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The Yojasiewicz gradient inequality
in a neighbourhood of the fibre

by JAaNUsz GwozDzIEWICZ (Kielce) and STANISEAW SPODZIEJA (E6d7)

Abstract. Some estimates of the Lojasiewicz gradient exponent at infinity near any
fibre of a polynomial in two variables are given. An important point in the proofs is a new
Charzynski-Koztowski-Smale estimate of critical values of a polynomial in one variable.

1. Introduction. In this paper, effective estimates relating to the Lo-
jasiewicz gradient inequality at infinity for polynomials in two variables are
given. To achieve them, we prove an estimate for critical values of a poly-
nomial in one variable (Theorem 2.1), which is a version of the Charzyriski-
Koztowski [2] and Smale [24] theorems. Namely, if P : C — C is a polynomial
of degree d > 1, v1,...,p4 € Cand &;,...,£4-1 € C are all roots of P and
of its derivative P’, respectively, and a is the leading coefficient of P, then

: —1/(d—1 : / d/(d—1
LJnin [P(&)] < 4lal =/ min [P/ ()]0,

The first result (Theorem 3.1) on the Lojasiewicz inequality is the fol-
lowing generalisation of the Bochnak-FLojasiewicz inequality ([1, Lemma 2],
[25, Theorem 1]); for a polynomial f : C" — C, there exist C,e > 0 such
that

[f(2) <e = |z[lgrad f(2)] = CIf(2)],

where | - | is a norm in C".

From the above two inequalities, we obtain an estimate of the f.oja-
siewicz gradient exponent in a neighbourhood of the bifurcation fibre of a
polynomial. By definition, the Lojasiewicz exponent at infinity Lo (F|X) of
a polynomial mapping F' : C* — C™ on an unbounded set X C C" is the
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best exponent v in the inequality
|F(2)] > C|z|" aszeX, z— o0,

for some constant C' > 0. In the case F' = grad f, where f is a polynomial
in two variables, and X = {z € C? : |f(z)| < ¢} is a neighbourhood of
f710), Loo(grad f|X) is equal to the exponent L o(f) considered by Ha
[8] and by Chadzynski and Krasiriski [5], provided ¢ > 0 is sufficiently close
to 0. It is shown in Theorem 4.2 and Corollary 6.1 (cf. [8, Theorem 1.3.2],
[12, Theorem 3.1]) that if 0 € C is a bifurcation point of f at infinity (see
Section 6), and d = deg f > 2, then for any neighbourhood X of f~1(0)
1

(%) Loo(grad fI1X) < —1-— T3

3

or equivalently
Loo(f,grad f) < 0.

Estimate (x) is sharp as regards the degree of f (see Remark 6.3). In par-
ticular, we obtain the following result of Gwozdziewicz and Ploski (see [7,
Theorem 5.2|): if the bifurcation set of f at infinity is nonempty, then
Loo(grad f) < —1—1/(d — 2) (Corollary 6.2).

Theorem 4.2 gives a sharper version of the Malgrange condition (condi-
tion (m) in [15]), namely the inequality

|z|*|grad f(2)| >n as z — oo and f(z) — 0

does not depend on the choice of a such that 0 < o < 1+1/(d — 2) (Propo-
sition 5.1).

In Theorem 7.5 we prove the following separation condition of grad f and
f (introduced by Ptloski and Tworzewski in [20], see also [25]):

(PT) [f(2) <& = |grad f(2)] = C[f(2)|7

for some C,e,q > 0. Moreover one can take ¢ = (d — 1). In the general
case, i.e. f: C" — C, n > 2, condition (PT) may not be satisfied (see [25,
Remark 2] and [21, Remark 9.1]). The description of polynomials for which
(PT) holds is given in Remark 7.6.

2. The Charzynski—-Kozlowski—Smale Theorem. In this section we
give a version of the Charzyriski-Kozlowski (see [2, Theorem 3]) and Smale
(see [24, p. 33]) Theorem.

THEOREM 2.1. Let P : C — C be a polynomial of degree d > 1, and let
01,...,04 € Cand &,...,&4_1 € C be all roots of P and P', respectively.
Then

1 IP(&)] < 4minlp: — o5l [P'(00)]

min
1<k<d—1
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In particular,

2 in |P < 4lal~Y@=D1 min | P (0:)[1%/(d-1)
) pin P(0)] < 4lal ™D i 1P ()4,
where a € C s the leading coefficient of P.

Proof. If A C Cand b € C,weput A—b ={a—b:a € A} and
bA = {ab:a € A}. For a € C and r > 0, we denote by D(a,r) the disc with
centre at a and radius 7.

Let

— min |P(&)].
R 1;,?;51,1' (k)]

It suffices to consider the case R > 0. Then obviously ¢; # ¢; for i # j.
Let G = P~1(D(0,R)). Since P|¢ : G — D(0,R) has no critical values,
it is a d-sheeted covering. As D(0, R) is a simply connected domain, G =
G1U---UGg, where G1,...,G4 are domains such that Plg, : G; — D(0, R)
is a biholomorphism, i = 1,...,d. Write f; = (P|g,)"' : D(0,R) — G;. We
may renumber f; so that ¢; = f;(0), : = 1,...,d. Take any i € {1,...,d}
and put .

Each g; is an injective holomorphic function such that ¢;(0) =0 and ¢}(0) = 1.
Therefore, by the Koebe Theorem (see [10]), D(0,1/4) C ¢;(D(0,1)). In

consequence,
D(0, R|f{(0)|/4) € Rf(0)g:(D(0,1)) = fi(D(0, R)) — .
Hence,
D(¢i, RIfi(0)I/4) € fi(D(0, R)) = Gi.
Since ¢; € G; for i # j, by the above we have
R _RIf0)
4[P' (i) 4
Hence (1) follows. From (1) we see that

. < L i / i . .‘
(i [P(E)] < 4lei — @5l [P(gi)| - for any j #

<lpi—wil, i#7

Thus, from P'(¢;) = a]];.;(¢i — ¢;), we deduce (2). u

The inequality (1) cannot be improved, except for the constant 4. Namely
we have

PROPOSITION 2.2. Let P : C — C be a polynomial of degree d > 1, and
let o1,...,00 € Cand&y,...,&q—1 € C be all roots of P and P’, respectively.
Then

d—2

2 . / .
(3) g Minfpi — @5l [P < | min [P(E)].
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Proof. Let r = min;-; |¢; — ;| |[P'(¢;)|. Under the notation of the proof
of Theorem 2.1, it suffices to consider the case R > 0. For any ¢ € {1,...,d},
let j; € {1,...,d} be such that |¢; — ¢;;| = min,2; |@; — ¢;|, and let r; =
(1/2)]% — (pji|, Mi: (3/2)d_17’i‘Pl(g0i)‘. Set Di = D(QOZ‘,T’Z'), 1 = 1,...,d.
Then for any z € D; we easily obtain

1 3
POI= - el [T 1= i < 5l oallal TT (S 1o - ol ) = 0
J#i J#1
Hence, by [23, Ch. VII, Theorem 12.7],
2P (1)
D(0,+=——") C P(D, i =1,...,d.
(0. 2020 ) c . i1
For any 7 € {1,...,d}, from the definition of r, r; and M;, we have

22 2P
3¢ T 6M;

In consequence for ¥ = 29721 /3% we obtain D(0,7) C P(D;), i =1,...,d.

Since D; N D; = () for i # j, for any w € D(0,7) we have #P~1(w) = d

Summing up, P has no critical values in D(0,7), so R > 7 and we get (3). m

REMARK 2.3. From Theorem 2.1 and Proposition 2.2, it is easy to prove
the Kuo and Lu formula for the Lojasiewicz gradient exponent of a holomor-
phic function at zero [11] and the Ha formula for the Lojasiewicz gradient
exponent at infinity of a polynomial [8] as is shown in [26].

3. The Lojasiewicz gradient inequality. Let f: C" — C be a poly-
nomial in 21, ..., 2, and let grad f = (0f/0z1,...,0f/0z,) : C* — C"™. We
will prove the following version of the Bochnak-Fojasiewicz inequality [1]
(cf. the main result of [25]).

THEOREM 3.1. Let f : C™ — C be a polynomial. Then there exist C,e > (

such that
[f(2) <& = [z|lgrad f(z)| = C|f(2)]-

We begin with a definition. A curve ¢ : (r,00) — RF, r € R, is called

meromorphic at oo if ¢ is the sum of a Laurent series of the form
o(t) :aptp—i—ap,ltp_l—l—--' . weRF pez.

If ¢ # 0, then we may assume that oy, # 0. Then the number p is called the
degree of ¢ and denoted by deg . Additionally we put deg( = —oo0.

Proof of Theorem 3.1. As in [25], we use Héormander’s method. The Lo-
jasiewicz inequality does not depend on a particular norm in C™, so we shall
use the Euclidean norm || - ||. Assume to the contrary that for any ¢ > 0
there exists z € C" such that |f(z)| < e and ||grad f(2)||||z]| < e|f(2)|- Then
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there exists 2% € C U {co} such that (2°,0) is an accumulation point of the
semi-algebraic set

X ={(z6) eC"xR:e>0 A [f(2)] <& A |zl [lgrad f(2) ]| <elf(2)[}-

Thus, by the Curve Selection Lemma (|13, Lemma 3.1]), there exists a curve
Y = (¢, ¢nt1) : (r,00) — X meromorphic at oo, such that lims o 9(t) =
(2°,0). Hence, deg ¢, +1 < 0. By the definition of X we have

deg((grad f) o ¢) + deg ¢ < degipni1 +deg fop <degfop
and deg f o ¢ # 0. This is impossible, because, for ¢ = (¢1,...,p,), we get

"9
deg f o =1+deg(fop) =1+deg <Z a—;(@%)
i=1 "

< deg((grad f) o) + degp. m

REMARK 3.2. From Theorem 3.1 we easily obtain the analogous t.o-
jasiewicz inequality for a real polynomial f : R™ — R.

4. The Y.ojasiewicz exponent of the gradient. Let us start from
the precise definition of the Lojasiewicz exponent. Let F : C> — C™ be a
polynomial mapping, and let X C C? be an unbounded set. Put

N(F|X):={veR:34B>0"V:ex (|2| > B = A|z|" <|F(2)])}.
By the Lojasiewicz exponent at infinity of F on X we mean Lo (F|X) =
sup N(F|X) if N(F|S)#0, and Lo (F|X)=—occ if N(F|X)=0. If X=C?,
we write Lo (F) and call it the Lojasiewicz exponent at infinity of F.
Let U C C be a neighbourhood of infinity, i.e. the complement of a

compact set. Analogously to the real case, a mapping h : U — C™ is called
meromorphic at infinity if h is the sum of a Laurent series of the form

h(t) = aptp—i-ap_ltp_l +--, telU o €C™ peZ.
If m =1, then h is called a function meromorphic at infinity.
Throughout the remainder of this section, let f : C*> — C be a polynomial
inz=(r,y),and let d =deg f >2. Let V ={2z€ C%: f(2) =0} and
0 0
Vx:{z€C2:8—£(z):0}, V:{zECQ:a—‘;j(z):O}.
If deg f = deg, f then, by the Puiseux Theorem at infinity (see [3, Lem-
mas 4.1 and 4.2]), there exist N € Z, N > 0, a € C, and functions
O1y ey Pdy €1y, €q—1 : U — C meromorphic at infinity such that
d 8f d—1
N — ) ZI (4N - _
@y =a]]w - i), 3y Y) =ad [[(y - &(t)).

i=1 k=1
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From (2) in Theorem 2.1 we immediately obtain (cf. [5, Theorem 3.3]).

PROPOSITION 4.1. Under the above assumptions,
d
Loo(fIVy) < -1 Lo (grad f[V).
Proof. 1t is easy to see that

LoolfIV) = 5 mindeg f(+V,6(1)

and

N
1 o |
 min,deg LY. 01(0) < Loerad V)

Hence and from (2) in Theorem 2.1 the assertion follows. m

Let us state a generalisation of the Ha Theorem (cf. [8, Theorem 1.3.2],
[12, Theorem 3.1], [5, Corollary 3.5]).

THEOREM 4.2. For every polynomial f : C?> — C with d = deg f > 2,
the following conditions are equivalent:

(i) Loo(f,grad f) <0,
(ii) Loo(f,grad f) < —1/(d - 2),
(iii) Loo(grad f|X) < —1—1/(d —2) for any X = {z € C?: |f(2)| < e},
where € > 0.

Proof. The implication (iii)=-(i) follows from Theorem 3.1, and (ii)=-(i)
is trivial.

Assume (i). We prove (ii) and (iii). Since Lo (grad f) and Lo (f, grad f)
do not depend on the choice of the coordinate system, after a linear change
of coordinates one can assume that deg f = deg, f = deg, f. Moreover
one can assume that f has no multiple factors and (4) holds. Take any
X ={z€C?:|f(2)| < e}, where € > 0. By [4, Theorem 1] and (i),

ot e (520) ) (520 )

= Loo(f,grad f) < 0.

If Loo(grad f|V) = L(f,grad f), then, by Proposition 4.1, Lo (f|Vy)
< 0. So, by [7, Theorem 2.9],
L
d—2

Moreover, there exists kg € {1,...,d—1} such that (1/N)deg f(t", &, (1)) =
Loo(f|V,), and, for some R > r, Y = {(tV,&,(t)) € C?: |t| > RY/N} is an

(5) Loo(fIVy) <
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unbounded subset of V;, N X. Therefore,

(6) Loolirad f1¥) = - dog 02 (1Y €4, (1)) < ~1+ - deg S (¥, &, (1)

=-1+ ['oo(f“/y)a
and (5) gives (ii) in this case. Moreover, by (6)

3

1
Loo(grad f|X) < Loo(grad f|Y) < =1 — ——.

This gives (iii) in this case.

If Eoo(f,%wy) = Loo(f,grad f), then L(f|V,) < 0 and as above we
deduce (ii) and (iii).

If Loo(f, g—i\vx) = Lo(f,grad f), then, by exchanging the roles of z
and y, from the second case we obtain (ii) and (iii) in this case. This ends
the proof. =

REMARK 4.3. The omitted case deg f < 2 in Theorem 4.2 is not essential.
Indeed, for deg f = 1, the gradient of f is a constant mapping. For deg f = 2,
either f is a square function of a linear polynomial or L (grad f) > 0.

From the proof of Theorem 4.2 we obtain the following version of Theo-
rem 3.4 in [5].

COROLLARY 4.4. If Loo(f,grad f) < 0, then
Loo(grad f|X) = Loo(f, grad f) — 1,
where X = {z € C? : |f(2)| < €} and £ > 0 is sufficiently close to 0.

Proof. By Theorem 3.1 we have Lo (grad f|X) > Loo(f, grad f) — 1. As
in the proof of Theorem 4.2 we deduce L (grad f|X) < Loo(f,grad f)—1. m

REMARK 4.5. We define
L of
1) = 57 min ( dega(0) = 25(0) + de G40 ).
Then, by Theorem 2.1, we obtain L(f|V,) = I(f) and L (grad f|V,) <
I(f)—1,so
Loo((f,grad f)|V,) = U(f)
(cf. |7, B.2|, [5, Proposition 2.3], [22, Proposition 2|). If L(f,grad f) < 0,
then by [5, Theorem 3.3| and Corollary 4.4,
Loo(f,grad f) = Loo(fIVy) = 1(f)
(cf. [8, Theorem 1.4.1]).

5. The Fedoryuk and Malgrange conditions. From Theorem 4.2 we
easily obtain the following proposition (cf. [8, Theorem 1.3.2], [12, Theorem
3.1]).
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PROPOSITION 5.1. Let f : C2 — C be a polynomial with d = deg f > 2,
and let A€ C and 0 < o <1+ 1/(d — 2). Then the following conditions are
equivalent:

(i) there exist n, R,e > 0 such that

(F) 2l = R A [f(2) = Al <e = [grad f(2)| > n,
(ii) there exist n, R,e > 0 such that
(M) 2| = R A [f(2) =A< e = [z|%grad f(z)] = .

Conditions (F) and (M) are called the Fedoryuk condition (see [6]) and
the Malgrange condition (cf. [17]), respectively. Denote by K (f) the set of
A € C for which condition (F) fails, and by Ku(f) the set of A for which
(M) with a =1 fails.

Using Proposition 5.1 and the known fact that Kuo(f) is finite (cf. |9,
Theorem 1.1], see also [25, Corollary 4]) we deduce the following known fact.

COROLLARY 5.2. If f:C? — C is a polynomial, then Ko (f) is finite.

6. The Lojasiewicz exponent and bifurcation points. Let f :
C™ — C be a polynomial. The smallest set B(f) C C such that f is a
fibration outside B(f) is called the bifurcation set of f. The smallest set
B (f) € C such that f is a fibration at infinity outside Boo(f) is called
the bifurcation set of f at infinity. More precisely, A € Boo(f) if there exists
a compact H C C" such that flcn\g : C*\ H — C is a trivial fibration
over a neighbourhood U C C of A. It is known that Buo(f) C Ksolf), and
B(f) C Ko(f) U Kso(f), where Ko(f) is the set of critical values of f ([15,
Lemma 1.2 and Remark 1.3]). In the case n = 2 we have Buo(f) = Koo(f)
([15, Theorem 1.4]).

From Theorem 4.2 we immediately obtain (cf. [25, Corollary 4])

COROLLARY 6.1. Let f : C?> — C be a polynomial with d = deg f > 2.
The following conditions are equivalent:

(i) A€ Boo(f);

(i) Loo(f — A grad f) < 0,

(i) Loo(f — Agrad f) < —1/(d —2),

(iv) Loo(grad f|X) < —1—1/(d—2) for any X = {z € C? : |f(2) — )|
<e},e>0.

Proof. Since Boo(f) = Koo(f), it follows that A € Beo(f) if and only if
there exists a sequence {2} C C? with 2™ — oo such that (f, grad f)(z™) —
(A,0,0). Thus A € Boo(f) if and only if Loo(f— A, grad f) < 0. This gives the
equivalence (i)<(ii). The remaining equivalences immediately follow from
Theorem 4.2. u
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Corollary 6.1 implies the following result Gwozdziewicz and Ploski (see
[7, Theorem 5.2|):

COROLLARY 6.2. Let f: C?> — C be a polynomial with d = deg f > 2. If
Boo(f) # 0, then Loo(grad f) < —1—1/(d —2).

Proof. Since Bso(f) = Koo(f), it follows that there exist A € C and a
sequence {z™} C C? with 2™ — oo such that (f,grad f)(z™) — (),0,0).
Thus Lo (f — A, grad f) < 0, and by Corollary 6.1 we get the assertion. =

REMARK 6.3. The estimate in Corollary 6.1(iv) cannot be improved as
regards the degree. Indeed, for the polynomial f(z,y) = y® + zy?! +y,
d > 2 and A = 0 equality holds (see |5, Example 4.11(b)]).

REMARK 6.4. In Theorem 4.2 and Corollary 6.1, we require no special
form of the polynomial f. Under an additional assumption on the form of f,
ie. f(z,y) = y?+ai(z)y? 1+ - -+aq(z), where d = deg f > 2, one can obtain
Corollary 6.1 and Theorem 4.2 from [7, Theorem 2.9] and [5, Theorem 3.3 and
Corollary 3.5]. Indeed, if 0 is a bifurcation point of f at infinity then one can
prove that Lo (f, grad f) = Loo(f,0f/0y) and Loo(f,0f/0y) < —1/(d — 2).

Hence, we easily obtain the assertions of the above-mentioned theorems.

7. Separation of the gradient. In this section we show that in the
two-dimensional case the gradient of a polynomial and the polynomial are
separated. We begin with definitions and general properties.

Let F/: C* — C™ be a polynomial mapping and let f : C" — C be a
polynomial. We say that F' and f are separated at infinity (see [20]) if there
exist C, R > 0 and ¢ € R such that

() =2 R = |F(z)| = Clf(2)[".
The basic characterisation of separation at infinity is given in [20].
PROPOSITION 7.1 (|20, Proposition 1.1]). Let F' : C* — C™ be a poly-

nomial mapping and let f : C" — C be a polynomial. Then the following
conditions are equivalent:

(i) F and f are separated at infinity,

(i) {0} x C & (F, f)(C"),
(iii) there is a polynomial P : C™ x C — C such that P(F, f)=0 and

P’{O}X(C # 0.
We shall say that F' and f are separated in a neighbourhood of the fibre
- , where A € C, 11 there exist C,e > 0 and g € R such that
f~1(N\), where X € C, if th ist C 0 and ¢q € R such th

[f(z) = Al <e = |[F(z)[ = Clf(2)].

From Proposition 7.1, it is easy to see that the above two definitions of
separation are equivalent. Namely we have
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PRrROPOSITION 7.2. Let F' : C" — C™ be a polynomial mapping and let
f:C" — C be a polynomial. Then the following conditions are equivalent:

(i) F and f are separated at infinity,
(ii) F and f are separated in a neighbourhood of the fibre f~1(0),
(iii) F and f are separated in a neighbourhood of any fibre f~1()\), A € C.

According to Proposition 7.2, we shall call F' and f separated if F' and f
are separated at infinity or in a neighbourhood of the fibre of f.
Let us pass to a separation condition for the gradient.

PrOPOSITION 7.3. Let f : C* — C be a polynomial and let d = deg f
> 0. Then the following conditions are equivalent:

(i) grad f and f are separated,
(ii) there exist R,C > 0 such that

1f(z)| > R = |grad f(z)| > C|f(z)|"@ D",
(iii) for any X € C, there exist C,e > 0 such that
1F(z) =M <e = |grad f(2)] > C|f(z) — A= D",

The above proposition is a generalisation of Theorem 2 in [25]. The proof
will be preceded by a lemma.

LEMMA 74. Let f : C* — C be a polynomial with d = deg f > 1. If
grad f and f are separated, then there exists a polynomial P € Clyy, ..., yn,1]
such that P(grad f, f) = 0, Pljoyxc # 0 and deg, P < (d — 1)".

Proof. We shall use the method developed in [18] (see proof of the main
result). Let V' = (grad f, f)(C") C C" x C and k = dim V. Obviously k < n.
Then, by Proposition 6.1, {0} x C ¢ V. Without loss of generality, we may
assume that (0,0) ¢ V. Then there exists a linear mapping L : C" x C —
CF1 such that L|y is a proper mapping and L(0,0) = 0 ¢ L(V). After
composition of L with some linear automorphism CF+1 — CK*! we may
assume that for G = Lo (grad f, f) we have degg; < d—1,1 = 1,...k,
and deg gx+1 < d, where G = (g1, ..., gr+1). Thus there exists a polynomial
P : CF+! — C such that L(V) = {y € CF*! : P(y) = 0} and P(0) # 0.

It is easy to see that there exists an affine subspace M C C™ with
dimM = k such that V = (grad f, f)(M), so L(V) = G(M). In conse-
quence, by the Perron Theorem ([16, Satz 57]) there exists a nonzero poly-
nomial @ € Clyi, ..., Y1) of the form

. V1 Vi Vk+1
Q= E Cotyvr1¥1 7 Yy Ypga
(v1+-+vg) (d—1)+vp1d<(d—1)*d

such that Q(g1,. .., gk+1) = 0. Since dim L(V') = k and Q|(v, :ﬁfL(V) =0,
the polynomials Q and P have a common divisor R such that R(G) = 0.
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Moreover, by the definition of @, deg,, ., R <deg, Q< (d—1)™. Putting
P=RoL:C"xC — C we easily get the assertion. =

Proof of Proposition 7.3. If d = 1, then the assertion is trivial. Assume
that d > 1.

Assume that (i) holds. By Lemma 7.4 there exists a polynomial P &€
Cly1,---,yn, t] such that P(grad f, f) = 0, Pjoyxc # 0 and deg, P < (d—1)".
Hence, by Lemma 3.1 in [19], we get (ii). By using an analogous method, we
shall prove (iii). Take any A € C and put ﬁ(yl, ey Yns ) =P (Y1, .., Yn, t+N).
Then P(grad f, f—X) = 0 and P|{gyxc # 0. If P(0) # 0, then (iii) is obvious.
Assume that ﬁ(O) = 0. Then P is t-regular. Thus, by the Weierstrass Prepa-
ration Theorem, there exist neighbourhoods 2 = {y € C™ : |y| < n}, A =
{te C: |t| < e}, n,e > 0, of the origins and a distinguished pseudopolyno-
mial gint, 0 < N = deg, g < (d—1)" of the form g = tN 4+ g1tV "1+ - .4 gp,
where g; : {2 — C are holomorphic, ¢ = 1,..., N, such that

{(y;1) € 2x A: P(y,t) =0} = {(y, 1) € 2 x A g(y,t) = 0}.

Diminishing 7 and ¢ if necessary, we may assume that gld=1)" < n < 1. Then
for any |f(z)| < e, we have

|[f(2) <2 max_|gi(grad f(2))['/" < Cilgrad f(2)["/¢D"
i=1,...,
for some C; > 0. This gives (iii). The implications (iii)=(i), (ii)=-(i) are
obvious. m
Let us give the main result of this section.

THEOREM 7.5. Let f : C2 — C be a polynomial with d = deg f > 0.
Then

(i) there exist C, R > 0 such that
F@I= R = |grad f(2)] > Clf(2)| ",
(ii) for any A € C there exist C,e > 0 such that
FE) =M <e = lgrad f(2)] > O|f(z) = A

Proof. By [25, Theorem 2| and Proposition 7.2 we know that the set
K (f) is finite if and only if grad f and f are separated. Then by Corol-
lary 5.2 and Proposition 7.3 we obtain the assertion. =

REMARK 7.6. As in Proposition 5.1 we may define the Fedoryuk con-
dition (F) for a polynomial f in several variables. In this case the set of
values for which (F) fails is also denoted by K (f). By |25, Theorem 2] and
Proposition 7.2 we conclude that grad f and f are separated if and only if
the set Ko (f) is finite.
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REMARK 7.7. From Theorem 7.5 we deduce that for any real polynomial

f:R? = R, grad f and f are separated.
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