |x|α for

x ∈ Ṽ ∩A, where c̃ > 0 is a onstant and Ṽ a nbhd of 0 ∈ D. We get
Γf ∩ (Ṽ × C

k) ⊂

{
(x, y) ∈ Ṽ × C

k | |x| ≤
1

c̃
|y|1/α

}
.Hene q0(Γf , π) ≥ 1/L(f ; 0).We now redue the ase n > k to the previous one by the most naturalmethod (see [S℄). Projeting Γf on C

n, the idea is that for the generi linearmapping Φ ∈ L(Cn,Ck) of rank k we easily obtain L(f ; 0) ≤ L(Φ◦f ; 0). Thenfor any Ψ ∈ L(Cn,Cn−k) suh that (Φ, Ψ) is an isomorphism it follows that
L((Φ, Ψ)◦f ; 0) = L(f ; 0). An appropriate hoie of Ψ gives L((Φ, Ψ)◦f ; 0) =
L(Φ ◦ f ; 0), whih ends the proof sine Φ ◦ f satis�es the assumptions of the



�ojasiewiz exponent of -holomorphi mappings 69�rst part of our onsiderations. One heks that i(ΓΦ◦f · (D × {0}); 0) =
i(Γf · (D × {0}); 0) as in [S℄. It remains to show that deg0 ΓΦ◦f = deg0 Γf .Let LΦ : C

m × C
n ∋ (x, y) 7→ (x, Φ(y)) ∈ C

m × C
k; then ΓΦ◦f = LΦ(Γf ).Consider a linear surjetion Θ : C

m × C
k → C

k suh that for the generi
z ∈ C

k (small enough) we have deg0 ΓΦ◦f = #(ΓΦ◦f ∩Θ−1(z)).Take then Ξ := Θ ◦ LΦ and note that KerΞ = L−1
Φ (KerΘ). So (sine itis obvious that f(xν) → 0 i� xν → 0)

KerΞ ∩ C0(Γf ) = {(x, y) ∈ C
m × C

n | ∃(A ∋ xν → 0), {λν} ⊂ C :

(λνxν , λνf(xν)) → (x, y) and Θ(x, Φ(y)) = 0}.But then for any (x, y) ∈ C0(Γf ) we have λνΦ(f(xν)) = Φ(λνf(xν)) →
Φ(y), whene (x, Φ(y)) ∈ C0(ΓΦ◦f ). Sine Θ(x, Φ(y)) = 0, it follows that
(x, Φ(y)) = (0, 0). So y ∈ KerΦ. However, y belongs at the same time to thetangent one at zero of the image of f and beause of the hoie of Φ thisyields y = 0.That means that Ξ realizes the degree deg0 Γf , i.e. #(Γf ∩ Ξ−1(z)) =

deg0 Γf for the generi z ∈ C
k (small enough). Sine LΦ = idCm ×Φ, it islear that L−1

Φ (x, Φ(f(x)))∩Γf = {(x, f(x))} onsists of a single point and so
µ0(LΦ|Γf

) = 1. Hene µ0(Ξ|Γf
) = µ0(Θ|LΦ(Γf )), i.e. deg0 Γf = deg0 ΓΦ◦f .

Note. One always has deg0 Γf ≤ deg0A for any f ∈ Oc(A,C
n) with

f(0) = 0 (for onveniene). It is easy to hek that if f is a restrition of aholomorphi mapping, then equality holds (nonetheless it may hold as wellfor purely -holomorphi mappings, f. Example (2.4)).We will improve the bound in Setion 5. Note that there is a diret wayof omputing the �ojasiewiz exponent in the ase of an isolated zero and
n = k (we work under the assumptions of the previous theorem). The number
µ := i(Γf · (D × C

k); 0) is the multipliity of f at zero. We now follow theidea from [P3℄ adapting it to our ase.For any -holomorphi germ h : (A, 0) → (C, 0) we may de�ne the har-ateristi polynomial of h relative to f by setting, for y ∈ C
k not ritialfor f (i.e. f−1(y) = {x1, . . . , xµ} onsists of µ distint points),

Ph(y, t) :=
∏

x∈f−1(y)

(t− h(x)) = tµ + a1(y)t
µ−1 + · · · + aµ(y),

where aj(y) = (−1)j
∑

1≤i1<···<ij≤µ h(x
i1) · · ·h(xij) are symmetri polyno-mials, aj(0) = 0. It is then lear that there is a small enough nbhd U of

0 ∈ C
k suh that aj ∈ O(U \ (σ ∪ f(SngA))) ∩ C(U), where σ is the ritialset for f (note that f being proper in a nbhd of zero, the image under f of

SngA in this nbhd is a nowhere dense analyti set in U ; remember the graphof f over some singular points of A may be regular). Thus Ph ∈ O(U)[t]. Itis lear that P−1
h (0) is equal to F (V ) where F = (f, h) and V is a su�iently



70 M. P. Denkowskismall nbhd of zero in A. Therefore the inequality |h(x)| ≤ const · |f(x)|q in anbhd of zero is equivalent to the following inlusion of germs at 0 ∈ C
k
y ×Ct:

(⋆) P−1
h (0) ⊂ {(y, t) ∈ C

k × C | |t| ≤ const · |y|q}.Reall now the following ruial lemma of Pªoski (see [P1℄, [P3℄):(2.7) Lemma. If P (y, t) = tµ+a1(y)t
µ−1+· · ·+aµ(y) ∈ Ok[t] is a distin-guished polynomial , then q0(P ) := minµ

j=1 ord0(aj)/j is the largest number
q ∈ R suh that (⋆) holds. Moreover q0(P ) ≥ 1/(µ− ord0 P + 1).If we denote by O(f, h) the least upper bound of all q > 0 for whih
|h(x)| ≤ const · |f(x)|q in a nbhd of zero in A, then it is attained and equalto the number given by Lemma (2.7). Thus it is a rational number. It is easyto see that L(f ; 0) = 1/minm

j=1O(f, xj), where xj : A → C are oordinatefuntions in C
m restrited to A.Observe �nally that if Cv ∈ G1(C

k) (the �rst grassmannian, i.e. theolletion of all omplex lines through 0 in C
k), then Sv := f−1(Cv) is aurve germ at zero. The lines Cv suh that Cv∩(σ∪f(SngA)∪

⋃
j in a−1

j (0))is void or isolated at zero form an open dense subset in G1(C
k) (here in ajdenotes the initial form of aj). For suh a line, F (Sv) is equal to {(y, t) |

Ph(y, t) = 0, viyj = vjyi, i < j} and so it is lear that the polynomialfor h|Sv relative to f |Sv is exatly Ph|Cv×C. Thus the �ojasiewiz exponent
L(f ; 0) is attained on the generi urve Sv (generally not irreduible). Sine
L(f |Γ ; 0) ≤ L(f ; 0) for any urve germ Γ at zero, it now follows that

L(f ; 0) = max{L(f |Γ ; 0) | Γ an irreduible urve germ, 0 ∈ Γ ⊂ A}.3. One-dimensional ase. If A is an irreduible analyti urve in anopen set Ω ⊂ C
m with 0 ∈ SngA and f ∈ Oc(A) with f−1(0) = {0}, thenwe are able to give an expliit formula for L(f ; 0), whih is well known inthe holomorphi ase. Our proof is similar to the usual one. We shall makeuse of the Puiseux parametrization of A.First reall the following easy lemma (see [Ch, 1.1.5℄):(3.1) Lemma. If f 6≡ 0 is a holomorphi funtion in a nbhd of 0 ∈ C

m,
f(0) = 0, and if ord0 f is the order of f at zero, then

ord0 f = max{η > 0 | ∃c > 0: |f(x)| ≤ c|x|η for x in a nbhd of 0}.The expliit formula for L(f ; 0) in this ase is as follows:(3.2) Theorem. Let A be a one-dimensional loally irreduible analytisubset of an open set Ω ⊂ C
m suh that 0 ∈ A. Let f ∈ Oc(A,C

n) be suhthat f−1(0) = {0}. Let γ(t) = (td, ϕ(t)) be a Puiseux parametrization of A



�ojasiewiz exponent of -holomorphi mappings 71in a nbhd of zero (here d = deg0A and ord0 ϕ := minm−1
j=1 ord0 ϕj ≥ d). Then

L(f ; 0) =
ord0(f ◦ γ)

deg0A
=
m0(f)

deg0A
.Proof. Sine limt→0 |γ(t)|/|t|

d > 0, the separation ondition (∗) with thebest exponent l0 := L(f ; 0) beomes equivalently |f(γ(t))| ≥ const·|t|dl0 for tin a nbhd of zero. By Lemma (3.1), |fj(γ(t))| ≤ (maxn
ι=1 cι)|t|

minn
ι=1 ord0(fι◦γ)for t in a nbhd of zero. We may assume that | · | is the maximum norm in C

n.So we obtain 0 < const ≤ |t|ord0(f◦γ)−dl0 when t → 0, whih is possible onlywhen l0 ≥ ord0(f ◦ γ)/d.Consider the holomorphi funtion g := f ◦ γ and put r := ord0 g ≥ 1. If
n = 1 expand g(t) =

∑
ν≥r aνt

ν and �x 0 < ε < 1. For |t| small enough wehave ∣∣∣∣
∞∑

ν=1

ar+ν

ar
tν

∣∣∣∣ ≤ εand so ∣∣∣∣1 +
∞∑

ν=1

ar+ν

ar
tν

∣∣∣∣ ≥ 1 −

∣∣∣∣
∞∑

ν=1

ar+ν

ar
tν

∣∣∣∣ ≥ 1 − ε =: c > 0.Hene |g(t)| ≥ |ar| · |t|
r · c for t in a nbhd of zero.Now if n > 1, by the previous argument for t in a nbhd of zero we obtain

|fj(γ(t))| ≥ cj |t|
ord0(fj◦γ) for all j.We then have, for t in a nbhd of zero,

|g(t)| ≥ (
n

min
j=1

cj)|t|
minn

j=1 ord0 gj ,whih is the desired inequality.In the ourse of the proof we have shown that for a non-onstant holo-morphi germ g : (C, 0) → (Cn, 0) one has the inequalities
c1|t|

ord0 g ≤ |g(t)| ≤ c2|t|
ord0 gnear zero, for some c1, c2 > 0. In fat for -holomorphi mappings we have aresult analogous to Lemma (3.1):(3.3) Proposition. Under the assumptions of Theorem (3.2) one has

|f(x)| ≤ const · |x|ord0(f◦γ)/deg0 Afor x in a nbhd of zero in A, and ord0(f ◦ γ)/deg0A is the maximal exponentwith this property.Proof. On the one hand, |f(γ(t))| ≤ const · |t|ord0(f◦γ), while on the otherhand |γ(t)| ≥ const · |t|ord0 γ for t in a nbhd of zero. It remains to write downthe inequalities starting from |γ(t)|α, where α = ord0(f ◦ γ)/ord0 γ.



72 M. P. DenkowskiIf there were an exponent α > ord0(f ◦ γ)/ord0 γ suh that |f(x)| ≤
const · |x|α, then by Theorem (3.2) we would obtain

0 < const ≤ |x|α−ord0(f◦γ)/ord0 γfor x arbitrarily lose to zero, hene α − ord0(f ◦ γ)/ord0 γ ≤ 0, whih is aontradition.(3.4) Remark. Combining Theorem (3.2) with Theorem (2.2) we obtaina way of heking whether a given -holomorphi mapping is holomorphi.Namely, if A is an irreduible analyti set of dimension k ≥ 1 with 0 ∈ SngAand f ∈ Oc(A,C
n), then: if there exists an irreduible one-dimensional germ

Γ ⊂ A through zero suh that f−1(0) ∩ Γ = {0} and L(f |Γ ; 0) < 1, then
f is �purely� -holomorphi at zero, i.e. it has no holomorphi extension toany nbhd of zero.We end this setion with an addendum to Example (2.4). Consider f ∈
Oc(Γ ) \ O(Γ ), where Γ is a one-dimensional irreduible analyti germ sin-gular at zero and f(0) = 0 with 0 regular on the graph. Then L(f ; 0) ≤ 1.Indeed, in this ase T0Γf = ({0} × C) (f. introdution), and so there existsequenes A ∋ xν → 0, {λν} ⊂ C suh that λνxν → 0 and λνf(xν) → v 6= 0.Now we apply Proposition (3.3) to get, for some onstant c > 0 and ν largeenough,

|λνf(xν)| ≤ c|λν | |xν |
l0 = c|λνxν | |xν |

l0−1,where l0 = L(f ; 0). Thus l0 ≤ 1. Example (2.4) shows that the onverseimpliation does not hold.4. The order of �atness of a -holomorphi funtion. In the nextsetion we prove a generalization of the estimate of the �ojasiewiz exponentfor holomorphi mappings given in [P2℄, [P3℄ (by [S℄ this result still holdswhen the target spae is of dimension n ≥ m).In our ase there is the problem of de�ning the order of vanishing fora -holomorphi funtion sine we have no di�erential struture to rely on.In our de�nition we will make use of an inequality analogous to the oneappearing in Lemma (3.1).We assume that the analyti germ A ⊂ C
k
z × C

m−k
w under onsidera-tion (with x = (z, w)) is pure k-dimensional and suh that the projetion

π(z, w) = z is proper on it and π−1(0)∩C0(A) = {0}. Then π is a branhedovering on A with overing number d := deg0A and a ritial set σ.Now, whenever x 6∈ σ, we may de�ne for a non-onstant -holomorphigerm f : (A, 0) → (C, 0) the polynomial
P (x, t) =

∏

x′∈π−1(π(x))∩A

(t− f(x′)).



�ojasiewiz exponent of -holomorphi mappings 73Sine f is holomorphi on RegA and ontinuous, we obtain a distinguishedWeierstrass polynomial of degree d with holomorphi oe�ients, P (x, t) =
td + a1(x)t

d−1 + · · · + ad(x), suh that P (x, f(x)) = 0 for x ∈ A. Note that
P does not depend on w. With this notation we obtain(4.1) Proposition. If f : (A, 0) → (C, 0) is a non-onstant -holo-morphi germ on a pure k-dimensional analyti germ at 0 ∈ C

m, thenthe least upper bound of the exponents η > 0 for whih there exists a on-stant c > 0 suh that |f(x)| ≤ c|x|η in a nbhd of zero is equal to q0(P ) =
mind

j=1 ord0(aj)/j. It is thus attained and is a positive rational number , in-dependent of the projetion π hosen (satisfying π−1(0) ∩ C0(A) = {0}).Proof. We shall apply [P1℄. Sine f(x) is a root of the polynomial P (x, ·),we have |f(x)| ≤ 2maxd
j=1 |aj(x)|

1/j and sine aj are holomorphi, foreah j we have |aj(x)| ≤ cj|x|
ord0 aj near zero (for some onstant cj , f.Lemma (3.1), beause aj(0) = 0). Hene there exists a onstant c > 0 suhthat |f(x)| ≤ c|x|q0(P ) in a nbhd of zero.Observe now that the projetion ρ = π × idC is proper on Γf near zeroand so Γ := ρ(Γf ) is analyti of pure dimension k. The projetion ζ(z, t) = z,

(z, t) ∈ C
k×C, is proper on Γ in a nbhd of zero. We may then apply the mainresult of [P1℄ to get the inlusion of germs Γ ⊂ {(z, t) | |t| ≤ c|z|q} for someonstants c, q > 0. This yields |f(z, w)| ≤ c|z|q and assuming for instanethat |(z, w)| = |z| + |w|, we obtain |f(z, w)| ≤ c|(z, w)|q for (z, w) ∈ A in anbhd of zero. Thus the least upper bound of exponents good for f annot besmaller than q0(Γ, ζ) (we adopt the notation from the proof of Theorem (2.6),f. [P1℄).On the other hand, if, for some c, η > 0, |f(x)| ≤ c|x|η in a nbhd of zero,then obviously |f(z, w)|1/η ≤ c1/η(|z|+|w|). But sine π−1(0)∩C0(A) = {0},we have q0(A, π) ≥ 1 (f. [P1℄) and so |w| ≤ c′|z| for (z, w) ∈ A in a nbhdof zero and for a onstant c′ > 0. Thus |f(z, w)| ≤ c(1 + c′)η|z|η for z in anbhd of zero and w suh that (z, w) ∈ A, whih means that q0(Γ, ζ) ≥ η.Hene the least upper bound sought is atually equal to q0(Γ, ζ) and sine

q0(Γ, ζ) = q0(P ) by Lemma (2.7) (f. [P1℄, [P3℄) we obtain the �nal result.We are now able to state the following de�nition:(4.2) Definition. Let f : (A, 0) → (C, 0) be a non-onstant -holo-morphi germ on a pure dimensional analyti germ A at zero. We de�nethe order of �atness of f at zero to be
ord0 f := max{η > 0 | |f(x)| ≤ const · |x|η in a nbhd of 0}.We put by de�nition ord0 0 := +∞.It is lear that if A is an open subset of C

m we get the usual order ofvanishing of a holomorphi funtion at a point. If A0 =
⋃r

j=1A
(j) is the



74 M. P. Denkowskideomposition of the germ A0 into irreduible omponents, then ord0 f =
minj ord0(f |A(j)).One easily heks that ord0 f is a biholomorphi invariant. It is obviousthat it does not depend on the norm hosen and it is also lear that it isintrinsi. If f is a mapping, De�nition (4.2) also makes sense sine it is easyto hek that then ord0 f = minn

j=1 ord0 fj .For a non-onstant -holomorphi map germ g : (X, 0) → (A, 0) one ob-viously has the inequality ord0(f ◦ g) ≥ ord0 f · ord0 g and it is also easy tosee that for another non-onstant -holomorphi germ h : (A, 0) → (C, 0),
ord0(f + h) ≥ min{ord0 f, ord0 h} and ord0(fh) ≥ ord0 f + ord0 h(the last inequality may be strit: take e.g. A = {x3 = y2}∪{x2 = y3} in C

2and f(x, y) = x, g(x, y) = y). Moreover, ord0 f
q = q · ord0 f for an integer

q > 0.In the previous setion (f. (3.2) and (3.3)) we showed that for a urve
Γ irreduible at zero and f ∈ Oc(Γ,C

n) with 0 isolated in f−1(0),
m0(f) = ord0 f · deg0 Γ and L(f ; 0) = ord0 f.Taking the funtion f from Example (2.3) one sees that the order of a -holomorphi funtion may be smaller than 1.Note also that ord0 f may not be an integer even when f is the re-strition of a holomorphi funtion (e.g. ord0(y|{y2=x3}) = 3/2) thoughobviously in this ase ord0 f ≥ 1. In general, by (4.1) we only know that

(deg0A)! · ord0 f ∈N.Finally, by Lemma (2.7) we also have
ord0 f ≥

1

deg0A− ord0 P + 1
,where P is the polynomial from Proposition (4.1). The latter yields:(4.3) Corollary. Under the assumptions of Proposition (4.1) and withits notation, ord0 f ≥ 1 i� C0(Γf ) ∩ ({0} × C) = {0}.Proof. Observe that ord0 f ≥ 1 i� ord0 aj ≥ j for all j = 1, . . . , d. It iseasily seen that the latter is equivalent to ord0 P = d.We also have C0(P

−1(0)) = inP−1(0) and the ondition ord0 aj ≥ jfor all j is equivalent to C0(Γ ) ∩ ({0} × C) = {0} (where Γ = P−1(0) ∩
{w = 0} is exatly the image of Γf under the projetion ρ from the proof ofProposition (4.1)). This in turn is equivalent to C0(Γf )∩ ({0}×C) = {0}.In the holomorphi setting we may ompute the order of vanishing usingrestrition to a generi omplex line. We have a similar possibility in the-holomorphi ase:(4.4) Proposition. Under the assumptions of the previous propositionthere exists an open dense set U in G1(C

k) suh that ord0 f = ord0 f |Sl
,



�ojasiewiz exponent of -holomorphi mappings 75where Sl := π−1(l) for l ∈ U . Then if Sl =
⋃r

j=1 S
(j) is the deompositionof the germ Sl into irreduible omponents (r = r(l) ≤ d = deg0A) and γjdenotes the Puiseux parametrization of the jth omponent , we have

ord0 f =
r

min
j=1

ord0(f ◦ γj)

ord0 γj
and d =

r∑

j=1

ord0 γj .Proof. This follows diretly from the formula for ord0 f and the fatthat ord0 aj is attained on the generi line. More preisely, if l ∈ G1(C
k)is suh that dim[l ∩ (σ ∪

⋃d
j=1 in a−1

j (0))] ≤ 0, where σ is the ritial setof the branhed overing π|A, then Sl is a pure one-dimensional set withovering number d over l. What is more, the polynomial used to ompute
ord0 f |Sl

is P |l×C. Therefore ord0 f = mind
j=1 ord0(aj |l)/j = ord0(f |Sl

) andso the result follows by deomposing Sl into irreduible germs and applyingTheorem (3.2).This proposition is most interesting when Sl is irreduible or if the num-ber of irreduible omponents of Sl is exatly deg0A.(4.5) Corollary. Under the assumptions of the previous propositionand with its notation,(i) if for some l ∈ U the urve germ Sl is irreduible, then ord0 f =
ord0(f ◦ γ)/deg0A, where γ is the Puiseux parametrization of Sl;(ii) if for some l ∈ U the urve germ Sl has deg0A irreduible ompo-nents, then ord0 f is a positive integer.Sine for any urve germ Γ ⊂ A irreduible at zero one has ord0(f |Γ ) ≥

ord0 f , it is lear that by the previous results
ord0 f = min{ord0(f |Γ ) | Γ an irreduible urve germ, 0 ∈ Γ ⊂ A}.We also have the following ounterpart of a known lemma (f. [Ch℄):(4.6) Proposition. Let f : (A, 0) → (Ck, 0) be a -holomorphi germwith f−1(0) = {0} on a pure k-dimensional analyti germ A. Then

m0(f) ≥ deg0A
k∏

j=1

ord0 fj .Proof. We will adapt to our ase the proof from [P2℄ inspired by P. Two-rzewski. We assume without loss of generality that A ⊂ C
m
z = C

k
x ×C

m−k
y issuh that π−1(0) ∩ C0(A) = {0} for π(x, y) = x. Then the overing numberof the branhed overing π|A is d := deg0A. Let qj denote the denominatorof ord0 fj and for simpliity write Fj := f

qj

j . Then m0(F ) = m0(f)
∏

j qjand ord0 Fj = qj ord0 fj .



76 M. P. DenkowskiConsider the set
G := {(z, w) ∈ A× C

k | Pj(z, wj) = 0, j = 1, . . . , k},where Pj(z, t) := tord0 Fj − Fj(z) ∈ Oc(A)[t] and so G is analyti. It isobvious that the natural projetion ζ(z, w) = z is proper on G and so is
(π ◦ ζ)|G in a nbhd of zero. It is learly an s-sheeted analyti overing with
s = d

∏
j ord0 Fj (and so G has pure dimension k, f. [Ch, p. 47℄).Take now v ∈ C

k suh that (0, v) ∈ C0(G) and let λν , zν , wν be thesequenes for omputing (0, v). Sine λνwν,j → vj and sine in view of theinequality |Fj(zν)| ≤ cj |zν |
ord0 Fj for some onstant cj > 0 and ν ≫ 1, onehas |λνwν,j | ≤ const · |λνzν |, it follows that vj = 0. We have thus shown that

(π ◦ ζ)−1(0) ∩ C0(G) = {0}, whih means that
deg0G = µ0((π ◦ ζ)|G) = d

∏

j

ord0 Fj .On the other hand, one easily sees that the projetion ̺(z, w) = wis proper on G in a nbhd of zero and has overing number m0(F ). Thus
m0(F ) ≥ d

∏
j ord0 Fj , whih yields the desired inequality.

Note. One heks exatly as in [S℄ that this result is also valid when thetarget spae is of dimension n > k. In this ase the estimate is exatly thesame (i.e. the produt still onsists of k fators) if fj are ordered in suh away that ord0 f1 ≤ · · · ≤ ord0 fn.One an also easily prove (using (2.5) and (3.2)) the following(4.7) Proposition. Let f ∈ Oc(A,C
n) be suh that f−1(0) = {0}. Then

min{1, ord0 f} ≤
1

L(Γf , {0} × Cn; 0)
≤ L(f ; 0).Thus C0(Γf )∩ ({0}×C

n) = {0} implies L(f ; 0) ≥ 1. Moreover , if A0 is anirreduible urve germ, then
L(f ; 0) ≤ 1 implies L(f ; 0) =

1

L(Γf , {0} × Cn; 0)
.We �nish this setion with an estimate of the �ojasiewiz exponent in thegeneral ase. Consider f ∈ Oc(A,C

n) non-onstant and suh that f(0) = 0.Then by Theorem (2.1), f satis�es ondition (s) at zero. We suppose here-after that dim0A ≥ 1.(4.8) Lemma. If f is as above and Γ ⊂ A is any analyti urve irre-duible at zero suh that C0(Γ )∩C0(f
−1(0)) = {0}, then L(f ; 0) ≥ L(f |Γ ; 0).Thus also L(f ; 0) ≥ ord0 f .Proof. We may suppose that A is of onstant dimension. Note �rst thaturves satisfying the assumptions always exist. On the one hand, ondition
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(s) on Γ yields |f(γ(t))| ≥ c1 dist(γ(t), f−1(0))α for t in a nbhd of zero,where γ is a Puiseux parametrization of Γ at zero. On the other hand, by[T1, 3.4℄, Γ and f−1(0) are 1-separated at zero sine Γ is transversal tothe zero set of f . Thus we obtain |f(γ(t))| ≥ const · |γ(t)|α, whene the�rst asserted inequality follows. The seond inequality follows from (3.2)and (3.3).By this lemma, the beautiful result of Cygan ([Cg℄) and Theorem (2.5)we have the following straightforward relationship between L(f ; 0) and thedegree deg0(Γf • (A×{0})) of the improper intersetion yle Γf • (A×{0})in the sense of Tworzewski (see [T2℄ for the de�nition and properties).(4.9)Theorem. If f ∈Oc(A,C

n) is non-onstant and suh that f(0) = 0,then ord0 f ≤ L(f ; 0) ≤ deg0(Γf • (A× {0})).5. A better estimate of the �ojasiewiz exponent. Now we areready to prove an addendum to Theorem (2.6). To do this we generalize alemma and a proposition due to Pªoski (f. [P2℄). In the following, 0 6∈ N(by de�nition). Reall that for a pure k-dimensional loally analyti set Xwith proper projetion π onto C
k and suh that π−1(0)∩X = {0} we de�ne,for any h ∈ Om, the harateristi polynomial Ph relative to π|X by setting

Ph(x, t) =
∏

z∈π−1(x)∩X(t− h(z)) if x 6∈ σ, σ being the ritial set for π, andthen extending the oe�ients through σ by Riemann's theorem. We havethe following(5.1) Lemma ([P2, (2.2)℄). In the above setting , for any linear form L ∈
L(Cm,C) one has ord0 PL ≥ deg0X.We then obtain the following ounterpart of [P2, (2.3)℄:(5.2) Proposition. Let f : (A, 0) → (Ck, 0) be a -holomorphi germon a pure k-dimensional germ A ⊂ C

m at zero suh that f−1(0) = {0},and let g : (A, 0) → (C, 0) be a non-onstant -holomorphi funtion germ.Let q and qj be any positive integers suh that q ord0 g, qj ord0 fj ∈ N. Fi-nally , let PG ∈ Ok[t] be the harateristi polynomial of G := gq relative to
F := (f q1

1 , . . . , f qk

k ) (i.e. relative to π|ΓF
, where π is the natural projetiononto C

k). Then, if w ∈ C
k,

ord0 PG(wq1 ord0 f1
1 , . . . , wqk ord0 fk

k , tq ord0 g)

≥ deg0A ord0 g
k∏

j=1

ord0 fj · q
k∏

j=1

qj .Proof. Let Γ be the graph of (F,G). It is a pure k-dimensional analytigerm at zero with proper projetion ̺ : C
m×C

k ×C ∋ (z, w, t) 7→ w ∈ C
k. Itis lear that for any w whih is not ritial for ̺|Γ or for F , one has exatly
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m0(f)

∏
j qj = m0(F ) points in the �bre ̺−1(w)∩ Γ . It is thus the overingnumber µ0(̺|Γ ).Take L(z, w, t) = t and let PL ∈ Ok[t] be its harateristi polynomialrelative to ̺|Γ . One easily sees that PL = PG. If now

Γ̃ :={(z, w, t)∈A×C
k×C | g(z)q = tq ord0 g, fj(z)

qj =w
qj ord0 fj

j , j = 1, . . . , k},then it is easy to see that µ0(̺|Γ̃ ) = m0(F )q ord0 g. On the other hand, if
ζ is a projetion in C

m realizing deg0A (i.e. ζ−1(0) ∩ C0(A) = {0}) and if
p(z, w, t) = z, then one heks exatly as in the proof of Proposition (4.6)that (ζ ◦ p)−1(0) ∩ C0(Γ̃ ) = {0} and so

deg0 Γ̃ = µ0((ζ ◦ p)|Γ̃ ) = deg0A q ord0 g
k∏

j=1

qj ord0 fj .

Finally, onsider the harateristi polynomial P̃L of L relative to ̺|Γ̃ . Oneagain it is easy to observe that P̃L(w, t) = PL(wq1 ord0 f1
1 , . . . , wqk ord0 fk

k ,

tq ord0 g). Hene we obtain
ord0 PG(wq1 ord0 f1

1 , . . . , wqk ord0 fk

k , tq ord0 g) = ord0 P̃L ≥ deg0 Γ̃by Lemma (5.1), whih is the required inequality.Similarly to [P2℄ we obtain(5.3) Corollary. If f : (A, 0) → (Ck, 0) is a -holomorphi germ on apure k-dimensional analyti germ A suh that f−1(0) = {0}, then for any-holomorphi germ g : (A, 0) → (C, 0) there are k funtions hj ∈ Oc(A)suh that in a nbhd of zero gq·m0(f)
∏

j qj =
∑k

j=1 hjf
qj

j and
qj ord0 fj + ord0 hj ≥ deg0A q ord0 g

k∏

i=1

qi ord0 fi for j = 1, . . . , k,where q, qj ∈ N are suh that q ord0 g, qj ord0 fj ∈ N.Proof. Set F := (f q1
1 , . . . , f qk

k ) and G := gq. The harateristi poly-nomial PG ∈ Ok[t] is unitary of degree m0(f)
∏

j qj = m0(F ) and distin-guished. Therefore applying Hadamard's lemma to its oe�ients aj we have
aj(w) =

∑k
i=1wia

i
j(w), and so one may write PG as

PG(w, t) = tm0(F ) + w1H1(w, t) + · · · + wkHk(w, t),where Hj(w, t) =
∑m0(F )

l=1 aj
l (w)tm0(F )−l ∈ Ok[t] ⊂ C{y, t}. Without loss ofgenerality we may assume that the supports of the series of wjHj(w, t) arepairwise disjoint, and so if we write

v(h) := ord0 h(w
q1 ord0 f1
1 , . . . , wqk ord0 fk

k , tq ord0 g) for h ∈ Ok+1,we have v(wjHj(w, t)) ≥ v(PG(w, t)) for j = 1, . . . , k. Now we require only
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Lemma. If h : (X, 0) → (Cn

y , 0) and P : (Cn
y , 0) → (C, 0) are non-on-stant -holomorphi germs, where X ⊂ C

m
x is an analyti germ at zero,then

ord0 P (h(x)) ·
n

max
j=1

rj ≥ ord0 P (yr1 ord0 h1
1 , . . . , yrn ord0 hn

n ),where rj are any positive integers suh that rj ord0 hj ∈ N.Proof of the lemma. Let θ := ord0 P (yr1 ord0 h1
1 , . . . , yrn ord0 hn

n ). Thenthere is a polydis V of radius R < 1 suh that
|P (yr1 ord0 h1

1 , . . . , yrn ord0 hn
n )| ≤ const · |y|θ, y ∈ V.We take a nbhd U of 0 ∈ C

m suh that h(U∩X) ⊂ V and for eah x ∈ U∩Xwe hoose y so that yrj ord0 hj

j = hj(x) for j = 1, . . . , n. Then we obtain
|P (h(x))| ≤ const ·max{|h1(x)|

1
r1 ord0 h1 , . . . , |hn(x)|

1
rn ord0 hn }θ, x ∈ U ∩X.Shrinking U if neessary, we may assume that |x| < 1 and |hj(x)| ≤ const ·

|x|ord0 hj for all j and x ∈ U ∩ X. So |P (h(x))| ≤ const · |x|θ/maxj rj for
x ∈ U ∩X and so the lemma is proved.We �nish the proof of the orollary by observing that by the Lemmatogether with Proposition (5.2) we have (sine v(h1h2) = v(h1) + v(h2))

qj ord0 fj + ord0(Hj(F,G)) ≥ deg0A q ord0 g
k∏

i=1

qi ord0 fiand sine PG(F,G) ≡ 0, it su�es to take hj := −Hj(F,G).(5.4) Lemma. Let A be an analyti set of pure dimension k ≥ 1 inan open set Ω ⊂ C
m and suppose that TZar

0 A = C
m (i.e. A is minimallyembedded in C

m at zero). Then oordinates xj of C
m an be hosen in suha way that ord0(xj |A) = 1 for j = 1, . . . ,m.Proof. For the generi hoie of oordinates the set A has proper proje-tion at zero on any k-dimensional oordinate plane and eah suh projetionrealizes deg0A. We will show that ord0(x1|A) = 1.Consider the projetion π on the �rst k oordinates and take a line l ∈ U ,where U is the set from Proposition (4.4). The line an be hosen so that

l∩{x1 = 0} = {0}. Then, in the notation of Proposition (4.4), Sl is transver-sal to {x1 = 0}. Therefore for any irreduible omponent Γ ⊂ Sl and itsPuiseux parametrization γ one has ord0(x1 ◦ γ) = ord0 x1 · ord0 γ and so byProposition (4.4) we obtain ord0(x1|A) = 1.All this leads to the following estimate of the �ojasiewiz exponent:



80 M. P. Denkowski(5.5) Theorem. Let A be an analyti set of pure dimension k ≥ 1 in anopen set Ω ⊂ C
m and let f ∈ Oc(A,C

k) be suh that f−1(0) = {0}. Then
k

max
j=1

ord0 fj ≤L(f ; 0)≤ [D(f)]k−1
(
m0(f)−deg0A

k∏

j=1

ord0 fj

)
+

k
max
j=1

ord0 fj ,

where D(f) = min{q ∈ N | q ord0 fj ∈ N, j = 1, . . . , k} is the smallestommon denominator of the orders. Note that D(f) ≤ (deg0A)!.Proof. We start with the proof of the leftmost inequality. Let maxj ord0 fj

= ord0 fk. Sine ⋂
j f

−1
j (0) is a proper intersetion, one an hek that

{f1 = · · · = fk−1 = 0} is a pure one-dimensional germ near zero. Let γ be aPuiseux parametrization of any of its omponents. Then by Theorem (3.2)(and sine fk ◦ γ 6≡ 0) we have
L(f ; 0) ≥ L(f ◦ γ; 0) =

ord0(fk ◦ γ)

ord0 γ
.On the other hand, ord0(fk ◦ γ)/ord0 γ ≥ ord0 fk, whih ompletes the proof.We now proeed to proving the seond inequality. Similarly to the holo-morphi ase it is a more or less diret onsequene of (5.3). We may assumethat A is minimally embedded in C

m at zero and oordinates are hosen bymeans of Lemma (5.4).Let d := D(f). For j ∈ {1, . . . , k} let Gj be the jth oordinate funtion xjin C
m restrited to A. Set also F := (fd

1 , . . . , f
d
k ) and observe that L(F ; 0) =

dL(f ; 0). Then we have the identity Gm0(F )
j =

∑k
i=1 hi,jFi with hi,j ∈ Oc(A)suh that

ord0 hi,j ≥ deg0A ord0Gj · d
k

k∏

i=1

ord0 fi − d
k

max
i=1

ord0 fi.However, ord0(xj |A) = 1 and so in a nbhd of zero in A we have
|xj|

dkm0(f) ≤ const · |x|deg0 A dk
∏k

i=1 ord0 fi−dmaxk
i=1 ord0 fi |F (x)|,whih yields the desired inequality.(5.6) Remark. If A is an irreduible analyti urve, we get exatly thestatement of Theorem (3.2) sine in this ase m0(f) = ord0(f ◦ γ) (γ be-ing injetive). Furthermore, if A is an open set in C

k, we have exatly thestatement of [P2℄.Moreover, applying the methods of [S℄ one veri�es that the result is stillvalid if the target spae is of dimension n > k. Under the assumption that
ord0 f1 ≤ · · · ≤ ord0 fn it reads exatly as stated in the theorem (i.e. we takeinto aount only the �rst k orders).
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