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Non-uniruledness and the anellation problemby Robert Dryło (Kraków)To the memory of Professor Stanisªaw �ojasiewizAbstrat. Using the notion of uniruledness we indiate a lass of algebrai varietieswhih have a stronger version of the anellation property. Moreover, we give an a�rmativesolution to the stable equivalene problem for non-uniruled hypersurfaes.Introdution. An algebrai variety X has the strong anellation prop-erty if every isomorphism f : Y × C
m → X × C

m, where Y is an algebraivariety, satis�es the ondition: for eah y ∈ Y there exists x ∈ X suhthat f({y} × C
m) = {x} × C

m (then learly f indues an isomorphism be-tween X and Y ). Iitaka and Fujita proved in [3℄ that an algebrai varietyof non-negative logarithmi Kodaira dimension has the strong anellationproperty.Using mainly the notion of uniruledness we will give some other ondi-tions guaranteeing this property. Namely, we will show that an a�ne varietynone of whose omponents is C-uniruled has the strong anellation property(Theorem 1); in partiular, a�ne irreduible varieties with two non-uniruledomponents at in�nity (Corollary 1) and a�ne unirational varieties with anon-uniruled omponent at in�nity have this property (Theorem 2).We will also deal with the stable equivalene problem.As in [7℄, a�ne varieties X, Y in C
n are said to be equivalent if there existsa polynomial automorphism of C

n arrying X onto Y . Moreover, X, Y aresaid to be stably equivalent if for some m ∈ N the ylinders X × C
m and

Y × C
m are equivalent (in C

n+m).Makar-Limanov, van Rossum, Shpilrain and Yu in [7℄ stated and solvedfor urves in C
2 (in fat they proved a general result for polynomials of twovariables over an arbitrary �eld of harateristi zero) the following

Stable equivalence problem. Are two stably equivalent hypersur-faes in C
n equivalent?2000 Mathematis Subjet Classi�ation: Primary 14R10; Seondary 14E05.Key words and phrases: uniruled variety, anellation property, stable equivalene.[93℄



94 R. DryªoShpilrain and Yu in [10℄ solved this problem when one of the hypersur-faes is the set of zeros of a so-alled test polynomial (see [1, 5℄).We give an a�rmative answer when one of the hypersurfaes is non-uniruled (Corollary 2).Now we give some basi de�nitions.An irreduible variety X of dimension n > 0 is said to be uniruled ifthere exists a variety W of dimension n − 1 and a dominant rational map
W × C → X. A reduible a�ne variety is said to be uniruled if all itsirreduible omponents are uniruled.It is well known that a variety is uniruled if and only if through its generipoint passes a rational urve.A generi hypersurfae in C

n of degree d > n is an example of a non-uniruled variety (see [4℄).A similar notion is that of C-uniruledness introdued by Jelonek in [6℄.An a�ne irreduible variety X of dimension n > 0 is said to be C-uniruledif there exists a variety W of dimension n − 1 and a dominant polynomialmap W × C → X. A reduible a�ne variety is said to be C-uniruled if allits irreduible omponents are C-uniruled.The C-uniruledness means exatly that through a generi point of thevariety passes an a�ne parametri line (see [6℄).By a hypersurfae in an irreduible algebrai variety we mean an algebraisubvariety of pure odimension one.Main results. We begin by introduing the notion of vertiality. Let
X, Y be algebrai varieties. A regular mapping f : Y ×C

m → X×C
m is alledvertial over a ∈ Y if there exists b ∈ X suh that f({a}×C

m) ⊂ {b}×C
m.Moreover, we say that f is vertial over a subset Z of Y if it is vertial overeah point of Z.We de�ne Zf = {y ∈ Y | f is vertial over y}. It is a Zariski-losed subsetof Y . Indeed, we an suppose that X, Y ⊂ C

n. If f = (f1, . . . , fn+m) then
Zf = {y ∈ Y | f1(y, ·), . . . , fn(y, ·) are onstant on C

m}

=

n⋂

i=1

⋂

z,t∈Cm

{y ∈ Y | fi(y, z) − fi(y, t) = 0}.Obviously the strong anellation property for a variety X is equivalent tosaying that Zf = Y for every variety Y and every isomorphism f : Y ×C
m →

X × C
m. Now we are ready to proveTheorem 1. An a�ne variety none of whose omponents is C-uniruledhas the strong anellation property.Proof. Let a variety X satisfy the assumptions. We an take X to beirreduible. Suppose that Zf 6= Y for some variety Y and some isomorphism
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f : Y ×C

m → X ×C
m. Put V = πX(f(Zf ×C

m)), where πX : X ×C
m → Xis the projetion. For eah y ∈ Zf we have f({y}×C

m) = {πX(f(y))}×C
m.This means that V × C

m = f(Zf × C
m) is losed, hene V is losed. More-over V 6= X beause dimV = dim f(Zf × C

m) − m = dimZf < dim Y =
dimX. Hene X \ V =

⋃
y∈Y \Zf

πX(f({y} × C
m)) is a union of a�ne para-metri lines, whih is impossible.Before stating the next results let us explain that the phrase an a�nevariety X has k non-uniruled omponents at in�nity means that there existsa ompati�ation X̂ of X suh that the variety X̂ \ X ontains at least

k non-uniruled omponents. (It is well known that for an a�ne variety Xand its ompati�ation X̂ the set X̂ \X is a hypersurfae in X̂.) It an beshown (see [6℄ or Lemma 1 below) that an irreduible C-uniruled variety hasat most one non-uniruled omponent at in�nity. Hene we haveCorollary 1. An irreduible a�ne variety with two non-uniruled om-ponents at in�nity has the strong anellation property.An irreduible a�ne variety with one non-uniruled omponent at in�nitymay not have the strong anellation property, sine we have an isomorphism
(W × C) × C ∋ ((x, y), z) 7→ ((x, z), y) ∈ (W × C) × C. However, if we addthe unirationality assumption, we haveTheorem 2. Let X be an a�ne variety of dimension n > 1. Supposethat X is unirational and has a non-uniruled omponent at in�nity. Then Xhas the strong anellation property.
Remark. It is well known that a�ne urves have the anellation prop-erty. Furthermore, every a�ne urve not isomorphi to C has the stronganellation property.Reall that an n-dimensional algebrai variety X is unirational if thereexists a rational dominant mapping f : P

n
99K X.We will use the following orollary from Hironaka's Theorem [2℄ (seealso [4℄):Lemma 1. Let X be a smooth irreduible algebrai variety with a smoothompati�ation X̂ suh that X̂ \ X is a hypersurfae in X̂. Let Y be ana�ne variety with a ompati�ation Ŷ and let f : X → Y be a regular ,dominant and generially-�nite mapping. Then the number of non-uniruledomponents of the variety Ŷ \ Y is not greater than the number of non-uniruled omponents of the variety X̂ \ X.In partiular , if a�ne varieties X, Y are smooth and isomorphi thenthe numbers of non-uniruled omponents of the varieties X̂ \ X and Ŷ \ Y



96 R. Dryªoare equal , where X̂, Ŷ are smooth ompati�ations of X and Y respe-tively.Proof. The idea of this proof is due to Z. Jelonek [4℄. Applying Hironaka'sTheorem to the rational mapping f : X̂ 99K Ŷ we obtain a mapping σ :

B → X̂, whih is a omposition of a sequene of blowing-ups along smoothenters suh that the mapping f ◦σ : B → Ŷ is regular on B. An elementaryproperty of a blowing-up is that the exeptional divisor E of σ (i.e. E is ahypersurfae in B suh that dimσ(E) < dimE and σ : B \E → X̂ \σ(E) isan isomorphism) is uniruled. Beause Ŷ \Y ⊂ cl(f(X̂ \X))∪(f ◦σ)(E), eahnon-uniruled omponent of Ŷ \Y is dominated by a non-uniruled omponentof X̂ \ X. This onludes the proof.Proof of Theorem 2. Let f : Y × C
m → X × C

m be an isomorphismand πX : X × C
m → X, πY : Y × C

m → Y denote the projetions.For eah unirational variety H properly ontained in Y and eah a�nesubspae L ⊂ C
m suh that dim H + dimL = n, the mapping πX ◦ f :

H ×L → X is not dominant. Indeed, if d = dimH then we have a dominantmapping f1 : P
d

99K H whih is regular on an open set D in P
d. Hene wehave the regular mapping πX ◦ f ◦ (f1× id) : D×L → X whih by Lemma 1annot be dominant (sine (Pd × L) \ (D × L) is uniruled, where L is theprojetive losure of L).Observe that X dominates Y and hene Y is unirational. Indeed, for

y ∈ Y we an �nd a polynomial mapping p : X → C
m whose graph meets

f({y} × C
m) at some isolated points (if X ⊂ C

N then p is, for example,the restrition to X of a suitable a�ne mapping C
N → C

m). Therefore themapping X ∋ x 7→ πY (f−1(x, p(x))) ∈ Y has a omponent of dimension zeroin the �ber over y and hene is dominant.Let g : P
n

99K Y be a dominant rational mapping. It is easy to see thatthere exists a non-empty Zariski-open subset U of Y suh that g : g−1(U)→Uis a proper mapping and a loal biholomorphism. Observe that for eah vari-ety V ⊂ Y and a ∈ V ∩U there exists a unirational variety H ⊂ Y suh that
dimH + dimV = n and H intersets V isolatedly at a. Indeed, we an �ndan (n − dimV )-dimensional subspae H ′ of P

n suh that H ′ ∩ g−1(a) 6= ∅and H ′ meets g−1(V ) isolatedly at eah point from H ′ ∩ g−1(a). The variety
H = g(H ′) ful�ls our onditions.To prove the theorem it is enough to show that f−1 is vertial over allpoints from πX(f(U × C

m)). Suppose that there exists x ∈ πX(f(U × C
m))suh that the dimension of πY (W ) is positive, where W = f−1({x} × C
m).Let π : W → C

m be the projetion. Three ases are possible:
Case 1: π is dominant. It is easy to see that we an hoose a line L in C

msuh that π−1(L) = L′∪T , where L′ is an irreduible urve, L′∩(U×C
m) 6= ∅,
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T is losed, L′ 6⊂ T and dimπY (L′) = 1. Let a ∈ (L′\T )∩(U×C

m) and H bea unirational hypersurfae in Y whih intersets πY (L′) isolatedly at πY (a).Hene {a} is a omponent of (H × L) ∩ W . This means that the mapping
πX ◦ f : H × L → X has in the �ber over x a omponent of dimension zeroso it is dominant; a ontradition.
Case 2: S = π(W ) has dimension s < m and a �ber of π over a generipoint of S has the dimension stritly smaller than n. Choose z ∈ S suhthat dimπ−1(z) = m − s and πY (π−1(z)) ∩ U 6= ∅. For a ∈ πY (π−1(z)) ∩ Ulet H be an (n−m+s)-dimensional unirational subvariety of Y interseting

πY (π−1(z)) isolatedly at a. Moreover, hoose an (m − s)-dimensional a�nesubspae L ⊂ C
m suh that {z} is a omponent of L ∩ S. We ome to aontradition as in Case 1, sine (H ×L)∩W has omponents of dimensionzero.

Case 3: All �bers of π : W → π(W ) have dimension n. Take a ∈ Ysuh that dim(πY |W )−1(a) = m − n. Sine W is isomorphi to C
m we an�nd a variety C ⊂ W whih is isomorphi to C

n and (πY |W )−1(a) ∩ Chas dimension zero. Thus the projetion πY : C → Y is dominant. Thisontradits Lemma 1 beause Y dominates X.The proof is omplete.Corollary 2. Two stably equivalent hypersurfaes in C
n are equivalentif one of them is non-uniruled.Corollary 3. Let X ⊂ C

n be a hypersurfae whih has only non-uniruled omponents. If Y ⊂ C
n is a hypersurfae suh that for some m ∈ Nthe ylinders (Cn \ X) × C

m and (Cn \ Y ) × C
m are isomorphi then X, Yare equivalent.Proof. By Theorem 3 we have an indued isomorphism f : C

n \ X →
C

n \ Y . By Lemma 1 the varieties X and Y have the same number of non-uniruled omponents. Using Hironaka's Theorem we an extend f to a reg-ular mapping f̃ : C
n \ Z → C

n, where Z ⊂ C
n has odimension at least 2(ompare the proof of Lemma 2). One again we an extend f̃ to a regularmapping f̃ : C

n → C
n. Obviously f̃ does not have exeptional divisors so bythe Zariski Main Theorem (see [8, 9℄), f̃ : C

n → f̃(Cn) is an isomorphism.Moreover f̃(Cn) is Zariski-open in C
n and dim(Cn \ f̃(Cn)) ≤ n−2 (beauseon f̃(Cn) eah invertible regular funtion is onstant). Hene f̃−1 is regularon C

n. Obviously f̃(X) = Y .Aknowledgements. I would like to express my gratitude to ProfessorKamil Rusek for introduing me to the subjet and helpful disussions. I alsothank Professor Zbigniew Jelonek for useful omments.
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