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The �ojasiewi
z gradient inequalityin a neighbourhood of the �breby Janusz Gwoździewicz (Kiel
e) and Stanisław Spodzieja (�ód¹)Abstra
t. Some estimates of the �ojasiewi
z gradient exponent at in�nity near any�bre of a polynomial in two variables are given. An important point in the proofs is a newCharzy«ski�Kozªowski�Smale estimate of 
riti
al values of a polynomial in one variable.
1. Introdu
tion. In this paper, e�e
tive estimates relating to the �o-jasiewi
z gradient inequality at in�nity for polynomials in two variables aregiven. To a
hieve them, we prove an estimate for 
riti
al values of a poly-nomial in one variable (Theorem 2.1), whi
h is a version of the Charzy«ski�Kozªowski [2℄ and Smale [24℄ theorems. Namely, if P : C → C is a polynomialof degree d > 1, ϕ1, . . . , ϕd ∈ C and ξ1, . . . , ξd−1 ∈ C are all roots of P andof its derivative P ′, respe
tively, and a is the leading 
oe�
ient of P , then

min
1≤k≤d−1

|P (ξk)| ≤ 4|a|−1/(d−1)[ min
1≤i≤d

|P ′(ϕi)|]
d/(d−1).The �rst result (Theorem 3.1) on the �ojasiewi
z inequality is the fol-lowing generalisation of the Bo
hnak��ojasiewi
z inequality ([1, Lemma 2℄,[25, Theorem 1℄); for a polynomial f : C

n → C, there exist C, ε > 0 su
hthat
|f(z)| ≤ ε ⇒ |z| |grad f(z)| ≥ C|f(z)|,where | · | is a norm in C

n.From the above two inequalities, we obtain an estimate of the �oja-siewi
z gradient exponent in a neighbourhood of the bifur
ation �bre of apolynomial. By de�nition, the �ojasiewi
z exponent at in�nity L∞(F |X) ofa polynomial mapping F : C
n → C

m on an unbounded set X ⊂ C
n is the2000 Mathemati
s Subje
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z and S. Spodziejabest exponent ν in the inequality
|F (z)| ≥ C|z|ν as z ∈ X, z → ∞,for some 
onstant C > 0. In the 
ase F = grad f , where f is a polynomialin two variables, and X = {z ∈ C

2 : |f(z)| < ε} is a neighbourhood of
f−1(0), L∞(grad f |X) is equal to the exponent L∞,0(f) 
onsidered by Ha[8℄ and by Ch¡dzy«ski and Krasi«ski [5℄, provided ε > 0 is su�
iently 
loseto 0. It is shown in Theorem 4.2 and Corollary 6.1 (
f. [8, Theorem 1.3.2℄,[12, Theorem 3.1℄) that if 0 ∈ C is a bifur
ation point of f at in�nity (seeSe
tion 6), and d = deg f > 2, then for any neighbourhood X of f−1(0),(∗) L∞(grad f |X) ≤ −1 −

1

d− 2or equivalently
L∞(f, grad f) < 0.Estimate (∗) is sharp as regards the degree of f (see Remark 6.3). In par-ti
ular, we obtain the following result of Gwo¹dziewi
z and Pªoski (see [7,Theorem 5.2℄): if the bifur
ation set of f at in�nity is nonempty, then

L∞(grad f) ≤ −1 − 1/(d− 2) (Corollary 6.2).Theorem 4.2 gives a sharper version of the Malgrange 
ondition (
ondi-tion (m) in [15℄), namely the inequality
|z|α|grad f(z)| ≥ η as z → ∞ and f(z) → 0does not depend on the 
hoi
e of α su
h that 0 ≤ α < 1+1/(d− 2) (Propo-sition 5.1).In Theorem 7.5 we prove the following separation 
ondition of grad f and

f (introdu
ed by Pªoski and Tworzewski in [20℄, see also [25℄):(PT) |f(z)| ≤ ε ⇒ |grad f(z)| ≥ C|f(z)|qfor some C, ε, q > 0. Moreover one 
an take q = (d − 1)2. In the general
ase, i.e. f : C
n → C, n > 2, 
ondition (PT) may not be satis�ed (see [25,Remark 2℄ and [21, Remark 9.1℄). The des
ription of polynomials for whi
h(PT) holds is given in Remark 7.6.2. The Charzy«ski�Kozªowski�Smale Theorem. In this se
tion wegive a version of the Charzy«ski�Kozªowski (see [2, Theorem 3℄) and Smale(see [24, p. 33℄) Theorem.Theorem 2.1. Let P : C → C be a polynomial of degree d > 1, and let

ϕ1, . . . , ϕd ∈ C and ξ1, . . . , ξd−1 ∈ C be all roots of P and P ′, respe
tively.Then(1) min
1≤k≤d−1

|P (ξk)| ≤ 4min
i6=j

|ϕi − ϕj | |P
′(ϕi)|.
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z gradient inequality 153In parti
ular ,(2) min
1≤k≤d−1

|P (ξk)| ≤ 4|a|−1/(d−1)[ min
1≤i≤d

|P ′(ϕi)|]
d/(d−1),where a ∈ C is the leading 
oe�
ient of P .Proof. If A ⊂ C and b ∈ C, we put A − b = {a − b : a ∈ A} and

bA = {ab : a ∈ A}. For a ∈ C and r > 0, we denote by D(a, r) the dis
 with
entre at a and radius r.Let
R = min

1≤k≤d−1
|P (ξk)|.It su�
es to 
onsider the 
ase R > 0. Then obviously ϕi 6= ϕj for i 6= j.Let G = P−1(D(0, R)). Sin
e P |G : G → D(0, R) has no 
riti
al values,it is a d-sheeted 
overing. As D(0, R) is a simply 
onne
ted domain, G =

G1 ∪ · · · ∪Gd, where G1, . . . , Gd are domains su
h that P |Gi
: Gi → D(0, R)is a biholomorphism, i = 1, . . . , d. Write fi = (P |Gi

)−1 : D(0, R) → Gi. Wemay renumber fi so that ϕi = fi(0), i = 1, . . . , d. Take any i ∈ {1, . . . , d}and put
gi(w) =

1

Rf ′i(0)
[fi(wR) − ϕi], w ∈ D(0, 1).Ea
h gi is an inje
tive holomorphi
 fun
tion su
h that gi(0) = 0 and g′i(0) = 1.Therefore, by the Koebe Theorem (see [10℄), D(0, 1/4) ⊂ gi(D(0, 1)). In
onsequen
e,

D(0, R|f ′i(0)|/4) ⊂ Rf ′i(0)gi(D(0, 1)) = fi(D(0, R)) − ϕi.Hen
e,
D(ϕi, R|f

′
i(0)|/4) ⊂ fi(D(0, R)) = Gi.Sin
e ϕj 6∈ Gi for i 6= j, by the above we have

R

4|P ′(ϕi)|
=
R|f ′i(0)|

4
≤ |ϕi − ϕj |, i 6= j.Hen
e (1) follows. From (1) we see that

min
1≤k≤d−1

|P (ξk)| ≤ 4|ϕi − ϕj | |P
′(ϕi)| for any j 6= i.Thus, from P ′(ϕi) = a

∏
j 6=i(ϕi − ϕj), we dedu
e (2).The inequality (1) 
annot be improved, ex
ept for the 
onstant 4. Namelywe haveProposition 2.2. Let P : C → C be a polynomial of degree d > 1, andlet ϕ1, . . . , ϕd ∈ C and ξ1, . . . , ξd−1 ∈ C be all roots of P and P ′, respe
tively.Then(3) 2d−2

3d
min
i6=j

|ϕi − ϕj | |P
′(ϕi)| ≤ min

1≤k≤d−1
|P (ξk)|.



154 J. Gwo¹dziewi
z and S. SpodziejaProof. Let r = mini6=j |ϕi −ϕj | |P
′(ϕi)|. Under the notation of the proofof Theorem 2.1, it su�
es to 
onsider the 
ase R > 0. For any i ∈ {1, . . . , d},let ji ∈ {1, . . . , d} be su
h that |ϕi − ϕji

| = mini6=j |ϕi − ϕj |, and let ri =
(1/2)|ϕi − ϕji

|, Mi = (3/2)d−1ri|P
′(ϕi)|. Set Di = D(ϕi, ri), i = 1, . . . , d.Then for any z ∈ Di we easily obtain

|P (z)| = |z − ϕi| |a|
∏

j 6=i

|z − ϕj | ≤
1

2
|ϕi − ϕji

| |a|
∏

j 6=i

(
3

2
|ϕi − ϕj |

)
= Mi.Hen
e, by [23, Ch. VII, Theorem 12.7℄,

D

(
0,
r2i |P

′(ϕi)|
2

6Mi

)
⊂ P (Di), i = 1, . . . , d.For any i ∈ {1, . . . , d}, from the de�nition of r, ri and Mi, we have

2d−2

3d
r ≤

r2i |P
′(ϕi)|

2

6Mi
.In 
onsequen
e for r̃ = 2d−2r/3d, we obtain D(0, r̃) ⊂ P (Di), i = 1, . . . , d.Sin
e Di ∩ Dj = ∅ for i 6= j, for any w ∈ D(0, r̃) we have #P−1(w) = d.Summing up, P has no 
riti
al values in D(0, r̃), so R ≥ r̃ and we get (3).Remark 2.3. From Theorem 2.1 and Proposition 2.2, it is easy to provethe Kuo and Lu formula for the �ojasiewi
z gradient exponent of a holomor-phi
 fun
tion at zero [11℄ and the Ha formula for the �ojasiewi
z gradientexponent at in�nity of a polynomial [8℄ as is shown in [26℄.3. The �ojasiewi
z gradient inequality. Let f : C

n → C be a poly-nomial in z1, . . . , zn and let grad f = (∂f/∂z1, . . . , ∂f/∂zn) : C
n → C

n. Wewill prove the following version of the Bo
hnak��ojasiewi
z inequality [1℄(
f. the main result of [25℄).Theorem 3.1. Let f : C
n → C be a polynomial. Then there exist C, ε > 0su
h that

|f(z)| ≤ ε ⇒ |z| |grad f(z)| ≥ C|f(z)|.We begin with a de�nition. A 
urve ϕ : (r,∞) → R
k, r ∈ R, is 
alledmeromorphi
 at ∞ if ϕ is the sum of a Laurent series of the form

ϕ(t) = αpt
p + αp−1t

p−1 + · · · , αi ∈ R
k, p ∈ Z.If ϕ 6= 0, then we may assume that αp 6= 0. Then the number p is 
alled thedegree of ϕ and denoted by degϕ. Additionally we put deg 0 = −∞.Proof of Theorem 3.1. As in [25℄, we use Hörmander's method. The �o-jasiewi
z inequality does not depend on a parti
ular norm in C

n, so we shalluse the Eu
lidean norm ‖ · ‖. Assume to the 
ontrary that for any ε > 0there exists z ∈ C
n su
h that |f(z)| ≤ ε and ‖grad f(z)‖‖z‖ < ε|f(z)|. Then



�ojasiewi
z gradient inequality 155there exists z0 ∈ C ∪ {∞} su
h that (z0, 0) is an a

umulation point of thesemi-algebrai
 set
X = {(z, ε) ∈ C

n × R : ε > 0 ∧ |f(z)| ≤ ε ∧ ‖z‖ ‖grad f(z)‖ < ε|f(z)|}.Thus, by the Curve Sele
tion Lemma ([13, Lemma 3.1℄), there exists a 
urve
ψ = (ϕ,ϕn+1) : (r,∞) → X meromorphi
 at ∞, su
h that limt→∞ ψ(t) =
(z0, 0). Hen
e, degϕn+1 < 0. By the de�nition of X we have

deg((grad f) ◦ ϕ) + degϕ ≤ degϕn+1 + deg f ◦ ϕ < deg f ◦ ϕand deg f ◦ ϕ 6= 0. This is impossible, be
ause, for ϕ = (ϕ1, . . . , ϕn), we get
deg f ◦ ϕ = 1 + deg(f ◦ ϕ)′ = 1 + deg

( n∑

i=1

∂f

∂zi
(ϕ)ϕ′

i

)

≤ deg((grad f) ◦ ϕ) + degϕ.Remark 3.2. From Theorem 3.1 we easily obtain the analogous �o-jasiewi
z inequality for a real polynomial f : R
n → R.

4. The �ojasiewi
z exponent of the gradient. Let us start fromthe pre
ise de�nition of the �ojasiewi
z exponent. Let F : C
2 → C

m be apolynomial mapping, and let X ⊂ C
2 be an unbounded set. Put

N(F |X) := {ν ∈ R : ∃A,B>0 ∀z∈X (|z| ≥ B ⇒ A|z|ν ≤ |F (z)|)}.By the �ojasiewi
z exponent at in�nity of F on X we mean L∞(F |X) =
supN(F |X) if N(F |S) 6=∅, and L∞(F |X)=−∞ if N(F |X)=∅. If X=C

2,we write L∞(F ) and 
all it the �ojasiewi
z exponent at in�nity of F .Let U ⊂ C be a neighbourhood of in�nity, i.e. the 
omplement of a
ompa
t set. Analogously to the real 
ase, a mapping h : U → C
m is 
alledmeromorphi
 at in�nity if h is the sum of a Laurent series of the form

h(t) = αpt
p + αp−1t

p−1 + · · · , t ∈ U, αi ∈ C
m, p ∈ Z.If m = 1, then h is 
alled a fun
tion meromorphi
 at in�nity.Throughout the remainder of this se
tion, let f : C

2 → C be a polynomialin z = (x, y), and let d = deg f ≥ 2. Let V = {z ∈ C
2 : f(z) = 0} and

Vx =

{
z ∈ C

2 :
∂f

∂x
(z) = 0

}
, Vy =

{
z ∈ C

2 :
∂f

∂y
(z) = 0

}
.If deg f = degy f then, by the Puiseux Theorem at in�nity (see [3, Lem-mas 4.1 and 4.2℄), there exist N ∈ Z, N > 0, a ∈ C, and fun
tions

ϕ1, . . . , ϕd, ξ1, . . . , ξd−1 : U → C meromorphi
 at in�nity su
h that(4) f(tN , y) = a
d∏

i=1

(y − ϕi(t)),
∂f

∂y
(tN , y) = ad

d−1∏

k=1

(y − ξk(t)).



156 J. Gwo¹dziewi
z and S. SpodziejaFrom (2) in Theorem 2.1 we immediately obtain (
f. [5, Theorem 3.3℄).Proposition 4.1. Under the above assumptions,
L∞(f |Vy) ≤

d

d− 1
L∞(grad f |V ).Proof. It is easy to see that

L∞(f |Vy) =
1

N
min

1≤k≤d−1
deg f(tN , ξk(t))and

1

N
min

1≤i≤d
deg

∂f

∂y
(tN , ϕi(t)) ≤ L∞(grad f |V ).Hen
e and from (2) in Theorem 2.1 the assertion follows.Let us state a generalisation of the Ha Theorem (
f. [8, Theorem 1.3.2℄,[12, Theorem 3.1℄, [5, Corollary 3.5℄).Theorem 4.2. For every polynomial f : C

2 → C with d = deg f > 2,the following 
onditions are equivalent :(i) L∞(f, grad f) < 0,(ii) L∞(f, grad f) ≤ −1/(d− 2),(iii) L∞(grad f |X) ≤ −1− 1/(d− 2) for any X = {z ∈ C
2 : |f(z)| < ε},where ε > 0.Proof. The impli
ation (iii)⇒(i) follows from Theorem 3.1, and (ii)⇒(i)is trivial.Assume (i). We prove (ii) and (iii). Sin
e L∞(grad f) and L∞(f, grad f)do not depend on the 
hoi
e of the 
oordinate system, after a linear 
hangeof 
oordinates one 
an assume that deg f = degx f = degy f . Moreoverone 
an assume that f has no multiple fa
tors and (4) holds. Take any

X = {z ∈ C
2 : |f(z)| < ε}, where ε > 0. By [4, Theorem 1℄ and (i),

min

{
L∞(grad f |V ), L∞

((
f,
∂f

∂x

) ∣∣∣∣Vy

)
, L∞

((
f,
∂f

∂y

) ∣∣∣∣Vx

)}

= L∞(f, grad f) < 0.If L∞(grad f |V ) = L∞(f, grad f), then, by Proposition 4.1, L∞(f |Vy)
< 0. So, by [7, Theorem 2.9℄,(5) L∞(f |Vy) ≤ −

1

d− 2
.Moreover, there exists k0 ∈ {1, . . . , d−1} su
h that (1/N) deg f(tN , ξk0

(t)) =
L∞(f |Vy), and, for some R ≥ r, Y = {(tN , ξk0

(t)) ∈ C
2 : |t| ≥ R1/N} is an
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z gradient inequality 157unbounded subset of Vy ∩X. Therefore,
L∞(grad f |Y ) =

1

N
deg

∂f

∂x
(tN , ξk0

(t)) ≤ −1 +
1

N
deg f(tN , ξk0

(t))(6)
= −1 + L∞(f |Vy),and (5) gives (ii) in this 
ase. Moreover, by (6),

L∞(grad f |X) ≤ L∞(grad f |Y ) ≤ −1 −
1

d− 2
.This gives (iii) in this 
ase.If L∞(f, ∂f

∂x |Vy) = L∞(f, grad f), then L∞(f |Vy) < 0 and as above wededu
e (ii) and (iii).If L∞(f, ∂f
∂y |Vx) = L∞(f, grad f), then, by ex
hanging the roles of xand y, from the se
ond 
ase we obtain (ii) and (iii) in this 
ase. This endsthe proof.Remark 4.3. The omitted 
ase deg f ≤ 2 in Theorem 4.2 is not essential.Indeed, for deg f = 1, the gradient of f is a 
onstant mapping. For deg f = 2,either f is a square fun
tion of a linear polynomial or L∞(grad f) > 0.From the proof of Theorem 4.2 we obtain the following version of Theo-rem 3.4 in [5℄.Corollary 4.4. If L∞(f, grad f) < 0, then

L∞(grad f |X) = L∞(f, grad f) − 1,where X = {z ∈ C
2 : |f(z)| < ε} and ε > 0 is su�
iently 
lose to 0.Proof. By Theorem 3.1 we have L∞(grad f |X) ≥ L∞(f, grad f) − 1. Asin the proof of Theorem 4.2 we dedu
e L∞(grad f |X) ≤ L∞(f, grad f)−1.Remark 4.5. We de�ne

l(f) =
1

N
min
i6=j

(
deg(ϕi(t) − ϕj(t)) + deg

∂f

∂y
(tN , ϕi(t))

)
.Then, by Theorem 2.1, we obtain L∞(f |Vy) = l(f) and L∞(grad f |Vy) ≤

l(f) − 1, so
L∞((f, grad f)|Vy) = l(f)(
f. [7, B.2℄, [5, Proposition 2.3℄, [22, Proposition 2℄). If L∞(f, grad f) < 0,then by [5, Theorem 3.3℄ and Corollary 4.4,

L∞(f, grad f) = L∞(f |Vy) = l(f)(
f. [8, Theorem 1.4.1℄).5. The Fedoryuk and Malgrange 
onditions. From Theorem 4.2 weeasily obtain the following proposition (
f. [8, Theorem 1.3.2℄, [12, Theorem3.1℄).
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z and S. SpodziejaProposition 5.1. Let f : C
2 → C be a polynomial with d = deg f > 2,and let λ ∈ C and 0 < α < 1 + 1/(d− 2). Then the following 
onditions areequivalent :(i) there exist η,R, ε > 0 su
h that(F) |z| ≥ R ∧ |f(z) − λ| ≤ ε ⇒ |grad f(z)| ≥ η,(ii) there exist η,R, ε > 0 su
h that(M) |z| ≥ R ∧ |f(z) − λ| ≤ ε ⇒ |z|α|grad f(z)| ≥ η.Conditions (F) and (M) are 
alled the Fedoryuk 
ondition (see [6℄) andthe Malgrange 
ondition (
f. [17℄), respe
tively. Denote by K∞(f) the set of

λ ∈ C for whi
h 
ondition (F) fails, and by K̃∞(f) the set of λ for whi
h(M) with α = 1 fails.Using Proposition 5.1 and the known fa
t that K̃∞(f) is �nite (
f. [9,Theorem 1.1℄, see also [25, Corollary 4℄) we dedu
e the following known fa
t.Corollary 5.2. If f : C
2 → C is a polynomial , then K∞(f) is �nite.6. The �ojasiewi
z exponent and bifur
ation points. Let f :

C
n → C be a polynomial. The smallest set B(f) ⊂ C su
h that f is a�bration outside B(f) is 
alled the bifur
ation set of f . The smallest set

B∞(f) ⊂ C su
h that f is a �bration at in�nity outside B∞(f) is 
alledthe bifur
ation set of f at in�nity. More pre
isely, λ 6∈ B∞(f) if there existsa 
ompa
t H ⊂ C
n su
h that f |Cn\H : C

n \ H → C is a trivial �brationover a neighbourhood U ⊂ C of λ. It is known that B∞(f) ⊂ K̃∞(f), and
B(f) ⊂ K0(f) ∪ K̃∞(f), where K0(f) is the set of 
riti
al values of f ([15,Lemma 1.2 and Remark 1.3℄). In the 
ase n = 2 we have B∞(f) = K̃∞(f)([15, Theorem 1.4℄).From Theorem 4.2 we immediately obtain (
f. [25, Corollary 4℄)Corollary 6.1. Let f : C

2 → C be a polynomial with d = deg f > 2.The following 
onditions are equivalent :(i) λ ∈ B∞(f),(ii) L∞(f − λ, grad f) < 0,(iii) L∞(f − λ, grad f) ≤ −1/(d− 2),(iv) L∞(grad f |X) ≤ −1 − 1/(d− 2) for any X = {z ∈ C
2 : |f(z) − λ|

≤ ε}, ε > 0.Proof. Sin
e B∞(f) = K̃∞(f), it follows that λ ∈ B∞(f) if and only ifthere exists a sequen
e {zm}⊂C
2 with zm →∞ su
h that (f, grad f)(zm) →

(λ, 0, 0). Thus λ ∈ B∞(f) if and only if L∞(f−λ, grad f) < 0. This gives theequivalen
e (i)⇔(ii). The remaining equivalen
es immediately follow fromTheorem 4.2.
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z gradient inequality 159Corollary 6.1 implies the following result Gwo¹dziewi
z and Pªoski (see[7, Theorem 5.2℄):Corollary 6.2. Let f : C
2 → C be a polynomial with d = deg f > 2. If

B∞(f) 6= ∅, then L∞(grad f) ≤ −1 − 1/(d− 2).Proof. Sin
e B∞(f) = K̃∞(f), it follows that there exist λ ∈ C and asequen
e {zm} ⊂ C
2 with zm → ∞ su
h that (f, grad f)(zm) → (λ, 0, 0).Thus L∞(f − λ, grad f) < 0, and by Corollary 6.1 we get the assertion.Remark 6.3. The estimate in Corollary 6.1(iv) 
annot be improved asregards the degree. Indeed, for the polynomial f(x, y) = yd + xyd−1 + y,

d > 2 and λ = 0 equality holds (see [5, Example 4.11(b)℄).Remark 6.4. In Theorem 4.2 and Corollary 6.1, we require no spe
ialform of the polynomial f . Under an additional assumption on the form of f ,i.e. f(x, y) = yd+a1(x)y
d−1+· · ·+ad(x), where d = deg f > 2, one 
an obtainCorollary 6.1 and Theorem 4.2 from [7, Theorem 2.9℄ and [5, Theorem 3.3 andCorollary 3.5℄. Indeed, if 0 is a bifur
ation point of f at in�nity then one 
anprove that L∞(f, grad f) = L∞(f, ∂f/∂y) and L∞(f, ∂f/∂y) ≤ −1/(d− 2).Hen
e, we easily obtain the assertions of the above-mentioned theorems.7. Separation of the gradient. In this se
tion we show that in thetwo-dimensional 
ase the gradient of a polynomial and the polynomial areseparated. We begin with de�nitions and general properties.Let F : C

n → C
m be a polynomial mapping and let f : C

n → C be apolynomial. We say that F and f are separated at in�nity (see [20℄) if thereexist C,R > 0 and q ∈ R su
h that
|f(z)| ≥ R ⇒ |F (z)| ≥ C|f(z)|q.The basi
 
hara
terisation of separation at in�nity is given in [20℄.

Proposition 7.1 ([20, Proposition 1.1℄). Let F : C
n → C

m be a poly-nomial mapping and let f : C
n → C be a polynomial. Then the following
onditions are equivalent :(i) F and f are separated at in�nity ,(ii) {0} × C 6⊂ (F, f)(Cn),(iii) there is a polynomial P : C

m × C → C su
h that P (F, f) = 0 and
P |{0}×C 6= 0.We shall say that F and f are separated in a neighbourhood of the �bre

f−1(λ), where λ ∈ C, if there exist C, ε > 0 and q ∈ R su
h that
|f(z) − λ| ≤ ε ⇒ |F (z)| ≥ C|f(z)|q.From Proposition 7.1, it is easy to see that the above two de�nitions ofseparation are equivalent. Namely we have
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n → C

m be a polynomial mapping and let
f : C

n → C be a polynomial. Then the following 
onditions are equivalent :(i) F and f are separated at in�nity ,(ii) F and f are separated in a neighbourhood of the �bre f−1(0),(iii) F and f are separated in a neighbourhood of any �bre f−1(λ), λ ∈ C.A

ording to Proposition 7.2, we shall 
all F and f separated if F and fare separated at in�nity or in a neighbourhood of the �bre of f .Let us pass to a separation 
ondition for the gradient.Proposition 7.3. Let f : C
n → C be a polynomial and let d = deg f

> 0. Then the following 
onditions are equivalent :(i) grad f and f are separated ,(ii) there exist R,C > 0 su
h that
|f(z)| ≥ R ⇒ |grad f(z)| ≥ C|f(z)|−(d−1)n

,(iii) for any λ ∈ C, there exist C, ε > 0 su
h that
|f(z) − λ| ≤ ε ⇒ |grad f(z)| ≥ C|f(z) − λ|(d−1)n

,The above proposition is a generalisation of Theorem 2 in [25℄. The proofwill be pre
eded by a lemma.Lemma 7.4. Let f : C
n → C be a polynomial with d = deg f > 1. If

grad f and f are separated , then there exists a polynomial P ∈ C[y1, . . . , yn, t]su
h that P (grad f, f) = 0, P |{0}×C 6= 0 and degt P ≤ (d− 1)n.Proof. We shall use the method developed in [18℄ (see proof of the mainresult). Let V = (grad f, f)(Cn) ⊂ C
n ×C and k = dimV . Obviously k ≤ n.Then, by Proposition 6.1, {0} × C 6⊂ V . Without loss of generality, we mayassume that (0, 0) 6∈ V . Then there exists a linear mapping L : C

n × C →
C

k+1 su
h that L|V is a proper mapping and L(0, 0) = 0 6∈ L(V ). After
omposition of L with some linear automorphism C
k+1 → C

k+1 we mayassume that for G = L ◦ (grad f, f) we have deg gi ≤ d − 1, i = 1, . . . , k,and deg gk+1 ≤ d, where G = (g1, . . . , gk+1). Thus there exists a polynomial
P̃ : C

k+1 → C su
h that L(V ) = {y ∈ C
k+1 : P̃ (y) = 0} and P̃ (0) 6= 0.It is easy to see that there exists an a�ne subspa
e M ⊂ C

n with
dimM = k su
h that V = (grad f, f)(M), so L(V ) = G(M). In 
onse-quen
e, by the Perron Theorem ([16, Satz 57℄) there exists a nonzero poly-nomial Q ∈ C[y1, . . . , yk+1] of the form

Q =
∑

(ν1+···+νk)(d−1)+νk+1d≤(d−1)kd

cν1,...,νk+1
yν1

1 · · · yνk

k y
νk+1

k+1

su
h that Q(g1, . . . , gk+1) = 0. Sin
e dimL(V ) = k and Q|L(V ) = P̃ |L(V ) = 0,the polynomials Q and P̃ have a 
ommon divisor R su
h that R(G) = 0.
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z gradient inequality 161Moreover, by the de�nition of Q, degyk+1
R ≤ degyk+1

Q ≤ (d− 1)n. Putting
P = R ◦ L : C

n × C → C we easily get the assertion.Proof of Proposition 7.3. If d = 1, then the assertion is trivial. Assumethat d > 1.Assume that (i) holds. By Lemma 7.4 there exists a polynomial P ∈
C[y1, . . . , yn, t] su
h that P (grad f, f) = 0, P{0}×C 6= 0 and degt P ≤ (d−1)n.Hen
e, by Lemma 3.1 in [19℄, we get (ii). By using an analogous method, weshall prove (iii). Take any λ∈C and put P̃ (y1, . . . , yn, t)=P (y1, . . . , yn, t+λ).Then P̃ (grad f, f−λ) = 0 and P̃ |{0}×C 6= 0. If P̃ (0) 6= 0, then (iii) is obvious.Assume that P̃ (0) = 0. Then P is t-regular. Thus, by the Weierstrass Prepa-ration Theorem, there exist neighbourhoods Ω = {y ∈ C

m : |y| ≤ η}, ∆ =
{t ∈ C : |t| ≤ ε}, η, ε > 0, of the origins and a distinguished pseudopolyno-mial g in t, 0 < N = degt g ≤ (d−1)n of the form g = tN +g1t

N−1+ · · ·+gN ,where gi : Ω → C are holomorphi
, i = 1, . . . , N , su
h that
{(y, t) ∈ Ω ×∆ : P (y, t) = 0} = {(y, t) ∈ Ω ×∆ : g(y, t) = 0}.Diminishing η and ε if ne
essary, we may assume that ε(d−1)n

≤ η < 1. Thenfor any |f(z)| ≤ ε, we have
|f(z)| ≤ 2 max

i=1,...,N
|gi(grad f(z))|1/i ≤ C1|grad f(z)|1/(d−1)n

for some C1 > 0. This gives (iii). The impli
ations (iii)⇒(i), (ii)⇒(i) areobvious.Let us give the main result of this se
tion.Theorem 7.5. Let f : C
2 → C be a polynomial with d = deg f > 0.Then(i) there exist C, R > 0 su
h that

|f(z)| ≥ R ⇒ |grad f(z)| ≥ C|f(z)|−(d−1)2,(ii) for any λ ∈ C there exist C, ε > 0 su
h that
|f(z) − λ| ≤ ε ⇒ |grad f(z)| ≥ C|f(z) − λ|(d−1)2.Proof. By [25, Theorem 2℄ and Proposition 7.2 we know that the set

K∞(f) is �nite if and only if grad f and f are separated. Then by Corol-lary 5.2 and Proposition 7.3 we obtain the assertion.Remark 7.6. As in Proposition 5.1 we may de�ne the Fedoryuk 
on-dition (F) for a polynomial f in several variables. In this 
ase the set ofvalues for whi
h (F) fails is also denoted by K∞(f). By [25, Theorem 2℄ andProposition 7.2 we 
on
lude that grad f and f are separated if and only ifthe set K∞(f) is �nite.
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e that for any real polynomial
f : R

2 → R, grad f and f are separated.A
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