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Existence of three solutions
to a double eigenvalue problem for

the p-biharmonic equation

by Lin Li (Zigong) and Shapour Heidarkhani (Kermanshah)

Abstract. Using a three critical points theorem and variational methods, we study
the existence of at least three weak solutions of the Navier problem

∆(|∆u|p−2∆u)− div(|∇u|p−2∇u) = λf(x, u) + µg(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with a sufficiently smooth
boundary ∂Ω, λ > 0, µ > 0 and f, g : Ω × R→ R are two L1-Carathéodory functions.

1. Introduction and main results. Consider the following fourth-
order partial differential equation coupled with Navier boundary conditions:

(P)
{
∆(|∆u|p−2∆u)− div(|∇u|p−2∇u) = λf(x, u) + µg(x, u) in Ω,
u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with a sufficiently
smooth boundary ∂Ω, p > max{1, N/2}, λ > 0, µ > 0 and f, g : Ω×R→ R
are two L1-Carathéodory functions.

We recall that a function f : Ω×R→ R is said to be L1-Carathéodory if

• x 7→ f(x, t) is measurable for every t ∈ R;
• t 7→ f(x, t) is continuous for a.e. x ∈ Ω.
• for every % > 0 there exists a function l% ∈ L1(Ω) such that

sup
|t|≤%
|f(x, t)| ≤ l%(x)

for a.e. x ∈ Ω.
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Here and throughout, X will denote the Sobolev space W 2,p(Ω) ∩
W 1,p

0 (Ω) equipped with the norm

‖u‖ =
( �

Ω

(|∆u(x)|p + |∇u(x)|p) dx
)1/p

.

Let

(1.1) K := sup
u∈X\{0}

supx∈Ω |u(x)|
‖u‖

.

Since p > max{1, N/2}, W 2,p(Ω) ∩W 1,p
0 (Ω) ↪→ C0(Ω) is compact, and one

has K < ∞. As usual, a weak solution of the problem (P) is any u ∈ X
such that

(1.2)
�

Ω

|∆u(x)|p−2∆u(x)∆ξ(x) dx+
�

Ω

|∇u(x)|p−2∇u(x)∇ξ(x) dx

= λ
�

Ω

f(x, u(x))ξ(x) dx+ µ
�

Ω

g(x, u(x))ξ(x) dx

for every ξ ∈ X.
In recent years, Ricceri’s three critical points theorem has been widely

used to solve differential equations (see [12, 7, 17, 5, 2, 1, 8, 9, 10, 16] and
references therein).

A nonlinear fourth-order equation furnishes a model to study travelling
waves in suspension bridges, so it is important in physics. Several results
are known concerning the existence of multiple solutions for fourth-order
boundary value problems, and we refer the reader to [4, 6, 13, 14] and the
references cited therein.

The aim of this paper is to establish the existence of a non-empty open
interval Λ ⊆ I and a positive real number q with the following property: for
each λ ∈ Λ and for each L1-Carathéodory function g : Ω × R→ R, there is
δ > 0 such that, for each µ ∈ [0, δ], the problem (P) admits at least three
weak solutions whose norms in X are less than q.

For the reader’s convenience, we recall the revised form of Ricceri’s three
critical points theorem (Theorem 1 in [15]) which is our main tool to transfer
the existence of three solutions of the problem (P) into the existence of
critical points of the Euler functional.

Theorem 1.1 ([15, Theorem 1]). Let X be a reflexive real Banach space.
Assume that Φ : X → R is a continuously Gâteaux differentiable and se-
quentially weakly lower semicontinuous functional whose Gâteaux derivative
admits a continuous inverse on X∗ and Φ is bounded on each bounded subset
of X; J : X → R is a continuously Gâteaux differentiable functional whose
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Gâteaux derivative is compact; and I ⊆ R is an interval. Assume that

lim
‖u‖→∞

(Φ(u) + λJ(u)) =∞

for all λ ∈ I, and that there exists ρ ∈ R such that

(1.3) sup
λ∈I

inf
u∈X

(Φ(u) + λ(J(u) + ρ)) < inf
u∈X

sup
λ∈I

(Φ(u) + λ(J(u) + ρ)).

Then there exists an open interval Λ ⊆ I and a positive real number q with
the following property: for every λ ∈ Λ and every C1 functional Ψ : X → R
with compact derivative, there exists δ > 0 such that, for each µ ∈ [0, δ] the
equation

Φ′(u) + λJ ′(u) + µΨ ′(u) = 0

has at least three solutions in X whose norms are less than q.

We will need the following result, which is Proposition 1.3 in [3] with J
replaced by −J , to show the minimax inequality (1.3) of Theorem 1.1.

Proposition 1.2 ([3, Proposition 1.3]). Let X be a non-empty set, and
Φ : X → R, J : X → R two real functions. Assume that Φ(u) ≥ 0 for
every u ∈ X and there exists u0 ∈ X such that Φ(u0) = J(u0) = 0. Further,
assume that there exist u1 ∈ X and r > 0 such that

(i) r < Φ(u1),

(ii) sup
Φ(u)<r

(−J(u)) < r
−J(u1)
Φ(u1)

.

Then for every h > 1 and every ρ ∈ R satisfying

sup
Φ(u)<r

(−J(u)) +
r−J(u1)
Φ(u1) − supΦ(u)<r(−J(u))

h
< ρ < r

−J(u1)
Φ(u1)

one has

sup
λ∈I

inf
u∈X

(Φ(u) + λ(J(u) + ρ)) < inf
u∈X

sup
λ∈[0,a]

(Φ(u) + λ(J(u) + ρ))

where

a =
hr

r−J(u1)
Φ(u1) − supΦ(u)<r(−J(u))

.

2. Main results. Now, fix x0 ∈ Ω and pick γ > 0 such that B(x0, γ)
⊂ Ω where B(x0, γ) denotes the ball with center x0 and radius γ. Put

Q =
�

B(x0,γ)\B(x0,γ/2)

∣∣∣∣12
γ3
|x− x0|l − 24

γ2
l +

9
γ

l

|x− x0|

∣∣∣∣p dx,
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R =
πN/2

Γ(N/2)

γ2�

(γ/2)2

∣∣∣∣12(N + 1)
γ3

√
t+

9(N − 1)
γ

1√
t
− 24N

γ2

∣∣∣∣ptN/2−1 dt

and

(2.1) θ = K(R+Q)1/p

where l = (
∑N

i=1 x
2
i )

1/2, |x − x0| = (
∑N

i=1(xi − x0
i )

2)1/2 and m(Ω) denotes
the volume of Ω. We also let F (x, t) =

	t
0 f(x, s) ds for all (x, t) ∈ Ω × R.

Our main result is formulated as follows:

Theorem 2.1. Assume that there exist a positive constant r and a func-
tion w ∈ X such that

(H1) ‖w‖p > pr;

(H2)
�

Ω

sup
s∈[−K p

√
pr,K p

√
pr]
F (x, s) dx < pr

	
Ω F (x,w(x)) dx

‖w‖p
;

(H3) pKpm(Ω) lim sup
|s|→+∞

F (x, s)
|s|p

<
1
rη

for almost every x ∈ Ω and for some η satisfying

η >
1

pr
	
Ω F (x,w(x)) dx

‖w‖p −
	
Ω sups∈[−K p

√
pr,K p

√
pr] F (x, s) dx

.

Then there exist a non-empty open interval Λ ⊆ [0, rη) and a positive real
number q with the following property: for each λ ∈ Λ and for an arbitrary
L1-Carathéodory function g : Ω × R → R, there exists δ > 0 such that, for
each µ ∈ [0, δ], the problem (P) has at least three solutions whose norms in
X are less than q.

Let us first present a consequence of Theorem 2.1 for a fixed test func-
tion w.

Corollary 2.2. Assume that there exist positive constants c and d with
c < θd such that

(j) F (x, s) ≥ 0 for a.e. x ∈ Ω \B(x0, γ/2) and all s ∈ [0, d];

(jj)
�

Ω

sup
(x,s)∈Ω×[−c,c]

F (x, s) dx <
(
c

θd

)p �

B(x0,γ/2)

F (x, d) dx;

(jjj) cpm(Ω) lim sup
|s|→+∞

F (x, s)
|s|p

<
1
η

for almost every x ∈ Ω and for some η satisfying

η >
1(

c
θd

)p 	
B(x0,γ/2) F (x, d) dx−

	
Ω sups∈[−c,c] F (x, s) dx

.
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Then there exist a non-empty open interval Λ ⊆ [0, p−1(c/K)pη) and a pos-
itive real number q with the following property: for each λ ∈ Λ and for an
arbitrary L1-Carathéodory function g : Ω × R → R, there exists δ > 0 such
that, for each µ ∈ [0, δ], the problem (P) has at least three solutions whose
norms in X are less than q.

Remark 2.3. We remark that the authors in [11] had already studied
the problem (P) when µ = 0. Under weaker assumptions as for Theorem 1
of [11], Corollary 2.2 ensures a more precise conclusion. In fact, our condition
(jjj) is weaker than the condition (A3) in Theorem 1 of [11]. For example, if
F is autonomous, let F (s) = sp/ ln(2+s2). Clearly, F satisfies our condition
(jjj) but does not satisfy (A3) in Theorem 1 of [11].

The proof of Corollary 2.2 is based on the following technical lemma.

Lemma 2.4. Assume that c and d are positive constants with c < θd.
Under assumptions (j) and (jj) of Corollary 2.2, there exist r > 0 and w ∈ X
such that ‖w‖p > pr and

�

Ω

sup
s∈[−K p

√
pr,K p

√
pr]
F (x, s) dx < pr

	
Ω F (x,w(x)) dx

‖w‖p
.

Proof. Let

(2.2)

w(x) =


0 for x ∈ Ω \B(x0, γ),
d
(

4
γ3 |x− x0|3 − 12

γ2 |x− x0|2

+ 9
γ |x− x

0| − 1
)

for x ∈ B(x0, γ) \B(x0, γ/2),
d for x ∈ B(x0, γ/2),

where r = p−1(c/K)p. We have

∂w(x)
∂xi

=


0 for x ∈ Ω \B(x0, γ) ∪B(x0, γ/2),
d
(

12
γ3 |x− x0|(xi − x0

i )

− 24
γ2 (xi − x0

i ) + 9(xi−x0
i )

γ|x−x0|
)

for x ∈ B(x0, γ) \B(x0, γ/2)

and

∂2w(x)
∂2xi

=


0 for x ∈ Ω \B(x0, γ) ∪B(x0, γ/2),
d
(

12
γ3|x−x0|(xi − x

0
i )

2

− 24
γ2 + 9(|x−x0|2−(xi−x0

i )
2)

γ|x−x0|3
)

for x ∈ B(x0, γ) \B(x0, γ/2).

It is easy to verify that w ∈W 2,p(Ω) ∩W 1,p
0 (Ω), and in particular,

‖w‖p = (R+Q)dp.

Consequently, from (2.1) we see that

‖w‖ = θd/K.
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Moreover, by the assumption c < θd, we get
‖w‖p

p
>

1
p

(
dθ

K

)p
>

1
p

(
c

K

)p
= r.

Since, 0 ≤ w(x) ≤ d, for each x ∈ Ω, condition (j) ensures that�

Ω\B(x0,γ)

F (x,w(x)) dx+
�

B(x0,γ)\B(x0,γ/2)

F (x,w(x)) dx ≥ 0.

Hence, from (jj), r = 1
p

(
c
K

)p and the above inequality we have
�

Ω

sup
s∈[−K p

√
pr,K p

√
pr]
F (x, s) dx <

(
c

θd

)p �

B(x0,γ/2)

F (x, d) dx

≤ pr
	
Ω F (x,w(x)) dx

‖w‖p
.

Proof of Corollary 2.2. From Lemma 2.4 we see that assumptions (H1)
and (H2) of Theorem 2.1 are fulfilled for w given in (2.2). Also, (jjj) implies
that (H3) is satisfied. Hence, the conclusion follows directly from Theo-
rem 2.1.

Remark 2.5. The statement of Corollary 2.2 mainly depends upon the
choice of the test function w in Theorem 2.1. With the choice of w given in
(2.2) we have the present statement of Corollary 2.2. Other candidates for
w can be considered to obtain other versions of Corollary 2.2.

We end this section by giving the following example to illustrate Corol-
lary 2.2.

Example 2.6. Consider the problem

(2.3)
{
u(iv) − u′′ = λf(u) + µg(x, u) in ]0, 2π[,
u(0) = u(2π) = u′′(0) = u′′(2π) = 0,

where

f(s) =
{
s2, s ≤ 1,
1/s2, s > 1,

and g : [0, 2π]× R→ R is a fixed L1-Carathéodory function. Choose p = 2,
x0 = π and γ = π. Noticing that K = 1/2π (see Proposition 2.1 of [4]), one
has

θ =

√
15(509π2 − 720π2 ln 2 + 40)

5π2
.

So, we see that all the assumptions of Corollary 2.2 are satisfied by choosing,
for instance c = 10−3 and d = 1. Thus, for each

κ > 20−6π2 · 1
10−3·25π5

90(509π2−720π2 ln 2+40)
− 20−9π

3
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there exists an open interval Λ ⊂ [0, κ] and a positive real number q such
that, for each λ ∈ Λ and for each L1-Carathéodory function g : [0, 2π] × R
→ R, there is δ > 0 such that, for each µ ∈ [0, δ], the problem (2.3) admits
at least three weak solutions whose norms in W 2,2([0, 2π]) ∩W 1,2

0 ([0, 2π])
are less than q.

3. Proof of Theorem 2.1. For each u ∈ X, let

Φ(u) =
‖u‖p

p
, J(u) = −

�

Ω

F (x, u(x)) dx

and

Ψ(u) = −
�

Ω

u(x)�

0

g(x, s) ds dx.

Under the assumptions of Theorem 2.1, Φ is a continuously Gâteaux differ-
entiable and sequentially weakly lower semicontinuous functional. Moreover,
the Gâteaux derivative of Φ admits a continuous inverse on X∗; and Ψ and J
are continuously Gâteaux differentiable functionals whose Gâteaux deriva-
tives are compact. Obviously, Φ is bounded on each bounded subset of X.
In particular, for each u, ξ ∈ X,

Φ′(u)(ξ) =
�

Ω

|∆u(x)|∆u(x)∆ξ(x) dx+
�

Ω

|∇u(x)|p−2∇u(x)∇ξ(x) dx,

J ′(u)(ξ) = −
�

Ω

f(x, u(x))ξ(x) dx,

Ψ ′(u)(ξ) = −
�

Ω

g(x, u(x))ξ(x) dx.

Hence, it follows from (1.2) that the weak solutions of the problem (P) are
exactly the solutions of the equation

Φ′(u) + λJ ′(u) + µΨ ′(u) = 0.

Furthermore, from (H3) there exist constants ζ, τ ∈ R with 0 < ζ < 1/rη
such that

pKpm(Ω)F (x, s) ≤ ζ|s|p + τ

for a.e. x ∈ Ω and all s ∈ R. Fix u ∈ X. Then

F (x, u(x)) ≤ 1
pKpm(Ω)

(ζ|u(x)|p + τ)

for all x ∈ Ω. Then, for any fixed λ ∈ ]0, rη], since

sup
x∈Ω
|u(x)| ≤ K‖u‖,
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we get

Φ(u) + λJ(u) =
‖u‖p

p
− λ

�

Ω

F (x, u(x)) dx

≥ ‖u‖
p

p
− rη

pKpm(Ω)

(
ζ
�

Ω

|u(x)|p dx+ τ
)

≥ 1
p

(1− ζrη)‖u‖p − rη

pKpm(Ω)
τ,

and so
lim
‖u‖→∞

(Φ(u) + λJ(u)) =∞.

We claim that there exist r > 0 and w ∈ X such that

sup
Φ(u)<r

(−J(u)) < r
−J(w)
Φ(w)

.

Note that supx∈Ω|u(x)| ≤ K‖u‖ for each u ∈ X, and so

{u ∈ X : Φ(u) < r} = {u ∈ X : ‖u‖p < pr}
⊆ {u ∈ X : |u(x)| < K p

√
pr for all x ∈ Ω}.

It follows that

sup
Φ(u)<r

(−J(u)) <
�

Ω

sup
t∈[−K p

√
pr,K p

√
pr]
F (x, t) dx < pr

	
Ω F (x,w(x)) dx

‖w‖p
,

from (H2), and so

sup
Φ(u)<r

(−J(u)) < r
−J(w)
Φ(w)

.

Also from (H1) we have Φ(w) > r. Next recall from (H3) that

η >
1

r−J(w)
Φ(w) − supΦ(u)<r(−J(u))

,

so

sup
Φ(u)<r

(−J(u)) +
1
η
< r
−J(w)
Φ(w)

.

Choose

ν > η

(
r
−J(w)
Φ(w)

− sup
Φ(u)<r

(−J(u))
)

and note ν > 1 and

sup
Φ(u)<r

(−J(u)) +
r−J(w)
Φ(w) − supΦ(u)<r(−J(u))

ν
< r
−J(w)
Φ(w)

.
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Therefore, from Proposition 2.2 (with u0 = 0 and u1 = w) for every ρ ∈ R
satisfying

sup
Φ(u)<r

(−J(u)) +
r−J(w)
Φ(w) − supΦ(u)<r(−J(u))

ν
< ρ < r

−J(w)
Φ(w)

we have (note σ = rη)

sup
λ∈R

inf
u∈X

(Φ(u) + λ(J(u) + ρ)) < inf
u∈X

sup
λ∈[0,rη]

(Φ(u) + λ(J(u) + ρ)).

Now, all assumptions of Theorem 1.1 are satisfied. Hence, the conclusion
follows directly from Theorem 1.1.
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