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Existence of three solutions
to a double eigenvalue problem for
the p-biharmonic equation

by LIN L1 (Zigong) and SHAPOUR HEIDARKHANI (Kermanshah)

Abstract. Using a three critical points theorem and variational methods, we study
the existence of at least three weak solutions of the Navier problem

{ A(|Au|P~2 Au) — div(|VulP72Vu) = Mf(z,u) + pg(x,u) in 2,
u=Au=0 on 02,

where 2 C RY (N > 1) is a non-empty bounded open set with a sufficiently smooth
boundary 82, A >0, p >0 and f,g: 2 x R — R are two L'-Carathéodory functions.

1. Introduction and main results. Consider the following fourth-
order partial differential equation coupled with Navier boundary conditions:

@ { A(|Au= D) — div([Vulp=Vu) = Mf(x,u) + pgle,u) in 2,
u=Au=0 on 02,
where 2 C RV (N > 1) is a non-empty bounded open set with a sufficiently

smooth boundary 92, p > max{1, N/2}, A >0, p>0and f,g: 2 xR —>R
are two L'-Carathéodory functions.

We recall that a function f: £2x R — R is said to be L'-Carathéodory if

e z+— f(x,t) is measurable for every t € R;
e t+— f(x,t) is continuous for a.e. x € (2.
e for every o > 0 there exists a function I, € L!(2) such that

sup | f(z, 1) < lo()
[t|<e

for a.e. z € (2.
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Here and throughout, X will denote the Sobolev space W?2P(§2) N
W, P(£2) equipped with the norm

full = ( §1Au@)P + [Vu@)P) dr) "
(9}

Let

(1.1) K := sup SUPzen AT)] [u(2)]
ueX\{0} ]

Since p > max{1, N/2}, W2P(£2) N Wy (£2) — C°(2) is compact, and one
has K < oco. As usual, a weak solution of the problem isany u € X
such that

(1.2) S | Au(z) P72 Au(z) AL (z) d + S |Vu(z)[P2Vu(z)VE(x) da
Q Q

= A\ fz u(@)é(@) de + p | g(a, u(@))é(z) do
0 2

for every £ € X.

In recent years, Ricceri’s three critical points theorem has been widely
used to solve differential equations (see [12} [7} 17, 5] 2] 1], 8, 9} 10} 16] and
references therein).

A nonlinear fourth-order equation furnishes a model to study travelling
waves in suspension bridges, so it is important in physics. Several results
are known concerning the existence of multiple solutions for fourth-order
boundary value problems, and we refer the reader to [4, 6, 13, 14] and the
references cited therein.

The aim of this paper is to establish the existence of a non-empty open
interval A C I and a positive real number ¢ with the following property: for
each A € A and for each L!'-Carathéodory function g : 2 x R — R, there is
0 > 0 such that, for each p € [0, ], the problem admits at least three
weak solutions whose norms in X are less than q.

For the reader’s convenience, we recall the revised form of Ricceri’s three
critical points theorem (Theorem 1 in [15]) which is our main tool to transfer
the existence of three solutions of the problem into the existence of
critical points of the Euler functional.

THEOREM 1.1 ([I5, Theorem 1]). Let X be a reflexive real Banach space.
Assume that &: X — R is a continuously Gateauz differentiable and se-
quentially weakly lower semicontinuous functional whose Gateaux derivative
admits a continuous inverse on X* and @ is bounded on each bounded subset
of X; J: X — R is a continuously Gateaux differentiable functional whose
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Gateaur derivative is compact; and I C R is an interval. Assume that

lim (®(u)+ AJ(u)) = o0

l[ul| =00

for all A € I, and that there exists p € R such that

(1.3) sup inf (@(u) + A(J(u) + p)) < inf sup(@(u) + A(J(u) + p)).

Ael ueX ueX \gJ
Then there exists an open interval A C I and a positive real number q with
the following property: for every A € A and every C' functional W: X — R
with compact derivative, there exists § > 0 such that, for each p € [0,0] the
equation

&' (u) + A\J'(u) + p¥' (u) = 0

has at least three solutions in X whose norms are less than q.

We will need the following result, which is Proposition 1.3 in [3] with J
replaced by —J, to show the minimax inequality (1.3|) of Theorem

PROPOSITION 1.2 ([3 Proposition 1.3]). Let X be a non-empty set, and
¢:X — R, J: X — R two real functions. Assume that ®(u) > 0 for
every u € X and there exists ug € X such that @(ug) = J(up) = 0. Further,
assume that there exist up € X and r > 0 such that

(i) r < D(u),

.. —J (u1)
(ii) (p(s:);ir(—J(u)) <r B(uy)
Then for every h > 1 and every p € R satisfying
r ) — supg () <p(—J () —J(u
one has
sup inf (@(u) + A(J(u) + p)) < inf sup ((uw) + A(J(u) + p))
eI ueX u€X x\g[0,a]
where

hr
) — Supg( e (—J (1)

2. Main results. Now, fix 2° € {2 and pick v > 0 such that B(z?,7)
C 2 where B(z°,7) denotes the ball with center ° and radius +. Put
12 24 9 l P

o- |

B(z%)\B(«0,7/2)

dx,

7w = a0
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N/2 72 _ p
L(N/2) oLl vVt
(v/2)
and
(2.1) 0 =K(R+Q)YP
where I = (N 2212, |z — 2°) = (0N | (2 — 29)2)1/2 and m(£2) denotes

the volume of 2. We also let F(x,t) = Sé f(z,s)ds for all (z,t) € 2 x R.
Our main result is formulated as follows:

THEOREM 2.1. Assume that there exist a positive constant r and a func-
tion w € X such that

(H1) [lw|[P > pr;
SQF(:U,w(x))d;r.

(H2) S sup F(z,s)dz <pr ;
0 SE-K y/pr,K g/pr] [[w||P
F 1
(H3) pKPm(2) limsup L% o L
|s|—+o0 ‘S‘IJ rn
for almost every x € {2 and for some n satisfying
- 1
" F d :
p?”% S0 SUDsc[—K g/pr,K ¢/pr] F(z,s)dz

Then there exist a non-empty open interval A C [0,7n) and a positive real
number q with the following property: for each A € A and for an arbitrary
L'-Carathéodory function g: 2 x R — R, there exists 6 > 0 such that, for
each p € [0, 4], the problem has at least three solutions whose norms in
X are less than q.

Let us first present a consequence of Theorem [2.1] for a fixed test func-
tion w.

COROLLARY 2.2. Assume that there exist positive constants ¢ and d with
c < 0d such that

() F(z,s) >0 for a.e. x € 2\ B(2°,v/2) and all s € [0,d);

() | sup F(x,s)da:<<;d> | F(z,d)da;

n (:D,S)GQX[—C,C} B(Z‘O,’Y/Q)
F 1
(i) @m(2)lmsup 22 < 1
|s]—+o0 ‘s‘p n
for almost every x € {2 and for some n satisfying
1
n>

(5)" SB(:UO,'y/Z) F(z,d)dx — {,supsei_cq F(z,5) dz
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Then there exist a non-empty open interval A C [0,p~(c/K)Pn) and a pos-
itive real number q with the following property: for each A € A and for an
arbitrary L'-Carathéodory function g: 2 x R — R, there exists 6 > 0 such
that, for each p € [0,0], the problem has at least three solutions whose
norms in X are less than q.

REMARK 2.3. We remark that the authors in [11] had already studied
the problem when p = 0. Under weaker assumptions as for Theorem 1
of [11], Corollary [2.2]ensures a more precise conclusion. In fact, our condition
(jij) is weaker than the condition (A3) in Theorem 1 of [I1]. For example, if
F is autonomous, let F(s) = sP/In(2+s?). Clearly, F satisfies our condition
(jij) but does not satisfy (A3) in Theorem 1 of [I1].

The proof of Corollary [2.2]is based on the following technical lemma.

LEMMA 2.4. Assume that ¢ and d are positive constants with ¢ < 6d.
Under assumptions (j) and (jj) of Corollary2.2}, there existr > 0 andw € X
such that |jw||P > pr and

o F(z,w(x))dx

S sup F(z,s)dz < pr
) se[~K y/pr.K y/pr] [[w][P
Proof. Let
(2.2)
0 for z € 2\ B(2°,7),
40, 013 121, 02
w(z) = d(f‘x 30: | 72‘x i 0 0
+ 2w — 2%~ 1) for z € B(2°,7) \ B(2",7/2),
d for x € B(z°,7/2),
where r = p~!(c/K)P. We have
(O for x € 2\ B(2°,v) U B(2°,7/2),
0wl@) _ ) d(B)w — 2% (; — )
= ¥ 7
O _ 24 _ 40y 4 dmmzd)y B(20 B(20
32 (z; — 7)) + P P ) or x € B(z",v) \ B(z”,7/2)
and
) 0 for x € 2\ B(2°,v) U B(z°,7/2),
O i Coa |, 9(z—a®P—(zi—20)?) 0 0
=+ S0 ) for x € B(z",v) \ B(z",v/2).

It is easy to verify that w € W2P(£2) N W, (£2), and in particular,
[w]? = (R + Q)d".
Consequently, from ([2.1) we see that
|w|| = 6d/K.
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Moreover, by the assumption ¢ < 6d, we get

) )
P p\ K p\ K '

Since, 0 < w(z) < d, for each x € 2, condition (j) ensures that

S F(z,w(x))dx + S F(z,w(z))dx > 0.
N\B(2%7) B(z%7)\B(z°,7/2)
Hence, from (jj), r = %(%)p and the above inequality we have

sup F(x,s)dx<<c)p | Flz,d)de
B

0 SEI-K ¥/pr,K ¥/pr] bd (29,7/2)
(o F (2, w(x))dx
< .
[[w]|P

Proof of Corollary . From Lemma we see that assumptions (H1)
and (H2) of Theorem [2.1{are fulfilled for w given in (2.2)). Also, (jjj) implies
that (H3) is satisfied. Hence, the conclusion follows directly from Theo-

rem 2.1 =

REMARK 2.5. The statement of Corollary mainly depends upon the
choice of the test function w in Theorem With the choice of w given in
(2.2) we have the present statement of Corollary Other candidates for
w can be considered to obtain other versions of Corollary

We end this section by giving the following example to illustrate Corol-
lary

ExaMPLE 2.6. Consider the problem
(2.3) {U‘“’) — " = \f(u) + pg(w,u) in ]0, 2],

' u(0) = u(27) = u”(0) =" (27) =0,

where )
5, s <1,
1= {

1/s%, s>1,

and g : [0,27] x R — R is a fixed L'-Carathéodory function. Choose p = 2,
2 = 7 and v = 7. Noticing that K = 1/27 (see Proposition 2.1 of [4]), one
has

o v/15(50972 — 72072 In 2 + 40)
N 52
So, we see that all the assumptions of Corollary [2.2] are satisfied by choosing,
for instance ¢ = 1072 and d = 1. Thus, for each

1

10—3-2575 20797
90(50972— 72072 In 2+40) 3

k> 20672
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there exists an open interval A C [0,x] and a positive real number ¢ such
that, for each A € A and for each L!-Carathéodory function g : [0,27] x R
— R, there is § > 0 such that, for each p € [0, d], the problem admits
at least three weak solutions whose norms in W22([0,2x]) N W,*([0, 2])
are less than q.

3. Proof of Theorem For each u € X, let

B(u) = ”“p‘p, J(u) = — | F(z,u(x)) dz
2
and
U(u)=— S S g(x,s)dsdx.
20

Under the assumptions of Theorem & is a continuously Gateaux differ-
entiable and sequentially weakly lower semicontinuous functional. Moreover,
the Gateaux derivative of @ admits a continuous inverse on X*; and ¥ and J
are continuously Gateaux differentiable functionals whose Gateaux deriva-
tives are compact. Obviously, @ is bounded on each bounded subset of X.
In particular, for each u, £ € X,

@' (u)(€) = | |Au(@)|Au(z) A (z) da + | |Vu(z) P Vu(e)VE() dr,
n

f (@, u(z))é(x) dr,

(z, u(z))¢(z) d.

(9}
OGN
(9}
V()& =g
(9}

Hence, it follows from (|1.2) that the weak solutions of the problem are
exactly the solutions of the equation

&' (u) + ' (u) + p¥' (u) = 0.

Furthermore, from (H3) there exist constants (,7 € R with 0 < { < 1/rn
such that

PKPm(Q)F(z,5) < (|s]? + 7
for a.e. z € 2 and all s € R. Fix u € X. Then

Bz, u(z)) Clu(@)P +7)

< -
= pErm(@)
for all € £2. Then, for any fixed A € |0, 7], since

sup |u(z)| < Kl|ul],
zes?
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we get
B(u) + N (u) = ul® | Pz, u(z)) da
9]
]| rn
2 S RmD) (C§2|u(aj)|pdx +T>
1 N
> 5(1 = ¢rn)|lull” — PP
and so

lim (@(u)+ AJ(u)) = oo.

l[uf|—00
We claim that there exist » > 0 and w € X such that
—J(w)
sup (—J(u)) <r .
s, T ST g
Note that sup,cqnlu(z)| < Klu| for each v € X, and so
fue X :®(u)<r}={ueX:|u|f <pr}
C{ue X :|u(z)] < Kypr for all x € 2}.

It follows that
SQ F(z,w(z))dx

sup (—J(u)) < S sup F(z,t)dz < pr ,
P(u)<r  tel—K /pr.K ¢/pr] [[w][P
from (H2), and so
—J(w)
sup (—J(u)) <r .
s, T ST g
Also from (H1) we have @(w) > r. Next recall from (H3) that
n> !
P~ SuPg()<r (T (1))
SO
1 —J(w)
sup (—J(u))+—-<r .
¢(u)<r< ( )> n @(w)
Choose

o )

and note v > 1 and

sup (—J(u)) + 0w~ SWot<r (IW) )

D(u)<r v @(U;) ‘

r
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Therefore, from Proposition (with ug = 0 and u; = w) for every p € R
satisfying
—J(w)
TGy — SUPs(u)<r(—J (1)) —J(w)
sup (—J(u)) + <p<r—2
D(u)<r 1% @(w)

we have (note o = rn)

sup in)f((@(u) + A J(u) +p)) < in)f( sup (@(u) + A(J(u) + p)).
AER u€ UEX Xel0,rm]

Now, all assumptions of Theorem are satisfied. Hence, the conclusion
follows directly from Theorem .
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