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The degree at infinity of the gradient of
a polynomial in two real variables

by MACIEJ SEKALSKI (Kielce)

In memory of Stanistaw Lojasiewicz

Abstract. Let f: R? — R be a polynomial mapping with a finite number of critical
points. We express the degree at infinity of the gradient V f in terms of the real branches
at infinity of the level curves {f(z,y) = A} for some A € R. The formula obtained is a
counterpart at infinity of the local formula due to Arnold.

1. Main result. Let F': R? — R? be a polynomial mapping with a finite
fibre over (0,0). We define the degree at infinity deg. F to be the topological
degree of the Gauss mapping Sg > (x,y) — F(x,y)/||F(z,y)| € Si, where
Sk is a circle (with radius R centred at (0,0)) around the fibre F'~1(0,0)
and 57 is the unit circle.

Our paper deals with deg. F' for the mapping F' = Vf = (0f/0X,
df/0Y) where f : R? — R is a polynomial mapping with a finite number of
critical points.

To formulate the main result we introduce the notion of critical values of
a polynomial f at infinity. Namely, define

of of
Ji(X)Y) = Y@X(X’Y) XaY(X’Y)'
The set {Jf(x,y) = 0} is unbounded, because it consists of points at which
the polynomial f restricted to the big circles Sp has an extremum. The real
number A is a critical value of f at infinity if there exists a parametriza-
tion p(t) meromorphic at infinity (see Section 2) of a branch of the curve
{Jf(xz,y) = 0} such that f(p(t)) — A as t — oo. We assume here that
Je(x,y) Z0 in R2. The set of critical values of f at infinity will be denoted
by A(f). If J¢(x,y) = 0, then by definition f has no critical values at infinity,

that is, A(f) = 0.
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Since A(f) is finite we can write A(f) = {A\1,..., A} with A\; <+ < A,
Put \g = —00 and A\, 1 = +00. Then R\ A(f) = U (N1, \i) GEA(f) =0
then n = 0). Moreover, let 7o (f) denote the number of real branches at
infinity of the curve {f(x,y) = 0} (see Section 2).

Under the above notation we have

THEOREM 1. The function R 3 A — roo(f — A) is constant on every
connected component of R\ A(f). Let r; = roo(f — A) for A € (Ni—1, \i),
1=1,....,n+1. Then

n+1
(1) deg,  Vf=1+ Z roo(f—)\)—Zri.
AEA(S) i=1

The proof of Theorem 1 will be given in Section 4. Now let us record
COROLLARY. If A(f) =10 then deg,, Vf =1 —rx(f).

The formula from the corollary is a counterpart at infinity of the well
known local result due to Arnold (see [A]). Namely, let f be an analytic
function of two real variables near (0,0) € R? such that £(0,0) = 0. Suppose
that (0, 0) is an isolated solution of the equation V f(z,y) = (0,0). If degy V f
denotes the local degree of Vf at (0,0) and ro(f) is the number of branches
of the curve {f(z,y) = 0} near (0,0) then

degy Vf =1—ro(f).
REMARK. Theorem 1 and its Corollary remain valid for polynomials f
with compact fibre (Vf)~1(0,0).

2. Branches at infinity of an algebraic set. In this section we give
the description of branches at infinity of an unbounded algebraic set in R2.

Let 2 and A be neighbourhoods of infinity in R? and R respectively. We
have the following

PROPOSITION. Let S be an unbounded algebraic set in R%. Then there
exists a neighbourhood of infinity 2 in R? such that S N {2 is the union of
finitely many pairwise disjoint analytic curves. Each curve (branch) is home-
omorphic to an open neighbourhood of infinity A under a homeomorphism
(x(t),y(t)) (meromorphic at infinity) which is given by a Laurent series

(a(t), y(t) = (’i ait’, fj bit'),

with ay # 0 or by # 0 and k > 0.
Proof. See [S1, Lemma 1].

If S={f(z,y) =0} for a polynomial f then the number of branches at
infinity of the set S will be denoted by 7o (f).
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ExAaMmPLE. If S C R? is given by the equation z?y — 1 = 0 then S N £2
consists of two branches at infinity. The mappings ¢ +— (t,1/t?) and t
(1/t,t%) for t # 0 are their parametrizations.

3. Auxiliary lemmas. In order to prove the main result we need some
lemmas.

LEMMA 1. For any polynomial mapping f whose set of critical points
is finite there exists A € R such that if we set fa(X,Y) = f(AX,Y) then
Vi, (x,y) # (0,0) on the curve {Js,(x,y) = 0} in a neighbourhood of
mfinity.

Proof. The set (V£)~1(0,0) is finite, so suppose that 9f/0X # 0 in a

neighbourhood of infinity. Consider the function

2 ﬁx _ - xg{;(ﬁﬂ/)
R \{an( ' Y) 0}9( JY) r)f{(x . eR.

Let A% # 0 be a positive regular value of this mapping. Then

Xor 1 af of
V(Yag_zf;)<x7y):|:y—afv< £y — A%y 8X>](:c,y)7é(o’o)

on the curve {( A2Y )(m Y) _0} Since
0 o 5 )
v(Xaxji A%y 8)J;)(A:v,y):AV< %—Yaﬁﬁ)(x )

we get VJy, (x,y) # (0,0) for J¢, (x,y) = 0. This ends the proof.

For a function A of one real variable, meromorphic at infinity, we use the
following convention:
sgnh(tt) —sgnh(t™)
2 9
where the numbers ¢t~ and ¢ are taken close enough to —oo and +oo re-
spectively. Under the above convention we have

deg. h =

LEMMA 2. If the real polynomial mapping G = (g1, g2) : R> — R? has a
finite fibre over (0,0) and Vgi(z,y) # (0,0) on the curve {g1(x,y) = 0} in
a neighbourhood of infinity then

k
deg,, G =Y deg..(g2(pi(t)) - det[Vgi (pi(t)), pi(t)]),
i=1
where p;, 1 = 1,...,k, are parametrizations of the real branches at infinity
of the curve {g1(x,y) = 0}.

Proof. The proof can be found in [S1].
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The following corollary to Lemma 2 will be useful.

COROLLARY. Let g : R2—R be a polynomial mapping such that Vg(z,y)
# (0,0) for g(x,y) = 0 near infinity. Then roo(g) = degy.(g, Jy).

The local counterpart of the corollary has been proven in [FAS] and [Sz].

Proof. The mapping (g,J,) : R? — R? satisfies the assumptions of
Lemma 2. Let p;, ¢ = 1,...,k, be parametrizations, meromorphic at in-
finity, of the branches of the curve g = 0, and (-,-) be the scalar product
in R?. Then Lemma 2 gives

dego (g, J Zdegoo (t)) det[Vg(pi(t)), pi(1)])
k
= deg.,(det[Vg(pi(t)), pi(t)] - det[Vg(pi(t)), p(t)])
=1
k
= deg. ([IVg(pi(t)]I* (pi(t) Z 1 =7y
i=1

Below we collect some simple properties of the degree. One can easily
check them by using for instance the “Poincaré argument principle” (cf. [S2]):

PROPOSITION (Properties of the degree). Let F' = (f1, f2),G = (91,92) :
R? — R? be polynomial mappings such that the sets F~1(0,0) and G~1(0,0)
are finite. Then

o the mapping F' - G = (fig1 — f292, f192 + f291) has a finite fibre over
(0,0) and
deg (F - G) =deg,, F + deg. G,

o deg (f1, f2) = —deg.(f2, f1) (antisymmetry),

° degoo(f1, _f2) = _degoo(flva)ﬂ
o deg(X,Y)=1.

4. Proof of the main result. Without loss of generality (according to
Lemma 1) we can assume that V.J¢(x,y) # (0,0) on the curve {J¢(x,y) = 0}

near infinity. Consider a sequence ), ..., A, such that

(2) —00 =X < A) <AL <A << Ay <AL < App1 = Fo0,

where \;, i = 1,...,n, are the critical values of the polynomial f at infinity
(in the sense of the definition from Section 1). Thus we have r; = roo(f — A})
for i =0,...,n. We will calculate the sum

S= reolf = M) = D rac(f = X).
=1 =0
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By using the Corollary to Lemma 2 and antisymmetry of the degree we
get

=0

=1

n n
= Zdegoo(‘]f7 f - )‘;) - Zdegoo<Jf7 f - )\z)
i=0 i=1
Let us split the set of all parametrizations at infinity of the curve {J¢(x,y)
= 0} into two subsets G* and G~, where G consists of those parametriza-
tions p for which f(p(t)) — oo as t — oo and the remaining parametrizations
are contained in G, i.e. if p € G~ then f(p(t)) — A € A(f) as t — oo. To
shorten our formulas we set wy,(t) = det[VJ¢(p(t)),p'(t)]. Moreover we will
omit the variable ¢ and write wy, f(p) instead of wy(t), f(p(t)). According
to Lemma 2 we have

(3) S=. Y dego((f(p) = A)up)

1=0 peG+tUG—
=D > dego((£(p) — M)wy)
i=1 peGTUG—
= Y [desnl ()~ N)wy)
peGHUG—

+ ) [dego ((f(p) = M)wy) — degoo (f(p) — Ai)wy)] |-
=1

Note that if p € G then deg..((f(p) — A\)w,) does not depend on . In
this case we have

n

(4) > [degoo (f(p) — Xp)wp) — degoo (f(p) — Ai)wy)] = 0.

=1

If p e G~ then f(p(t)) — A\, € A(f) as t — oo. Then for \; # A, we
have

degoo ((f(p) — M)wp) = degoo ((f(p) — Ai)wp),

hence

n

(5) > [degoo((f(p) — X)wp) — degoo (f(p) — Ai)wy)]

i=1
= degoo((f(p) — Xp)wp) — dego (£(p) = Ap)wp).

Here )}, denotes the next number after ), in the sequence (2).
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From (3)-(5) we get
S= Y degoo((F(p) = No)wp) + Y [degoo((£(p) = No)wp)

peGT peG—

+degoo ((f(p) — Ap)wp) — degoo (f(p) — Ap)wp)]-
But the inequalities \j < A, < A}, imply that the numbers f(p) — Ay and
f(p) — A, have opposite signs for ¢ large, hence

deg. ((f(p) — Ap)wp) + dego ((f (p) — Ap)wp) =0,

so we get the equality

(6) S = Z deg. ((f(p) — A\p)wp) Z deg o ((f(p) — A\p)wp).
peGt peG—

Observe that for p € GT,

sgn(f(p(t)) — Xo) = sgn((f(p(1)))" - t) = sgn({V f(p(t)), p(1))),
while for p € G,

sgn(f(p(t)) — Ap) = —sgn(f(p(t)) - 1) = —sgn((Vf(p()), p(1)))-

In fact, from the equality J;(p(t)) = (Yg)}; Xa—f) op(t) = 0 we see that
the vectors Vf(p(t)) and p(t) are parallel, hence we have

)t = (9 0. 0 = SELILOL (1) e

and the above equalities follow because the quotient (p(t),p'(t))t/|lp(t)||? is
positive in a neighbourhood of infinity in R.

The above two equalities applied to (6), Lemma 2 and the properties of
the degree give

S= )" deg ((VFf(p(t)),p + ) deg ((VF(p(t)). (1)) wp)

peEGT peG—

_ x 9f f Of O OF  0f
_degOO<Jf’ 6X+Y8Y> degos <X8X+Y8YX8Y ax>

:degoo(vf( y )) :degoovf_l'

We are done.

We end this section with a simple example of calculation of the degree
by using the main theorem.

ExXAMPLE. Let f(X,Y) = Hle(Y(X2 +1i)—1) (see [D]). One can check
that the only critical value at infinity is zero, that is, A(f) = {0}. We have
Too(f — 1) +7oo(f + 1) = 2 and roo(f) = k, thus

deg  Vf=14+k-2=k—-1.
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