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Volume and multipli
ities of real analyti
 setsby Guillaume Valette (Kraków)Abstra
t. We give 
riteria of �nite determina
y for the volume and multipli
ities.Given an analyti
 set des
ribed by {v = 0}, we prove that the log-analyti
 expansion ofthe volume of the interse
tion of the set and a �little ball� is determined by that of the setde�ned by the Taylor expansion of v up to a 
ertain order if the mapping v has an isolatedsingularity at the origin. We also 
ompare the 
ardinalities of �nite �bers of proje
tionsrestri
ted to su
h a set.1. Introdu
tion. The question of su�
ien
y of jets has been studied bymany authors [2℄, [3℄, [9℄, [13℄. It allows one to 
ompare a given singularityto a semi-algebrai
 one, whi
h is very useful if one wants to do some e�e
tive
omputations.In this paper we study the volume and multipli
ities of real analyti
germs. By volume we mean the Hausdor� measure. In [5℄ (see also [1℄) it isproved that the volume of the interse
tion of a subanalyti
 set and a ball ofradius r has a Puiseux extension in r and ln r. We give here some expli
it
riteria for the determina
y of this expansion up to a 
ertain order. The
riterion we give is based on the Kuiper�Kuo 
riterion. By the �ojasiewi
zinequality we get results of �nite determina
y for mappings having an iso-lated singularity at the origin.We also study the �nite determina
y of multipli
ities, that is, 
ardinal-ities of �nite �bers of a proje
tion restri
ted to a given analyti
 set. Thesenumbers are important sin
e they allow des
ribing the topologi
al type ofa subanalyti
 set via 
ylindri
al de
ompositions. Many theorems have beenproved to enable e�e
tive 
omputations of these multipli
ities in the semi-algebrai
 
ase. Therefore it is useful to have theorems whi
h 
ompare themultipli
ities of a real analyti
 set to those of the set de�ned by the Taylorexpansion of its equation.
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266 G. ValetteAt the beginning we re
all some results of D. Trotman and L. Wilson [9℄about su�
ien
y of jets. They have proved that some parti
ular transfor-mation of �pull-ba
k� type 
an improve the regularity of a strati�
ation. In[11℄ the author proved that the volume is preserved under some topologi
altrivializations. Then we prove our determination theorems for the volumeand multipli
ities.2. Notation and some de�nitions2.1. (ti) regular strati�
ations. The (ti) 
onditions have been introdu
edby D. Trotman. They generalize a 
ondition introdu
ed by R. Thom whi
h
on
erned C∞ manifolds. We re
all the de�nition of [9℄. Let
G

d =
d⋃

j=m

G(d; j)

where G(d; j) is the Grassmannian of j-dimensional ve
tor spa
es in R
d.In what follows,m and n will denote �xed integers. We set R

d = R
n×R

m.We will denote by N the subset R
n and by Y the subset R

m. The mapping
π will be the proje
tion on Y and π⊥ will be the 
anoni
al proje
tion on N .We will denote by X a subset of R

d and by S = {Y,X1, . . . , Xp} astrati�
ation of X by C∞ manifolds.Definition 2.1.1. A dire
t transversal to Y is the germ of an analyti
mapping v : N → Y . Its graph will be denoted by Γv.Abusively we will say �transversal� instead of �dire
t transversal�, sin
eall the transversals in this paper will be dire
t ones.First we re
all the de�nition of (ti,j) 
onditions. As in [9℄ we will denoteby R
− the set of real numbers marked with the symbol − in exponent. For

i ∈ R we will say that a sequen
e (ys) is i-�at with respe
t to the sequen
e
(xs) if |ys| ≪ |xs|

i. We will say that the sequen
e (ys) is i−-�at with respe
tto (xs) if |ys| ≤ C|xs|
i for a 
onstant C.Let

G(S) =
⋃

i≤p

{(x;TxXi) ∈ X × G
d | x ∈ Xi}.For T ∈ G

d let Σ(T ) = {v ∈ Lin(N ;Y ) | Γv 6⋔ T}.Definition 2.1.2. Let i, j ∈ R ∪ R
−. We will say that (v;S) is (ti,j) ifno sequen
e (xs; ys;Ts) of points of G tending to 0 satis�es: |ys − v(xs)| is

i-�at and d(y − dxs
v;Σ(Ts)) is j-�at.For i ∈ R, we will say that (v;G) is (ti) if it is (ti,i−1).Remark 1. Condition (ti) 
an be 
hara
terized by transversality to allthe strata Xs of Ci dire
t transversals to Y (see [9℄).



Volume and multipli
ities of analyti
 sets 267The (ti) 
onditions will provide our 
riteria of �nite determina
y. To beable to express these 
riteria analyti
ally we are going to give some expli
it
hara
terizations of the (ti) 
onditions.Remark 2. For i ≥ 1 (in R) the following expli
it 
hara
terization of
(ti) will provide us an analyti
 
ondition for determina
y. De�ne the hornneighborhood of v of order i to be the following set:

H(v; i;C) = {q = (x; t) ∈ R
n × R

m | |v(x) − t| ≤ C|x|i}.Let
µ(L;T ) = inf

|u|=1, u∈T
‖Lu‖2whenever L : R

d → Y is a linear map and T ⊆ R
d a ve
tor spa
e (here ‖ · ‖2is the eu
lidian norm). Then for i ≥ 1 we get the following 
hara
terizationof 
ondition (ti). The 
ouple (v;S) is (ti) if and only if there exists a hornneighborhood of v of order i su
h that for any x in this set,(2.1) µ(d(x;y)(y − v(x));T(x;y)Xk) ≥ ε|x|i−1where Xk is the stratum 
ontaining the point x and ε > 0.For i negative we may relate 
ondition (ti) to the Kuo�Verdier 
ondition.We de�ne

τ(U ;V ) = sup
|π

⊥

V (u)|

|πV (u)|
.Then in [9℄ the following is proved:Lemma 2.1.3. For all T ∈ G

d, τ(Y ;T ) = 1/d(0;Σ(T )).We say that the strati�
ation S is strongly Verdier regular with exponent
i (at the origin) with respe
t to Y if there exists a neighborhood of the originsu
h that for ea
h stratum Xk,

τ(Y ;TxXk) ≪ |x− π(x)|i.By the above lemma we see that 
ondition (t0
−,i−) is a
tually the strongVerdier 
ondition with exponent 1 − i at any point of Y .Note that by de�nition of τ the strong Verdier 
ondition with exponent jimplies (by standard arguments, see [6℄, [7℄, [12℄) that we are able to 
onstru
ta ve
tor �eld tangent to the strata, extending a given ve
tor �eld on Y andsatisfying(2.2) |w(q) − w(π(q))| ≤ C(q)|q − π(q)|jin a su�
iently small neighborhood of Y with C a 
ontinuous fun
tion tend-ing to zero when q approa
hes Y .



268 G. Valette2.2. Deformation of transversals. We de�ne the notion of deformationof transversals as in [9℄.Let ̺ ∈ R and m′ ∈ N. Let U be a neighborhood of the origin in R
m′ . Let

g, h1, . . . , hm′ : N → Y be smooth fun
tions on U satisfying |hr(x)| = o(|x|̺)(resp. |hr(x)| = O(|x|̺)) and |dxhr| = o(|x|̺−1) (resp. |dxhr| = O(|x|̺)) forany r. Then
F : N × U → N × Y,

F (x;u) = (x, f(x, u)) = (x, fu(x)) =
(
x, g(x) +

m′∑

r=1

urhr(x)
)
,is 
alled a deformation of 
onta
t ̺ (resp. of 
onta
t ̺−).Deformations of transversals indu
e a pull-ba
k transformation over thegraphs of maps from N × Y into G

d. We de�ne it as in [9℄.If for ea
h point p ∈ U the mapping F is transverse to the strata we mayde�ne F ∗S as the strati�
ation of F−1(X) given by the manifolds F−1(Xk).Then let us de�ne the push-forward of a transversal. Let u be a transver-sal to U . We will denote by F∗u the transversal de�ned by v(x) = g(x) +∑m′

r=1 ur(x)hr(x). The map F then sends the graph of u onto the graph of v.Extend also addition to R ∪ R
− by setting a− + b = a+ b− = a+ b and

a− + b− = (a+ b)−.Theorem 2.2.1 (see [9℄). Let F be a deformation of 
onta
t α. If the
ouple (F ∗u;G) is (tα+̺) then (u;F∗G) is (t̺).Let i ∈ R ∪ R
− and a ∈ R. In parti
ular the following 
orollary will beinteresting for us:Corollary 2.2.2. Let F be a deformation of 
onta
t i+a and u = F ∗0.If (F ∗u;G) is (ti) then (0;F∗G) is strongly Verdier regular with exponent a+1.3. On the volume of strati�ed families. For r ∈ R, stri
tly positive,we denote by B(0; r) the ball of 
enter 0 and radius r and by S(0; r) thesphere of 
enter 0 and radius r.Let A be a subanalyti
 subset of R

n×R
m. We will 
onsider su
h a subsetas a family of subanalyti
 subsets of R

n parametrized by R
m. For U ⊆ R

m wedenote by AU the subfamily {q = (x; t) ∈ R
n × R

m | q ∈ A, t ∈ U}, and for
t ∈ R

m we denote by At the �ber of A at t, that is, {x ∈ R
n | q = (x; t) ∈ A}.We denote by Hl the l-dimensional Hausdor� measure. We are going tostudy the Hausdor� measure of subanalyti
 sets. For this if X is the germof a subanalyti
 subset of R

n at 0 we de�ne the fun
tions ψ(X; r) and ψ̃ inthe following way:
ψ(X; r) = Hl(X ∩B(0; r)),
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 sets 269where l is the Hausdor� dimension of X, and
ψ̃(X; r) =

ψ(X; r)

µlrl
,where µl is the volume of the unit ball in R

l. In [5℄ J.-M. Lion and J.-P. Rolinhave proved that the fun
tion ψ has an expansion in r and ln r. This is alsoproved in [1℄ and [8℄.Theorem 3.0.3 ([1℄, [5℄, [8℄). Let (X; 0) be a subanalyti
 germ. The fun
-tion ψ(X; r) has an expansion
ψ(X; r) =

∑

(α;β)∈N2, α≥pl

aα,βr
α/p lnβ r.

The expansion of ψ up to order k will designate the terms having anexponent in r less than or equal to k.Note that the limit
θ(X;x) := lim

r→0

Hl(X ∩B(x; r))

µlrlis the density of X (or the Lelong number). This number was originallyintrodu
ed for 
omplex analyti
 sets and then generalized to real subanalyti
sets by K. Kurdyka and G. Raby in [4℄. It gives interesting information onthe behavior of the volume of a germ. In [11℄ the author has studied thevariation of the density along strati�ed spa
es.We re
all some results whi
h we will need in the next se
tion and whi
h
an be found in [11℄.3.1. Volumes, multipli
ities and isotopies. In this se
tion we bound thevariation of the volume through the isotopies whi
h are i-approximations ofthe identity.Definition 3.1.1. Let A and B be two subanalyti
 families of sets and ibe a positive real number. We de�ne an i-approximation of the identity to bea family of mappings whi
h indu
es a family of germs of homeomorphisms
h : (A; 0) → (B; 0) of type h(x; t) = (ht(x); t) su
h that for every t,(3.3) |ht(x) − x| ≪ |x|ifor all x ∈ B(0; r) with r su�
iently 
lose to zero.Remark 3. Note that if dH denotes the Hausdor� distan
e between
ompa
t sets, that is,

dH(A;B) = max(sup
x∈A

d(x;B); sup
x∈B

d(x;A))then it follows from the de�nition of i-approximation of the identity that
dH(At ∩B(0; r);Bt ∩B(0; r)) ≪ ri,with the notations of the de�nition above.



270 G. ValetteIn [11℄ the following proposition is proved (in a slightly more generalsetting; the following one is the 
ase α≪ ri in [11℄).Proposition 3.1.2. Let i be a stri
tly positive real number. Let h : A→
B be an i-approximation of the identity and let P be in G(n; l) (where l =
dimAt = dimBt for any t ∈ R

m). Then for any 
ompa
t subset V of R
mthere exists a 
onstant C and a subanalyti
 subset K(P ; r; t) ⊆ P satisfying

ψ(P ∩B(0; r) \K(P ; r; t); r) ≪ ri+l−1,and su
h that for any x ∈ K(P ; r; t) and t ∈ V ,
card(π−1

P (x) ∩At ∩B(0; r)) = card(π−1
P (x) ∩Bt ∩B(0; r)).This proposition has been proved to study the behavior of the density ofstrati�ed sets satisfying the Whitney 
ondition. A
tually using the Cau
hy�Crofton formula it allows us to bound the variation of the volume. It is thekey point in the proof of the theorem below (again the reader is referred to[11℄ for the proof).Theorem 3.1.3. Let i ∈ R and h : A→ B be an i-approximation of theidentity. Let V be a 
ompa
t subanalyti
 subset of R

m. Then there exists a
onstant C su
h that for all t in V ,
|ψ(At; r) − ψ(Bt; r)| ≪ ri+l−1.Let us give another de�nition we shall need in the next se
tion. Let P bean l-dimensional ve
tor spa
e of R

n and i ∈ R with i ≥ 1. For j ∈ N we set
KP

j (A ∩B(0; r)) = {x ∈ P | card(π−1
P (x) ∩At ∩B(0; r)) = j}.Definition 3.1.4. We say that j is a multipli
ity of A for P of order iif 0 ∈ cl(KP

j (A)) and if there exists a positive 
onstant C su
h that for any
r su�
iently 
lose to zero,

ψ̃(KP
j (A ∩B(0; r)); r) ≥ Cri.We will denote by m(P ;A; i) the set of multipli
ities of order i of A for P .Another 
onsequen
e of Proposition 3.1.2 is the invarian
e of the set

m(P ;A; i) under i-approximation of the identity for any P .3.2. Rugose isotopies. In this se
tion we are going to prove an isotopylemma whi
h will be used to prove �nite determina
y in the next se
tion.Given a subset A of R
n and ε > 0, we denote by Aε the set of points

q ∈ R
n su
h that d(q;A) ≤ ε.Proposition 3.2.1. Let A be a subanalyti
 subset of Rn of dimension l.Let B ⊆ A be a subanalyti
 subset of dimension k < l. Then there exists a
onstant C su
h that for all ε ∈ ]0; 1] and for all real r small enough,(3.4) ψ(Bε ∩A; r) ≤ Crl−1ε.
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ities of analyti
 sets 271Proof. The ja
obian of the distan
e fun
tion to a subset of R
n is equal to

1 wherever this fun
tion is di�erentiable. Moreover the family B′ = {(x;α) ∈
A × R | d(x;B) = α} is a subanalyti
 family. So using Proposition 3.0.4 of[11℄ we dedu
e that there exists a 
onstant C su
h that for all α ∈ ]0; 1] wehave ψ(B′

α; r) ≤ Crl−1. So, we 
an write
ψ(Bε ∩A; r) =

\
Bε∩A∩B(0;r)

dHl ≤
\

α∈]0;ε[

ψ(B′
α; r) dH1 ≤ Crl−1ε.Now let X ⊆ R

n × R
m be a subanalyti
 family of sets of dimension l.Assume, as in Se
tion 2, that X has a strati�
ation S = {Y,X1, . . . , Xp}.We have:Theorem 3.2.2. If S satis�es the strong Verdier 
ondition with exponent

i ≥ 1 then there exist a neighborhood U of the origin and a trivialization
h : π−1(U) \B → N × U \B′,where B (resp. B′) is a subanalyti
 subfamily of X (resp. of X0 × U) su
hthat ψ(Bt; r) ≪ ri+l−1 (resp. ψ(B′

t; r) ≪ Cri+l−1) for t in U , whi
h is an
i-approximation of the identity preserving the Xj ∩ π

−1(U).Proof. We prove this result by a similar method to that used in [11℄.Let Ak denote the k-skeleton of the strati�
ation S, that is, the union ofthe strata of dimension less than or equal to k. We de�ne the isotopy (andthe families B and B′) on Ak indu
tively on k. The result is obvious for
k = dimY . Assume that it is true at a rank k. Then by Remark 3 we have(3.5) dH(π−1(t) ∩Ak ∩B(t; r);π−1(t′) ∩Ak ∩B(t′; r)) ≪ rifor t and t′ �xed in Y . The isotopy is 
onstru
ted by lifting a basis of Y toa strati�ed ve
tor �eld tangent to strata and rugose with exponent i (see [6℄or [12℄). As the 
onstru
tion 
an be 
arried out with all ve
tors of a basis of
Y su

essively we will assume that dimY = 1.Let w be a 
onstant unit ve
tor �eld on Y . By (2.2) we may extend wto a ve
tor �eld tangent to the strata and satisfying (2.2). Let φ be the one-parameter group generated by this ve
tor �eld. Write φ = (φ1;φ2) ∈ N ×Y ;then by Gronwall's Lemma we have

d(q;Y )e−Ms ≤ d(φ(q; s);Y ) ≤ eMsd(q;Y )for a 
onstant M . Hen
e the ratio d(q;Y )/d(φr(q; s);Y ) is bounded belowand above. This proves that the integral 
urves 
annot join Y or leave aneighborhood of Y in a �nite time. Moreover by the mean value theorem,
|φ1(q; t) − q| ≤ t sup

s∈[0;t]
|π⊥(w(φ(q; s)))| ≤ C(q) sup

s∈[0;t]
d(φ(q; s);Y )i.Hen
e as the ratio d(q;Y )/d(φr(q; s);Y ) is bounded we get(3.6) |φ1(q; t) − q| ≤ C(q)d(q;Y )i



272 G. Valette(with maybe a di�erent fun
tion C tending to zero when we approa
h Y ).This proves that the mapping will de�ne an i-approximation of the identity.Therefore to 
omplete the indu
tion step it su�
es to prove existen
e ofintegral 
urves starting from a point q ∈ Ak+1 and su�
iently far from Ak.More pre
isely, let(3.7) B = {q ∈ Ak+1 | d(q;Ak) ≤
√
C(q) d(q;Y )i}.Now by (3.5) and (3.6) we see that if q ∈ Ak+1 does not belong to B then

φ(q; s) 
annot fall in Ak. This establishes the existen
e of the desired integral
urves. Moreover, if we set
h : Ak+1 \B → π−1(0) × U, q = (x; t) 7→ (φ1(q;−t); t),then h is a homeomorphism onto its image for ea
h t and an i-approximationof the identity. Let

B′ = (A0 × U) \ h(A \B).Note that again as a 
onsequen
e of (3.5) and (3.6) we have(3.8) B′ ⊆ {q ∈ Ak+1 | d(q;Ak) ≤ C(q)d(q;Y )i}(su�
iently 
lose to Y ). Therefore to �nish the proof we just remark that(3.7) (resp. (3.8)) and Proposition 3.2.1 show that at the last step of theindu
tion we have ψ(Bt; r) ≪ ri+l−1 (resp. ψ(B′
t; r) ≪ ri+l−1) as required.4. Finite determina
y of the volume and multipli
ities. In thisse
tion for a ∈ R we denote by [a] the greatest integer less than or equalto a.4.1. Transversal se
tions of a strati�ed set. Here we will give some de-termina
y theorems for the volume of a transversal se
tion to a strati�edset. More pre
isely, we are going to give expli
it su�
ient 
onditions for theexpansion of ψ(Γv∩X; r) to be determined by that of v up to a 
ertain order.The results on the determination of the volume of the zero lo
us of a givenmap will be given in the next se
tion and will be dedu
ed from those of thisse
tion sin
e the interse
tion of the graph with the sour
e axis is pre
iselythe zero lo
us.For this se
tion we �x a strati�ed spa
e (X;S) where S={Y ;X1, . . . , Xp}.We assume that X is subanalyti
. We re
all that Y = R

m, N = R
n and

X ⊆ N × Y = Rd.Theorem 4.1.1. Let v : N → Y be a subanalyti
 transversal and let aand j be positive real numbers with j ≥ 1. If (v;S) satis�es the (tj) 
onditionthen the expansion to order a of ψ̃(Γv∩X; r) only depends on the [j+a]-jet of
v at 0. Moreover , for every P ∈ G(d; l) with l = dimX−m, m(P ;Γv ∩X; a)only depends on the [j + a]-jet of v.
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ities of analyti
 sets 273Proof. Let u and v be two C [j+a] mappings having the same [j + a]-jet.Let F (x; t) = (x; v(x) + th(x)) where h(x) = u(x) − v(x). Then F is adeformation of 
onta
t [j + a] and F∗0 = v.Thanks to Corollary 2.2.2 we know that (0;F ∗S) is strongly Verdierregular with exponent a + 1 at any point of {0} × R. So by Theorem 3.2.2there exists an isotopy H : R
d′ × [0; 1] → R

d′ (where d′ = n+ 1) preservingthe strata F−1(Xk) whi
h is an (a + 1)-approximation of the identity. Forany map u : N → Y let φu(x) = (x;u(x)).Then we set
H̃ : Γv+h → Γv, q 7→ H̃(q) = φv ◦H1 ◦ φ−v−h(q),where H1(x) = H(x; 1). As a 
onsequen
e we have

|H̃(q) − q| = |φv(H1(φ−v−h(q)) − q|

= |φv(H1(φ−v−h(q))) − φv(φ−v(q))|

. |H1(φ−v−h(q)) − φ−v(q)| for φv is Lips
hitz

. |H1(φ−v−h(q)) − φ−v−h(q)| + |φ−v−h(q) − φ−v(q)|

≪ d(q;Y )a+1 sin
e j[j+a]h(0) = 0.Therefore the mapping H̃ is an (a+1)-approximation of the identity. But byTheorem 3.1.3 this implies that the expansions of the volume of Γv ∩X and
Γu ∩X 
oin
ide. Moreover by Theorem 3.1.2 the multipli
ities also 
oin
ideup to order a.Remark 4. Thus by Remark 2 we may make expli
it the 
riterion of theabove theorem. More pre
isely, inequality (2.1) provides an analyti
 
riterionfor the determina
y of the volume and multipli
ities of transverse se
tions.Note also that by the �ojasiewi
z inequality the above theorem yields�nite determina
y for every analyti
 mapping with an isolated singularity.In parti
ular in the 
ase of a fun
tion we get the following interesting
orollary:Corollary 4.1.2. If v is a subanalyti
 fun
tion with an isolated singu-larity at the origin satisfying |∂xv| ≥ C|x|j−1 in a horn neighborhood , thenthe expansion of ψ̃(Γv∩X; r) up to order a is determined by its [j+a]-jet. Inparti
ular the density θ(Γv ∩X) just depends on the [j]-jet (this is the 
aseof a = 0).In the 
ase where j < 1, Theorem 4.1.1 is no longer true. The problem
omes indeed from h whi
h does not de
rease su�
iently fast. Neverthelesswe have the following result whi
h will be useful for the next se
tion.Let v be a dire
t transversal and A a ve
tor spa
e dire
tly transverse to Y .Let πA be the proje
tion onto A along Y . Then πA indu
es a di�eomorphismof Γv onto A.



274 G. ValetteProposition 4.1.3. Assume that X is a subanalyti
 set. Let A ∈ G(d;n)be transverse to Y , a, j ∈ R, and v a subanalyti
 dire
t transversal. If (v;S)satis�es 
ondition (tj) then the expansion up to order a of ψ̃(πA(X ∩Γv)) isdetermined by the [j+a]-jet of v. Moreover , the multipli
ities of πA(X∩Γv; r)of order less than or equal to a are determined by the [j + a]-jet of v.Proof. Here we set again F (q) = v(x) + th(x) where q = (x; t) and h isa fun
tion having a zero [j + a]-jet.A
tually we have F−1(X) = {(x; t) ∈ R
n×R | (x;Ft(x)) ∈ X}. We re
allthat π⊥ denotes the orthogonal proje
tion on the orthogonal of Y .Hen
e

F−1(X) ∩ (N × {t}) = π⊥(X ∩ ΓFt
) × {t}.So

F−1(X) ∩N × {0} = π⊥(X ∩ Γv) × {0},

F−1(X) ∩N × {1} = π⊥(X ∩ Γu) × {1}.We set
h = (π⊥|A)−1 ◦H1 ◦ π

⊥where H1 is 
onstru
ted as in the proof of Theorem 4.1.1. So h is an approx-imation of the identity to the same order as H1, whi
h proves the result.In the 
ase where j = 1− we also obtain an interesting result:Proposition 4.1.4. Let A and B be ve
tor spa
es dire
tly transverse to
Y to 0. If all the (Y ;Xj) satisfy 
ondition (a) of Whitney then

θ(πA(B ∩X); 0) = θ(A ∩X; 0).Moreover , for every P ∈ G(n; l), the set m(π⊥(B∩X)); 1;P ) does not dependon B.Proof. The (a) 
ondition of Whitney a
tually implies (t1
−
) for any dire
ttransversal v (see Lemma 2.1.3). The proof is very similar to that of Theorem4.1.3. The only di�eren
e is that a = 1− and j = 0− and the deformationwill be of 
onta
t 1− (re
all that the density is the 
onstant term of ψ̃).Remark 5. In the situation of the above proposition it is not true thatthe number θ(B ∩X; 0) is independent of B.4.2. SV-su�
ien
y of jets. In this se
tion we 
onsider a strati�
ation

S = {{0}, X1, . . . , Xs} of N . Let
S0 = {Y,X1 × {0}, . . . , Xs × {0}}.Hen
e the zero lo
us of a mapping v is the interse
tion of the graph of vwith N × {0}.From Theorem 4.1.3 we may dedu
e expli
it 
riteria for determination ofthe volume and multipli
ities.
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 sets 275Theorem 4.2.1. Suppose X is a subanalyti
 set and v a subanalyti
fun
tion. If (v;S0) is (tj) then the expansion up to order a of ψ̃(X∩v−1(0); r)is determined by z = j[j+a]v(0). Moreover , in this 
ase, for ea
h ve
torsubspa
e P , the multipli
ities of X ∩ v−1(0) for P are determined by z up toorder a.Proof. This is a
tually a 
onsequen
e of Proposition 4.1.3. More pre
iselyit is the 
ase where A = N×{0}; then the mapping πA|X
is just the identity.Remark 6. As in the above se
tion we get an analyti
 
riterion fordetermina
y via inequality (2.1). We know that 
ondition (ti) is satis�ed by

(v;S0) if there exists a horn neighborhood of type
{x ∈ R

n | |v(x)| ≤ C|x|i}on whi
h we have a 
onstant C su
h that
|dxv(w)| ≥ C|x|i−1for any unit ve
tor w ∈ R

n.As a 
onsequen
e we get the following result:Theorem 4.2.2. Let v be an analyti
 fun
tion with an isolated singular-ity at the origin su
h that
|∂xv| ≥ C|x|j−1in a neighborhood as in the above remark. Then the terms of the expansion of

ψ̃(v−1(0); r) up to order a are determined by its [j + a]-jet. In parti
ular inthis 
ase the number θ(v−1(0); 0) only depends on the [j]-jet of the fun
tion v.Let us point out that by the �ojasiewi
z inequality we may �nd an orderof determination for every fun
tion with an isolated singularity at the origin.
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