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Volume and multiplicities of real analytic sets

by GUILLAUME VALETTE (Krakow)

Abstract. We give criteria of finite determinacy for the volume and multiplicities.
Given an analytic set described by {v = 0}, we prove that the log-analytic expansion of
the volume of the intersection of the set and a “little ball” is determined by that of the set
defined by the Taylor expansion of v up to a certain order if the mapping v has an isolated
singularity at the origin. We also compare the cardinalities of finite fibers of projections
restricted to such a set.

1. Introduction. The question of sufficiency of jets has been studied by
many authors [2], [3], [9], [13]. It allows one to compare a given singularity
to a semi-algebraic one, which is very useful if one wants to do some effective
computations.

In this paper we study the volume and multiplicities of real analytic
germs. By volume we mean the Hausdorff measure. In [5] (see also [1]) it is
proved that the volume of the intersection of a subanalytic set and a ball of
radius r has a Puiseux extension in r and Inr. We give here some explicit
criteria for the determinacy of this expansion up to a certain order. The
criterion we give is based on the Kuiper—-Kuo criterion. By the t.ojasiewicz
inequality we get results of finite determinacy for mappings having an iso-
lated singularity at the origin.

We also study the finite determinacy of multiplicities, that is, cardinal-
ities of finite fibers of a projection restricted to a given analytic set. These
numbers are important since they allow describing the topological type of
a subanalytic set via cylindrical decompositions. Many theorems have been
proved to enable effective computations of these multiplicities in the semi-
algebraic case. Therefore it is useful to have theorems which compare the
multiplicities of a real analytic set to those of the set defined by the Taylor
expansion of its equation.
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266 G. Valette

At the beginning we recall some results of D. Trotman and L. Wilson [9]
about sufficiency of jets. They have proved that some particular transfor-
mation of “pull-back” type can improve the regularity of a stratification. In
[11] the author proved that the volume is preserved under some topological
trivializations. Then we prove our determination theorems for the volume
and multiplicities.

2. Notation and some definitions

2.1. (') regular stratifications. The (') conditions have been introduced
by D. Trotman. They generalize a condition introduced by R. Thom which
concerned C'*° manifolds. We recall the definition of [9]. Let

d
G* = G(d )
j=m
where G(d; j) is the Grassmannian of j-dimensional vector spaces in RY.

In what follows, m and n will denote fixed integers. We set R? = R™ x R™.
We will denote by N the subset R™ and by Y the subset R™. The mapping
7 will be the projection on Y and 7' will be the canonical projection on N.

We will denote by X a subset of R? and by S = {Y, Xi,...,X,} a
stratification of X by C°° manifolds.

DEFINITION 2.1.1. A direct transversal to Y is the germ of an analytic
mapping v : N — Y. Its graph will be denoted by I7,.

Abusively we will say “transversal” instead of “direct transversal”, since
all the transversals in this paper will be direct ones.

First we recall the definition of (") conditions. As in [9] we will denote
by R~ the set of real numbers marked with the symbol — in exponent. For
i € R we will say that a sequence (ys) is i-flat with respect to the sequence
(ws) if lys| < |zs|". We will say that the sequence (ys) is i~-flat with respect
to () if |ys| < C|zs|® for a constant C.

Let

G(8) = (J{(&: TuX) € X x G | z € X},
i<p

For T € G let X(T) = {v € Lin(N;Y) | I, # T}.

DEFINITION 2.1.2. Let i,j € RUR™. We will say that (v;S) is (t'7) if
no sequence (zg;ys;Ts) of points of G tending to 0 satisfies: |ys — v(x)| is
i-flat and d(y — d,,v; X(Ty)) is j-flat.

For i € R, we will say that (v;G) is (¢%) if it is (¢9471).

REMARK 1. Condition (#') can be characterized by transversality to all
the strata X of C* direct transversals to Y (see [9]).
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The (#') conditions will provide our criteria of finite determinacy. To be
able to express these criteria analytically we are going to give some explicit
characterizations of the (¢*) conditions.

REMARK 2. For ¢ > 1 (in R) the following explicit characterization of
(t*) will provide us an analytic condition for determinacy. Define the horn
neighborhood of v of order i to be the following set:

H(v;i:C) = {q = () € R" x R™ | u(x) — ] < Claf'}.

Let
L;T)= inf Lu
WD) = nt Ll
whenever L : R? — Y is a linear map and T' C R? a vector space (here || - ||

is the euclidian norm). Then for ¢ > 1 we get the following characterization
of condition (¢*). The couple (v;S) is (¢*) if and only if there exists a horn
neighborhood of v of order i such that for any x in this set,

(2'1> N(d(z;y) (y - U<x))§ T(:c;y)Xk) > Elx‘i_l

where X}, is the stratum containing the point x and £ > 0.

For i negative we may relate condition (%) to the Kuo—Verdier condition.
We define

|y ()|
v (u)|

T(U; V) = sup
Then in |9] the following is proved:
LEMMA 2.1.3. For all T € G4, 7(Y;T) = 1/d(0; 2(T)).

We say that the stratification S is strongly Verdier regular with exponent
i (at the origin) with respect to Y if there exists a neighborhood of the origin
such that for each stratum Xj,

(Y To Xp) < |z — 7(z)|"

By the above lemma we see that condition (t° +*") is actually the strong
Verdier condition with exponent 1 — ¢ at any point of Y.

Note that by definition of 7 the strong Verdier condition with exponent j
implies (by standard arguments, see [6], [7], [12]) that we are able to construct
a vector field tangent to the strata, extending a given vector field on Y and
satisfying

(2.2) lw(q) — w(x(q))| < Cq)lqg — m(q)V

in a sufficiently small neighborhood of Y with C' a continuous function tend-
ing to zero when ¢ approaches Y.
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2.2. Deformation of transversals. We define the notion of deformation
of transversals as in [9].

Let o € R and m/ € N. Let U be a neighborhood of the origin in R”. Let
gy hi,... hpy : N — Y be smooth functions on U satisfying |h,(z)| = o(]z|?)
(resp. e (z)] = O(|z[2)) and |dyhy| = o(||21) (resp. |dphe| = O(|2[2)) for
any r. Then

F:NxU— NXY,

m/

Flaiu) = (o, f(2,0) = (2, fu(@) = (2,9(2) + > whe (@),
r=1

is called a deformation of contact o (resp. of contact o™).

Deformations of transversals induce a pull-back transformation over the
graphs of maps from N x Y into G?. We define it as in [9].

If for each point p € U the mapping F' is transverse to the strata we may
define F*S as the stratification of F~!(X) given by the manifolds F~!(X}).

Then let us define the push-forward of a transversal. Let v be a transver-
sal to U. We will denote by F,u the transversal defined by v(z) = g(z) +
Zfil ur(z)hy(z). The map F' then sends the graph of u onto the graph of v.

Extend also addition to RUR™ by setting a™ +b=a+b" =a+ b and
a”+b-=(a+b)".

THEOREM 2.2.1 (see [9]). Let F' be a deformation of contact . If the
couple (F*u;G) is (t*T9) then (u; FiG) is (t9).

Let : ¢ RUR™ and a € R. In particular the following corollary will be
interesting for us:

COROLLARY 2.2.2. Let F be a deformation of contact i+a and u = F™0.
If (F*u; G) is (t*) then (0; F.G) is strongly Verdier regular with exponent a+1.

3. On the volume of stratified families. For r € R, strictly positive,
we denote by B(0;r) the ball of center 0 and radius r and by S(0;7) the
sphere of center 0 and radius 7.

Let A be a subanalytic subset of R x R™. We will consider such a subset
as a family of subanalytic subsets of R” parametrized by R"*. For U C R™ we
denote by Ay the subfamily {¢ = (z;t) e R" x R™ | ¢ € A, t € U}, and for
t € R™ we denote by A; the fiber of A at ¢, that is, {z € R" | ¢ = (x;t) € A}.

We denote by H' the I-dimensional Hausdorff measure. We are going to
study the Hausdorff measure of subanalytic sets. For this if X is the germ
of a subanalytic subset of R™ at 0 we define the functions ¥ (X;r) and {/; in
the following way:

(X;r) =H (X NB(0;r)),
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where [ is the Hausdorff dimension of X, and

=y PG
w(XaT)_ Nlrl )

where g is the volume of the unit ball in R, In [5] J.-M. Lion and J.-P. Rolin
have proved that the function ¢ has an expansion in r and Inr. This is also
proved in [1] and [8].

THEOREM 3.0.3 ([1], [5], [8]). Let (X;0) be a subanalytic germ. The func-
tion (X ;r) has an expansion
V(X;r) = Z aaﬂra/p In? r.

(e;B)EN?, a>pl

The expansion of ¥ up to order k will designate the terms having an
exponent in r less than or equal to k.

Note that the limit

! :
0(X;x) = lim X0 Bl(a:, r)
r—0 Hyr

is the density of X (or the Lelong number). This number was originally
introduced for complex analytic sets and then generalized to real subanalytic
sets by K. Kurdyka and G. Raby in [4]. It gives interesting information on
the behavior of the volume of a germ. In [11] the author has studied the
variation of the density along stratified spaces.

We recall some results which we will need in the next section and which
can be found in [11].

3.1. Volumes, multiplicities and isotopies. In this section we bound the
variation of the volume through the isotopies which are i-approximations of
the identity.

DEFINITION 3.1.1. Let A and B be two subanalytic families of sets and 4
be a positive real number. We define an i-approxzimation of the identity to be
a family of mappings which induces a family of germs of homeomorphisms
h:(A;0) — (B;0) of type h(x;t) = (hi(x);t) such that for every t,

(3.3) () — x| < |zl
for all = € B(0;r) with r sufficiently close to zero.

REMARK 3. Note that if dy; denotes the Hausdorff distance between
compact sets, that is,
dn(A; B) = max(sup d(x; B); sup d(z; A))
z€A z€B
then it follows from the definition of i-approximation of the identity that
dn(A: N B(0;7); By N B(0; 7)) < 1,

with the notations of the definition above.
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In [11] the following proposition is proved (in a slightly more general
setting; the following one is the case a < r* in [11]).

PRrROPOSITION 3.1.2. Let i be a strictly positive real number. Let h : A —
B be an i-approzimation of the identity and let P be in G(n;l) (where | =
dim A; = dim B; for any t € R™). Then for any compact subset V' of R™
there exists a constant C' and a subanalytic subset K (P;r;t) C P satisfying

(PN B0;r) \ K(Pyrit);r) < i
and such that for any x € K(P;r;t) andt € V,
card(np! (z) N Ar N B(0;7)) = card(n ' (z) N By N B(0;7)).

This proposition has been proved to study the behavior of the density of
stratified sets satisfying the Whitney condition. Actually using the Cauchy-
Crofton formula it allows us to bound the variation of the volume. It is the
key point in the proof of the theorem below (again the reader is referred to
[11] for the proof).

THEOREM 3.1.3. Leti € R and h : A — B be an i-approrimation of the
identity. Let V be a compact subanalytic subset of R™. Then there ezists a
constant C such that for allt in 'V,

[Y(Ag;r) — (Byr)| < ritL

Let us give another definition we shall need in the next section. Let P be
an [-dimensional vector space of R” and ¢ € R with ¢ > 1. For j € N we set

KJP(AOB(O;T)) = {z € P|card(np'(z) N A, N B(0;7)) = j}.

DEFINITION 3.1.4. We say that j is a multiplicity of A for P of order i
if0e cl(KJP(A)) and if there exists a positive constant C such that for any
r sufficiently close to zero,

J(KJP(AO B(0;7));7) > Cr'.
We will denote by m(P; A; i) the set of multiplicities of order ¢ of A for P.
Another consequence of Proposition 3.1.2 is the invariance of the set
m(P; A; 1) under i-approximation of the identity for any P.

3.2. Rugose isotopies. In this section we are going to prove an isotopy
lemma which will be used to prove finite determinacy in the next section.

Given a subset A of R™ and ¢ > 0, we denote by A® the set of points
q € R™ such that d(q; A) < e.

PROPOSITION 3.2.1. Let A be a subanalytic subset of R™ of dimension [.
Let B C A be a subanalytic subset of dimension k < l. Then there exists a
constant C such that for all € € |0;1] and for all real r small enough,

(3.4) Y(BF N A;r) < Crtle



Volume and multiplicities of analytic sets 271

Proof. The jacobian of the distance function to a subset of R" is equal to
1 wherever this function is differentiable. Moreover the family B’ = {(z;a) €
A xR | d(x; B) = a} is a subanalytic family. So using Proposition 3.0.4 of
[11] we deduce that there exists a constant C' such that for all a € ]0;1] we
have ¢ (B.,;r) < Cr'=1. So, we can write

W(BENA;yr) = | daH' < | $(Bhr)dH <Crlle w
B=NANB(0;r) a€)0se(
Now let X C R™ x R™ be a subanalytic family of sets of dimension .
Assume, as in Section 2, that X has a stratification S = {Y, Xy,..., X, }.
We have:

THEOREM 3.2.2. If S satisfies the strong Verdier condition with exponent
1 > 1 then there exist a mneighborhood U of the origin and a trivialization

h:n Y(U)\B— NxU\B,
where B (resp. B') is a subanalytic subfamily of X (resp. of Xo x U) such
that 1 (By;r) < rH=1 (resp. h(Blr) < Critt=Yy for t in U, which is an
i-approximation of the identity preserving the X; N a1(U).

Proof. We prove this result by a similar method to that used in [11].
Let A* denote the k-skeleton of the stratification S, that is, the union of
the strata of dimension less than or equal to k. We define the isotopy (and
the families B and B’) on A* inductively on k. The result is obvious for
k =dimY. Assume that it is true at a rank k. Then by Remark 3 we have
(3.5) dp(m Y )N AP N B(t;r); 7 Y)Y N AP N B(t;r)) < rt
for t and ¢’ fixed in Y. The isotopy is constructed by lifting a basis of Y to
a stratified vector field tangent to strata and rugose with exponent ¢ (see [6]
or [12]). As the construction can be carried out with all vectors of a basis of
Y successively we will assume that dimY = 1.

Let w be a constant unit vector field on Y. By (2.2) we may extend w
to a vector field tangent to the strata and satisfying (2.2). Let ¢ be the one-
parameter group generated by this vector field. Write ¢ = (¢1;¢2) € N XY
then by Gronwall’s Lemma we have

d(q;YV)e ™M < d(¢(g; 5);Y) < eMod(q;Y)

for a constant M. Hence the ratio d(q;Y)/d(ér(q;s);Y) is bounded below
and above. This proves that the integral curves cannot join Y or leave a
neighborhood of Y in a finite time. Moreover by the mean value theorem,

|61(g;t) — g <t sup |7 (w(d(g;5)))| < Clg) sup d(d(g;s);Y)".

s€[05t] s€[0st]
Hence as the ratio d(q;Y)/d(¢r(q;s);Y) is bounded we get

(3.6) 61(g;t) — g < Clq)d(g; V)’
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(with maybe a different function C' tending to zero when we approach Y).
This proves that the mapping will define an i-approximation of the identity.

Therefore to complete the induction step it suffices to prove existence of
integral curves starting from a point ¢ € A**1 and sufficiently far from A*,
More precisely, let

(3.7) B={qe A" |d(g; A*) <\/Clq)d(g;Y
Now by (3.5) and (3.6) we see that if ¢ € Ak+1 does not belong to B then

#(q; s) cannot fall in A*. This establishes the existence of the desired integral
curves. Moreover, if we set

h: A\ B - 771 0) x U, q=(2;t) = (¢1(g; —1); 1),
then h is a homeomorphism onto its image for each ¢ and an i-approximation
of the identity. Let
= (Ap xU)\ h(A\ B).

Note that again as a consequence of (3.5) and (3.6) we have
(38) B C {g e AM | d(g; A%) < C(a)d(g;Y)'}

(sufficiently close to Y'). Therefore to finish the proof we just remark that
(3.7) (resp. (3.8)) and Proposition 3.2.1 show that at the last step of the
induction we have ¥(By;r) < =1 (resp. ¢ (Bj;r) < riT!=1) as required. m

4. Finite determinacy of the volume and multiplicities. In this
section for a € R we denote by [a] the greatest integer less than or equal
to a.

4.1. Transversal sections of a stratified set. Here we will give some de-
terminacy theorems for the volume of a transversal section to a stratified
set. More precisely, we are going to give explicit sufficient conditions for the
expansion of ¢ (I;,NX;7) to be determined by that of v up to a certain order.
The results on the determination of the volume of the zero locus of a given
map will be given in the next section and will be deduced from those of this
section since the intersection of the graph with the source axis is precisely
the zero locus.

For this section we fix a stratified space (X;S) where S={Y; X1,..., X, }.
We assume that X is subanalytic. We recall that ¥ = R™, N = R"” and
XCNxY=R%

THEOREM 4.1.1. Let v : N — Y be a subanalytic transversal and let a
and j be positive real numbers with j > 1. If (v; S) satisfies the (t/) condition
then the expansion to order a of J(FvﬂX; ) only depends on the [j+al]-jet of
v at 0. Moreover, for every P € G(d;l) with | = dim X —m, m(P; [,NX;a)
only depends on the [j + a]-jet of v.
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Proof. Let u and v be two Clital mappings having the same [j + al-jet.
Let F(x;t) = (x;v(z) + th(xz)) where h(z) = u(x) — v(z). Then F is a
deformation of contact [j + a] and F0 = v.

Thanks to Corollary 2.2.2 we know that (0; F*S) is strongly Verdier
regular with exponent a + 1 at any point of {0} x R. So by Theorem 3.2.2
there exists an isotopy H : RY x [0;1] — R? (where d' = n + 1) preserving
the strata F'~!(X}) which is an (a + 1)-approximation of the identity. For
any map u: N — Y let ¢, (z) = (x;u(z)).

Then we set

H:Dyp— Ly, g H(q) = ¢y 0 Hio by p(q),

where Hy(z) = H(x;1). As a consequence we have

|H(q) — 4| = [$o(H1(d-0-1n(a)) — gl
= [¢u(H1(¢-v-1(q))) — do(P—v(q))]

|H1(¢—r— h( )) — ¢—u(q)| for ¢, is Lipschitz
[H1(¢—v—1(q)) = O—o—n(@)| + [¢—v—n(q) — p—v(q)]
< d(q; V) since jVR(0) = 0.

Therefore the mapping H is an (a+1)-approximation of the identity. But by
Theorem 3.1.3 this implies that the expansions of the volume of I, N X and
I, N X coincide. Moreover by Theorem 3.1.2 the multiplicities also coincide
up to order a. =

REMARK 4. Thus by Remark 2 we may make explicit the criterion of the
above theorem. More precisely, inequality (2.1) provides an analytic criterion
for the determinacy of the volume and multiplicities of transverse sections.

Note also that by the Yojasiewicz inequality the above theorem yields
finite determinacy for every analytic mapping with an isolated singularity:.

In particular in the case of a function we get the following interesting
corollary:

COROLLARY 4.1.2. Ifv is a subanalytic function with an isolated singu-
larity at the origin satisfying |0zv| > C|xz[?~! in a horn neighborhood, then
the expansion of zZ(F NX;r) up to order a is determined by its [j+a]-jet. In
particular the density 6(1, N X) just depends on the [j]-jet (this is the case
of a =0).

In the case where j < 1, Theorem 4.1.1 is no longer true. The problem
comes indeed from h which does not decrease sufficiently fast. Nevertheless
we have the following result which will be useful for the next section.

Let v be a direct transversal and A a vector space directly transverse to Y.
Let w4 be the projection onto A along Y. Then 7,4 induces a diffeomorphism
of I, onto A.



274 G. Valette

PROPOSITION 4.1.3. Assume that X is a subanalytic set. Let A € G(d;n)
be transverse to Y, a,j € R, and v a subanalytic direct transversal. If (v;S)
satisfies condition (t7) then the expansion up to order a of Y(ma(X NIY)) is
determined by the [j+al-jet of v. Moreover, the multiplicities of wa(X NI y;7)
of order less than or equal to a are determined by the [j + a]-jet of v.

Proof. Here we set again F'(q) = v(z) + th(x) where ¢ = (z;t) and h is
a function having a zero [j + al-jet.

Actually we have F~1(X) = {(z;t) € R" xR | (z; Fy(z)) € X}. We recall
that 7+ denotes the orthogonal projection on the orthogonal of Y.

Hence
FYX)N(N x {t}) =aH(X NIE) x {t}.
So
FYX)NN x {0} =x-(X N L) x {0},
FYX)NNx {1} =aH(X NnT,) x {1}.
We set

h= (7r|JA)_1 oHjont

where H is constructed as in the proof of Theorem 4.1.1. So h is an approx-
imation of the identity to the same order as Hj, which proves the result. =

In the case where j = 1~ we also obtain an interesting result:

PROPOSITION 4.1.4. Let A and B be vector spaces directly transverse to
Y to 0. If all the (Y; X;) satisfy condition (a) of Whitney then

O(ma(BNX);0) =0(AN X;0).

Moreover, for every P € G(n;1), the set m(n(BNX)); 1; P) does not depend
on B.

Proof. The (a) condition of Whitney actually implies (') for any direct
transversal v (see Lemma 2.1.3). The proof is very similar to that of Theorem
4.1.3. The only difference is that ¢« = 1~ and j = 0~ and the deformation

will be of contact 1~ (recall that the density is the constant term of ). m

REMARK 5. In the situation of the above proposition it is not true that
the number #(B N X;0) is independent of B.

4.2. SV-sufficiency of jets. In this section we consider a stratification
S ={{0}, X1,..., X5} of N. Let
SO = {Y7X1 X {0}7"'7XS X {O}}
Hence the zero locus of a mapping v is the intersection of the graph of v
with N x {0}.
From Theorem 4.1.3 we may deduce explicit criteria for determination of
the volume and multiplicities.
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THEOREM 4.2.1. Suppose X is a subanalytic set and v a subanalytic
function. If (v; Sp) is (V) then the expansion up to order a of (X Nv~=1(0);7)
1s determined by z = jUJra}v(O). Moreover, in this case, for each vector
subspace P, the multiplicities of X Nv~1(0) for P are determined by z up to
order a.

Proof. This is actually a consequence of Proposition 4.1.3. More precisely
it is the case where A = N x{0}; then the mapping 74 , is just the identity.

REMARK 6. As in the above section we get an analytic criterion for
determinacy via inequality (2.1). We know that condition (') is satisfied by
(v; Sp) if there exists a horn neighborhood of type

{z € R" | [u(@)] < Clal'}
on which we have a constant C' such that
|dav(w)| > Cla|™!
for any unit vector w € R"™.

As a consequence we get the following result:

THEOREM 4.2.2. Let v be an analytic function with an isolated singular-
ity at the origin such that

|0av| 2 Cla ™

in a neighborhood as in the above remark. Then the terms of the expansion of
Y(v~Y(0);7) up to order a are determined by its [j + a]-jet. In particular in
this case the number 6(v=1(0);0) only depends on the [j]-jet of the function v.

Let us point out that by the Y.ojasiewicz inequality we may find an order
of determination for every function with an isolated singularity at the origin.
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