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Bi-Lipschitz trivialization of the distance function

to a stratum of a stratification

by Adam Parusiński (Angers)

Abstract. Given a Lipschitz stratification X that additionally satisfies condition (δ)
of Bekka–Trotman (for instance any Lipschitz stratification of a subanalytic set), we show
that for every stratum N of X the distance function to N is locally bi-Lipschitz trivial
along N . The trivialization is obtained by integration of a Lipschitz vector field.

The existence of Lipschitz stratifications of complex analytic or real sub-
analytic sets ([5], [7], [8]) allows one to trivialize these sets locally along each
stratum so that the trivialization is bi-Lipschitz. In this paper we show the
following refinement of this result that answers positively a question posed
to us by M. Ferrarotti and E. Fortuna.

Theorem 1. Let X be a Lipschitz stratification of a locally closed subset

X ⊂ R
n and let N be a stratum of X . Suppose additionally that X satisfies

condition (δ) of Bekka–Trotman along N . Then X can be trivialized locally

along N in such a way that the distance to N is preserved by the trivialization

and the trivialization is bi-Lipschitz.

We explain in Remark 2 below what we precisely mean by bi-Lipschitz
trivialization.

We always assume that the strata of X are C2 subvarieties of R
n. We

say that X satisfies condition (δ) of Bekka–Trotman along N (see [1]) if for
any p ∈ N , there are c0 > 0 and ε > 0 such that for all q ∈ X satisfying
dist(p, q) < ε, there is a unit vector v ∈ TqS, where S is the stratum
containing q, such that

(1) d̺(v) ≥ c0,
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where ̺ denotes the distance function to N . Geometrically it means that
the strata of X transversally intersect the levels of ̺ with the angle uni-
formly bounded away from zero. We note (cf. [5, Proposition 7.1]) that each
Lipschitz stratification satisfies the Kuo–Verdier condition (w) (cf. [9]), and
hence any Lipschitz stratification of a subanalytic set is Whitney regular.
Whitney’s (b)-regularity trivially implies condition (δ) of Bekka–Trotman.

One may ask whether any subanalytic function f on X can be trivialized
along strata of a stratification of X so that the trivialization is bi-Lipschitz.
For this general question the answer is definitely negative, even for families
of analytic function germs of two complex or real variables (see [2], [3]).
Besides the distance to a stratum and similar distance-like functions (see
Remark 7 below), it is not clear to us for what other types of functions the
answer to this question is positive.

The proof of Theorem 1 is fairly elementary and uses the method in-
troduced in [5]. The author thanks T. Mostowski for interesting discussions
concerning the problem.

Proof of Theorem 1. Fix a stratum N and p ∈ N . Let k = dimN . Denote
by X i the union of strata of dimension ≤ i and by di(q) the distance from q
to X i. The open ball centred at q and of radius r will be denoted by B(q, r).
As above, the distance function to N will be denoted by ̺. We shall work in
a small neighbourhood U of p in X that we will make smaller if necessary.
All vector fields will be tangent to strata.

We will be sometimes sloppy about constants. In general, ε > 0 will be
used to denote very small constants, M very large positive constants, C > 0
will denote a universal constant and L > 0 a universal constant for the Lip-
schitz condition. Our main tool will be the extension property of Lipschitz
vector fields (cf. [7, Remark 1.3], [8, Proposition 1.3], [5, Proposition 1.1]
and [7, Lemma 1.7]).

The main idea of the proof is simple. Given a system of Lipschitz vector
fields e1, . . . , ek defined in a neighbourhood of p in N that form a basis of
TpN . By Gram–Schmidt orthonormalization we may suppose that for each
p′ close to p, e1(p

′), . . . , ek(p
′) is an orthonormal basis of Tp′N . We will show

that there exist extensions of e1, . . . , ek to Lipschitz vector fields ê1, . . . , êk,
defined on U , that satisfy

d̺(êi) ≡ 0 for i = 1, . . . , k.

Let π : U → N denote the closest point projection. Using the argument of
Proposition 1.1 of [5] or Lemma 1.7 of [7], we may then change the vector
fields êi so that they additionally satisfy

dπ(êi) = ei, i = 1, . . . , k.

Then the theorem follows by integration of these vector fields as in loc. cit.
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Remark 2. By local bi-Lipschitz triviality of ̺ along N we mean the
following. Let p0 ∈ N and let U be a small neighbourhood of p0 in X. Define
UN = U ∩N and Up = π−1(p)∩U for p ∈ UN . Let ̺p be the restriction of ̺
to Up. Then for every p0 there is such a U and a bi-Lipschitz homeomorphism
Φ : Up0

× UN → U such that π(Φ(x, y)) = y and ̺(Φ(x, y)) = ̺p(x).
By adding the open stratum R

n \X we may, moreover, assume that the
above trivialization is the restriction to X of a local bi-Lipschitz trivializa-
tion of the ambient space R

n.

Now we present the details.

Lemma 3. There are a neighbourhood U of p and positive constants

ε, c, C, L such that for any q0 ∈ U \ N there is a Lipschitz vector field v

defined on B(q0, ε̺(q0)), with Lipschitz constant L̺(q0)
−1, such that for all

q ∈ B(q0, r),

‖v(q)‖ ≤ C,(2)

d̺(v(q)) ≥ c.(3)

Proof. First fix an arbitrary small neighbourhood U of p in R
n. It will

be replaced later by a smaller neighbourhood of p. Let q0 ∈ U \ N , S the
stratum containing q0, and let v0 ∈ Tq0

S be a vector satisfying condition (1).
The vector field v of the statement of the lemma will satisfy v(q0) = v0.

Assume now that q0 ∈ Xj \Xj−1. We abbreviate ̺(q0) by ̺0. The proof
is by induction on j = k + 1, . . . , dimX. First we explain the inductive
step. Let ε′, c′, C ′, L′ be the constants for which the lemma holds for each
q0 ∈ Xj−1 ∩ U . Fix a large M > 0, in particular we require M−1 ≤ ε′/3.

Case 1: Suppose that for all i = k, . . . , j − 2,

(4) di(q0) ≤ Mdi+1(q0).

Then ̺0 ≤ Mn−kdj−1(q0). The vector field on Xj−1∪{q0} that is identically
equal to zero on Xj−1 and to v0 at q0 is Lipschitz with Lipschitz constant
̺−1

0
Mn−k. By [7] and [8] this vector field can be extended to a Lipschitz

vector field on X with constant ̺−1

0
Mn−kLS , where LS denotes a universal

constant depending only on the Lipschitz stratification. An easy compu-
tation shows that this extension has the required property on B(q0, ε̺0),
provided ε > 0 is chosen sufficiently small (ε ≤ 1

2
(Mn−kLS)−1c0 would do,

where c0 is given by Bekka–Trotman’s condition).
Let k′ > k be the minimum dimension of strata S such that p ∈ S \ S.

Note that if j = k′ then we are necessarily in Case 1. Thus Case 1 gives also
the initial step of the induction.

Case 2: Set j0 = i0 + 1, where i0 is the largest i ∈ {k, . . . , j − 2} for
which (4) fails. That is, (4) holds for i ≥ j0 but

dj0−1(q0) > Mdj0(q0).
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Fix q′ ∈ Xj0 \ Xj0−1 such that ‖q0 − q′‖ = dj0(q0). We have

‖q0 − q′‖ = dj0(q0) < M−1dj0−1(q0) ≤ M−1̺0.

Thus if M−1 ≤ ε′/3 then B(q0, ε
′̺0/3) ⊂ B(q′, ε′̺(q′)) and the vector field

constructed for q′ works as well for q0.

Next we construct the desired vector fields êi locally near each q0 ∈
U \ N . Let ẽi be arbitrary Lipschitz extensions of ei onto U . Define, on
B(q0, ε̺(q0)),

(5) êi := ẽi −
d̺(ẽi)

d̺(v)
v,

where v is given by Lemma 3. Clearly d̺(êi) ≡ 0. We show that the êi are
Lipschitz extensions of ei. We use the following obvious lemma.

Lemma 4. Let f1, f2 be two bounded Lipschitz functions with Lipschitz

constants L1, L2 and bounded by C1, C2 respectively. Then the product f1f2

is Lipschitz with constant C1L2 + L1C2. If moreover |f1| ≥ c1 then 1/f1 is

Lipschitz with constant L1c
−2

1
.

To use the lemma we need to establish the Lipschitz constants and the
bounds for the vector fields v, d̺(v), d̺(ẽ).

For v they are given in Lemma 3. Since ̺ is a distance function, |d̺(v)| ≤
‖v‖ ≤ C. Moreover, the second order partial derivatives of ̺ can be univer-
sally bounded by a multiple of ̺−1. (If N is a C2 submanifold then ̺2 is of
class C2 in a neighbourhood of p.) Consequently, by Lemma 4, the Lipschitz
constant of d̺(v) can be universally bounded by a multiple of ̺(q0)

−1.
Finally,

d̺(q)(ẽi(q)) = d̺(q)(ẽi(q) − ei(π(q))) + d̺(q)(ei(π(q))).

Since π is the projection to the closest point, the last summand on the
right hand side is equal to zero. On the other hand, ‖ẽi(q) − ei(π(q))‖ ≤
L̺(q), where L denotes the Lipschitz constant of ẽi. Therefore d̺(q)(ẽi(q))
is bounded by L̺(q) and is Lipschitz (with a universal Lipschitz constant).
This concludes the argument showing that the vector fields êi of (5) are
Lipschitz.

Note also that êi, extended by ei to N ∪ B(q0, ε̺(q0)), is Lipschitz. We
use the following lemma to glue the Lipschitz vector fields thus constructed.

Lemma 5 (after Lemma 3.1 of [4]). Given α > 0. There is M > 0 and

an (infinite) family of functions ϕm ≥ 0 on U \ N such that

(1) for each x ∈ U \ N only finitely many ϕm(x) 6= 0,
(2)

∑
m ϕm ≡ 1,

(3) for all m ∈ N, diam suppϕm ≤ α dist(suppϕm, N),
(4) each ϕm is Lipschitz with constant M(dist(suppϕm, N))−1.
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Thus choosing qm so that suppϕm ⊂ B(qm, ε̺(qm)) and choosing all
constants appropriately we construct

êi =
∑

ϕmêi,m,

where êi,m denote the vector fields constructed above in B(qm, ε̺(qm)).
These vector fields have the desired properties. This ends the proof of The-
orem 1.

Note that in Lemma 3 we may additionally require that dπ(v) ≡ 0.
Indeed, we may write

dπ(v(q)) =
∑

i

λi(q)ei(π(q)).

The functions λi thus defined are Lipschitz with a universal constant. Then

v̂ = v −
∑

i

λiêi

has the desired properties.

Corollary 6. There exists a Lipschitz vector field w defined on U \N
such that dπ(w) ≡ 0 and for all q ∈ U \ N ,

‖w(q)‖ ≤ C̺(q), d̺(w(q)) ≥ c̺(q).

Proof. Locally on B(q0, ε̺0) we put w := ̺v̂. Then we glue these vector
fields using Lemma 5 as above.

Remark 7. The above argument allows us to trivialize along N func-
tions more general than the distance function to the stratum N .

More precisely, suppose X is a Lipschitz stratification of X ⊂ R
n such

that Whitney’s condition (b) is satisfied along a stratum N . Let U be an
open subset of X and let f : U → R. We suppose that for every p ∈ U ∩ N
there is a neighbourhood V of p in R

n and a C2 function ϕ : V → R
n−k

such that f = ‖ϕ‖ on V ∩ X, 0 is a regular value of ϕ, and N = ϕ−1(0).
Then f is locally bi-Lipschitz trivial along U ∩ N .
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[7] A. Parusiński, Lipschitz stratification. A review of results, in: Global Analysis in
Modern Mathematics, K. Uhlenbeck (ed.), Proc. Symposium in Honor of Richard
Palais’ Sixtieth Birthday, Publish or Perish, Houston, 1993, 73–91.

[8] —, Lipschitz stratifications of subanalytic sets, Ann. Sci. École Norm. Sup. 27 (1994),
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36 (1976), 295–312.
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