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Entire functions that share a function
with their first and second derivatives

by Feng Lü (Qingdao) and Junfeng Xu (Jiangmen)

Abstract. Applying the normal family theory and the theory of complex differential
equations, we obtain a uniqueness theorem for entire functions that share a function with
their first and second derivative, which generalizes several related results of G. Jank,
E. Mues & L. Volkmann (1986), C. M. Chang & M. L. Fang (2002) and I. Lahiri & G. K.
Ghosh (2009).

1. Introduction and main results. The subject of sharing values
between entire functions and their derivatives was first studied by Rubel
and Yang [17]. They proved in 1977 that if a non-constant entire function
f and its first derivative f ′ share two distinct finite numbers a, b CM, then
f = f ′. Since then, sharing value problems have been studied by many
authors and a number of profound results have been obtained (see, e.g.,
[2, 8]).

In order to state our main results, we need the following concepts and
definitions.

Definition. The order of a meromorphic function f is defined by

ρ(f) = lim
r→∞

log T (r, f)
log r

.

Let f, g be two entire functions, and let α be a function or a constant. If
f − α and g − α have the same zeros, then we say f and g share α IM and
write f(z) = α(z) ⇔ g(z) = α(z). Moreover, if, for all z, f(z) − α(z) = 0
implies g(z)− α(z) = 0 then we write f(z) = α(z)⇒ g(z) = α(z). In what
follows, we assume that the reader is familiar with the basic notation and
results of the Nevanlinna value distribution theory (see [20]).

In 1986, G. Jank, E. Mues and L. Volkmann [9] proved
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Theorem A. Let f be an entire function. If f and f ′ share a finite
non-zero value a IM, and if f ′′(z) = a whenever f(z) = a, then f = f ′.

In 2002, J. M. Chang and M. L. Fang [4] replaced the constant a by the
function z in Theorem A and derived

Theorem B. Let f be a non-constant entire function. If

f(z) = z ⇔ f ′(z) = z, f ′(z) = z ⇒ f ′′(z) = z,

then f = f ′.

In 2003, J. M. Chang [3] improved Theorem B and proved

Theorem C. Let f be a non-constant entire function and α be a mero-
morphic function satisfying T (r, α) = S(r, f) and α 6= α′. If

f(z) = α⇔ f ′(z) = α, f ′(z) = α⇒ f ′′(z) = α,

then f = f ′.

Recently, I. Lahiri and G. K. Ghosh [10] extended Theorem B in another
direction, replacing the function z by a polynomial of degree 1:

Theorem D. Let f be a non-constant entire function and a = αz + β,
where α (6= 0) and β are constants. If

f(z) = a⇒ f ′(z) = a, f ′(z) = a⇒ f ′′(z) = a,

then either f(z) = A exp{z} or

f(z) = αz + β + (αz + β − 2α) exp
{
αz + β − 2α

α

}
.

In 2010, F. Lü and H. X. Yi [14] obtained a similar result:

Theorem E. Let f be a non-constant transcendental meromorphic func-
tion with finitely many poles, and let R be a non-zero rational function. If

f(z) = R(z)⇒ f ′(z) = R(z), f ′(z) = R(z)⇒ f ′′(z) = R(z),

then f = f ′ or f ′(z) = A[R(z) − R′(z)]ez + R′(z), where A is a non-zero
constant.

It is natural to ask whether the conditions of Theorems D and E can be
weakened or not. In this work, we derive the following result.

Theorem 1.1. Let f be a non-constant entire function, and let α = PeQ

(α 6= α′) be an entire function satisfying ρ(α) < ρ(f), where P (6= 0) and
Q are polynomials. If f(z) = α(z) ⇒ f ′(z) = α(z) and f ′(z) = α(z) ⇒
f ′′(z) = α(z), then one of the following cases holds:

(a) f = f ′;
(b) f ′(z) = A[α(z) − α′(z)]ez + α′(z) and α reduces to a polynomial,

where A is a non-zero constant.
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Remark 1. The condition ρ(α) < ρ(f) plays an important part in the
proof of Theorem 1.1. But we do not know whether it is necessary or not.

Remark 2. By a refined calculation, we can deduce that case (b) in
Theorem 1.1 cannot occur if degP ≤ 2. This will be proved in the last
section. But, if degP ≥ 3, case (b) cannot be deleted, as shown by the
following example.

Example 1. Let α(z) = z3 + 6z2 + 12z + 12 and f(z) = z3Aez + z3 +
6z2 + 12z + 12, where A = e3 is a constant. Differentiating f twice yields

f ′(z) = (z3+3z2)Aez+3z2+12z+12, f ′′(z) = (z3+6z2+6z)Aez+6z+12.

It is not difficult to deduce that

f(z)−α(z) = 0⇒ f ′(z)−α(z) = 0, f ′(z)−α(z) = 0⇒ f ′′(z)−α(z) = 0.

Thus, case (b) occurs.

The following corollary is an immediate consequence of Theorem 1.1 and
Remark 2.

Corollary 1.2. Let f be a transcendental entire function, and letP (6= 0)
be a polynomial with degP ≤ 2. If

f(z) = P (z)⇒ f ′(z) = P (z), f ′(z) = P (z)⇒ f ′′(z) = P (z),

then f = f ′.

Remark 3. The following example shows that the assumption in Corol-
lary 1.2 that f is a transcendental entire function is necessary.

Example 2. Let f(z) = 2z2−4z+4 and P (z) = z2. Then f(z)−P (z) =
(z−2)2, f ′(z)−P (z) = −(z−2)2 and f ′′(z)−P (z) = (2−z)(2+z). It is easy
to see that f(z) = P (z)⇒ f ′(z) = P (z) and f ′(z) = P (z)⇒ f ′′(z) = P (z),
but f 6= f ′.

In the proof of Theorem 1.1, we need that f is of finite order. Therefore,
we will first prove it. In fact, using the theory of normal families we will
obtain the following result of independent interest.

Theorem 1.3. Let f be a non-constant entire function, and let α = PeQ

(α 6= α′) where P (6= 0) and Q are polynomials. If f(z) = α(z) ⇒ f ′(z) =
α(z) and f ′(z) = α(z)⇒ f ′′(z) = α(z), then f is of finite order.

Remark 4. With a similar analysis, if the first derivative f ′ is replaced
by the kth derivative f (k), then Theorem 1.3 still holds.

Remark 5. The proof of Theorem 1.1 is based on [4] and [19]. The proof
of Theorem 1.3 is based on [7] and [12].



84 F. Lü and J. F. Xu

2. Some lemmas. In the proofs of our main results, we need some key
lemmas, recalled below for the convenience of the reader.

Using the ideas of [12, Lemma 1] and the famous Pang–Zalcman Lemma
[16], F. Lü, J. F. Xu and A. Chen [13] obtained the following result, which
plays an important part in the proof of Theorem 1.3.

Lemma 2.1 ([13]). Let {fn} be a family of functions meromorphic (resp.
analytic) on the unit disc 4. If an → a, |a| < 1, f ]n(an) → ∞, and if there
exists A ≥ 1 such that |f ′(z)| ≤ A whenever f(z) = 0, then there exist

(a) a subsequence of fn (still denoted {fn}),
(b) points zn → z0, |z0| < 1,
(c) positive numbers ρn → 0,

such that ρ−1
n fn(zn + ρnξ) = gn(ξ) → g(ξ) locally uniformly, where g is a

non-constant meromorphic (resp. entire) function on C such that ρ(g) ≤ 2
(resp. ρ(g) ≤ 1), g](ξ) ≤ g](0) = A+ 1 and

ρn ≤
M

f ]n(an)
,

where M is a constant which is independent of n.
Here, as usual, g](ξ) = |g′(ξ)|/(1 + |g(ξ)|2) is the spherical derivative.

Lemma 2.2 ([12]). Let f be a meromorphic function of infinite order
on C. Then there exist points zn →∞ such that for every N > 0, f ](zn) >
|zn|N if n is sufficiently large.

Lemma 2.3 ([5]). Let g be a non-constant entire function with order ρ(g)
≤ 1, let k ≥ 2 be an integer, and let a be a non-zero finite value. If g(z) = 0
⇒ g′(z) = a and g′(z) = a⇒ g(k)(z) = 0, then g(z) = a(z− z0), where z0 is
a constant.

Lemma 2.4 ([20]). Let f be an entire function of finite order and k be a
positive integer. Then

m(r, f (k)/f) = O(log r) as r →∞.

We also need a result from the theory of differential equations. First, we
give a definition and a notation.

Consider a rational function R which behaves asymptotically as crβ as
r → ∞, where c 6= 0, β are constants. Define the degree of R at infinity as
deg∞R = max{0, β}.

We consider the linear differential equation

(2.1) f (n) + an−1f
(n−1) + · · ·+ a1f

′ + a0f = 0, a0 6= 0,

where a0, a1, . . . , an−1 are rational functions.
The following lemma is essential to the proof of Theorem 1.1.
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Lemma 2.5 ([11]). Let f be a meromorphic solution of (2.1), and let αj
denote the degree of aj at infinity, j = 0, 1, . . . , n− 1. Then

ρ(f) ≤ 1 + max
j=0,1,...,n−1

αj
n− j

.

Lemma 2.6. Let f and α be meromorphic functions with ρ(α) < ρ(f).
Then there exists a set I = {rn}∞n=1 such that rn → ∞ and T (rn, α) =
o(T (rn, f)) as n→∞.

Proof. By the definition of the order, for any ε > 0, there exists a set
I = {rn}∞n=1 (rn →∞ as n→∞) satisfying

T (rn, α) ≤ rρ(α)+ε
n , T (rn, f) ≥ rρ(f)−ε

n .

Take 0 < ε < (ρ(f)− ρ(α))/2, that is, ρ(α)− ρ(f) + 2ε < 0. Then

lim
n→∞

T (rn, α)
T (rn, f)

≤ lim
n→∞

r
ρ(α)+ε
n

r
ρ(f)−ε
n

≤ lim
n→∞

rρ(α)−ρ(f)+2ε
n = 0,

which implies that T (rn, α) = o(T (rn, f)) as n→∞.

In the case of Lemma 2.6, we say that α is a small function of f on I
and write T (r, α) = S(r, f) (r ∈ I).

3. Proof of Theorem 1.3. In the proof, we use some ideas of [7]. For
the convenience of the reader, we present the proof in detail.

Let H = f − α. Then we have

(1) H = 0⇒ H ′ = α− α′, (2) H ′ = α− α′ ⇒ H ′′ = α− α′′.
Put β = α−α′ = P1e

Q and γ = α−α′′ = P2e
Q, where P1 ( 6= 0) and P2 are

polynomials.
Define F = H/β. We distinguish two cases.

Case 1: F is of finite order. Then f = Fβ + α is of finite order as well.

Case 2: F is of infinite order. By Lemma 2.2, there exist wn →∞ such
that for every N > 0, if n is sufficiently large,

(3.1) F ](wn) > |wn|N .
Next, we construct a family of holomorphic functions.
Obviously, β = P1e

Q has only finitely many zeros, so there exists r > 0
such that F (z) is analytic in D = {z : |z| ≥ r}. Since wn → ∞ as n → ∞,
we may assume |wn| ≥ r + 1 for all n. Define D1 = {z : |z| < 1} and

Fn(z) = F (wn + z) =
H(wn + z)
β(wn + z)

.

Noting that |wn| ≥ r + 1 for all n, we have, for each z ∈ D1,

|wn + z| ≥ |wn| − |z| ≥ r,
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so wn+ z ∈ D for each z ∈ D1. As F (z) is analytic in D, Fn(z) = F (wn+ z)
is analytic in D1. Thus, we have constructed a family (Fn)n of holomorphic
functions.

Now, fix z ∈ D1. If Fn(z) = 0, then H(wn + z) = 0. It is clear from
assumption (1) that H ′(wn + z) = β(wn + z). Hence (for n large enough)

(3.2) |F ′n(z)| =
∣∣∣∣H ′(wn + z)
β(wn + z)

− H(wn + z)
β(wn + z)

β′(wn + z)
β(wn + z)

∣∣∣∣ = 1.

In what follows, we prove that (Fn)n is normal at z = 0.
Otherwise, by Lemma 2.1, passing to an appropriate subsequence of

(Fn)n if necessary, we may assume that there exist sequences (zn)n and
(ρn)n such that |zn| < r < 1, ρn → 0 and

(3.3) gn(ζ) = ρ−1
n Fn(zn + ρnζ) = ρ−1

n

H(wn + zn + ρnζ)
β(wn + zn + ρnζ)

→ g(ζ)

locally uniformly in C, where g is a non-constant entire function of order at
most 1. Moreover, g](ζ) ≤ g](0) = 2 for all ζ ∈ C and

(3.4) ρn ≤
M

F ]n(0)
=

M

F ](wn)

for a positive number M . From (3.1) and (3.4), we deduce that, for every
N > 0, if n is sufficiently large,

(3.5) ρn ≤M |wn|−N .
Differentiating (3.3), we have

g′n(ζ) =
H ′(wn + zn + ρnζ)
β(wn + zn + ρnζ)

− H(wn + zn + ρnζ)
β(wn + zn + ρnζ)

β′(wn + zn + ρnζ)
β(wn + zn + ρnζ)

(3.6)

=
H ′(wn + zn + ρnζ)
β(wn + zn + ρnζ)

− ρngn(ζ)
β′(wn + zn + ρnζ)
β(wn + zn + ρnζ)

→ g′(ζ).

From (3.5), we deduce that

(3.7) ρngn(ζ)
β′(wn + zn + ρnζ)
β(wn + zn + ρnζ)

= ρngn(ζ)
P3(wn + zn + ρnζ)
P1(wn + zn + ρnζ)

→ 0,

where P3 is a polynomial.
Combining (3.6) and (3.7) yields

(3.8)
H ′(wn + zn + ρnζ)
β(wn + zn + ρnζ)

→ g′(ζ).

In a similar way, we can obtain

(3.9) ρn
H ′′(wn + zn + ρnζ)
β(wn + zn + ρnζ)

→ g′′(ζ).

In the following, we will prove:
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(I) g(ζ) = 0⇒ g′(ζ) = 1,
(II) g′(ζ) = 1⇒ g′′(ζ) = 0.

For (I), suppose that g(ζ0) = 0. Then by Hurwitz’s theorem and (3.3),
there exist ζn → ζ0 such that (for n sufficiently large)

gn(ζn) = ρ−1
n

H(wn + zn + ρnζn)
β(wn + zn + ρnζn)

= 0.

Thus H(wn + zn + ρnζn) = 0 and

H ′(wn + zn + ρnζn) = β(wn + zn + ρnζn).

By (3.8), we derive that

g′(ζ0) = lim
n→∞

H ′(wn + zn + ρnζn)
β(wn + zn + ρnζn)

= 1,

which implies that g(ζ) = 0⇒ g′(ζ) = 0.
To prove (II), suppose that g′(η0) = 1. We know g′ 6≡ 1, since otherwise

g](0) ≤ 1 < 2, a contradiction. Hence by (3.8) and Hurwitz’s theorem, there
exist ηn → η0 such that (for n sufficiently large)

H ′(wn + zn + ρnηn) = β(wn + zn + ρnηn).

It is obvious from (2) that H ′′(wn + zn + ρnηn) = γ(wn + zn + ρnηn). Then

g′′(η0) = lim
n→∞

ρn
H ′′(wn + zn + ρnηn)
β(wn + zn + ρnηn)

= lim
n→∞

ρn
γ(wn + zn + ρnηn)
β(wn + zn + ρnηn)

= lim
n→∞

ρn
P2(wn + zn + ρnηn)
P1(wn + zn + ρnηn)

= 0,

which yields (II).
From Lemma 2.3, it is easy to deduce that g(ζ) = ζ − b0, where b0 is a

constant; then g](0) ≤ 1 < 2, which is also a contradiction.
All the foregoing discussion shows that (Fn)n is normal at z = 0.
On the other hand, it follows from F ]n(0) = F ](wn)→∞ as n→∞ and

Marty’s criterion that (Fn)n is not normal at z = 0, a contradiction. Hence,
Case 2 cannot occur.

This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.1. If degQ = 0, then α reduces to a polyno-
mial. Therefore, by Theorem E, we obtain the desired result.

In the following, we suppose that degQ ≥ 1.
From Theorem 1.3, we know that f is of finite order. Let β = α−α′ and

F = f − α. By assumption, we have

(I) F (z) = 0⇒ F ′(z) = β(z), (II) F ′(z) = β(z)⇒ F ′′(z) = β(z) + β′(z).
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Put

(4.1) φ =
βF ′′ − (β + β′)F ′

F
.

It follows from Lemma 2.6 that α, β are small functions of f and F on I,
where I = {rn}∞n=1 is as in Lemma 2.6.

In the following, we assume that r ∈ I. If T (r, g) = o(T (r, f)) on I,
for brevity we omit I and just say that g is a small function of f and
T (r, g) = S(r, f).

If φ = 0, then βF ′′ − (β + β′)F ′ = 0. Integrating this yields

F ′(z) = Aβ(z)ez = A(α(z)−α′(z))ez = A(P (z)−P (z)Q′(z)−P ′(z))eQ(z)+z,

where A is a non-zero constant. From the form of F ′, we deduce that

(4.2) degQ = ρ(α) < ρ(f) = ρ(F ) = ρ(F ′) = deg(Q(z) + z),

which implies that Q is a constant, a contradiction.
Now suppose that φ 6= 0. By the lemma of logarithmic derivative, we

have m(r, φ) = S(r, F ). From assumption (II), it is easy to deduce that the
simple zeros of F are not poles of φ. And by (I), F has only finitely many
multiple zeros, that is, N(2(r, 1/F ) = O(log r) = S(r, F ). Noting that all
poles of φ come from zeros of F , from the above discussion we get N(r, φ) ≤
N(2(r, 1/F ) = S(r, F ). Thus, T (r, φ) = m(r, φ) + N(r, φ) = S(r, F ), which
means that φ is a small function of F .

Rewrite (4.1) as

(4.3) F =
β

φ
F ′′ − β + β′

φ
F ′.

By differentiating (4.3), we have

(4.4) F ′ =
(
β

φ

)′
F ′′ +

β

φ
F ′′′ −

(
β + β′

φ

)′
F ′ − β + β′

φ
F ′′,

which implies that

(4.5)
[
1 +

(
β + β′

φ

)′]
F ′ =

[(
β

φ

)′
− β + β′

φ

]
F ′′ +

β

φ
F ′′′.

First, we assume that 1 +
(β+β′

φ

)′ = 0. Then the above equation implies[(
β

φ

)′
− β + β′

φ

]
F ′′ +

β

φ
F ′′′ = 0.

Rewrite this as

(4.6)
F ′′′

F ′′
= 1 +

β′

β
−

(β
φ

)′
β
φ

.
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By integrating, we derive that

F ′′ = Bφez,

where B is a non-zero constant. Noting that degQ ≥ 1, we have ρ(ez) ≤
ρ(β) < ρ(f) = ρ(F ). Thus, by Lemma 2.6, ez is a small function of f and F ,
that is, T (r, ez) = S(r, F ). Then, it follows from the form of F ′′ that

T (r, F ′′) ≤ T (r, ez) + T (r, φ) + S(r, F ) = S(r, F ) = S(r, F ′′),

a contradiction.
Next, we assume that 1 +

(β+β′

φ

)′ 6= 0. Rewrite (4.5) as[
1 +

(
β + β′

φ

)′]
[F ′ − β] +

[
1 +

(
β + β′

φ

)′]
β

=
[(

β

φ

)′
− β + β′

φ

]
[F ′′ − β′] +

[(
β

φ

)′
− β + β′

φ

]
β′ +

β

φ
[F ′′′ − β′′] +

β

φ
β′′.

Define

A1 = 1 +
(
β + β′

φ

)′
, A2 =

(
β

φ

)′
− β + β′

φ
,

A3 =
β

φ
, A4 =

[
1 +

(
β + β′

φ

)′]
β −

[(
β

φ

)′
− β + β′

φ

]
β′ − β

φ
β′′.

Obviously, Ai (i = 1, . . . , 4) are small functions of F . Then we can rewrite
the above equation as

(4.7) A4 = A2[F ′′ − β′] +A3[F ′′′ − β′′]−A1[F ′ − β].

We consider two cases.

Case 1: A4 = 0. A routine calculation leads to

2β′φ+ φ2 − βφ′ = 0.

Furthermore, we have
(β2

φ

)′ = −β.
Put K ′ = β; then K ′′ = β′, K ′′′ = β′′, where K is a primitive function

of β. Thus,

(4.8) φ = −K
′2

K
.

Observing that K ′ = β = α − α′ = P1e
Q, where P1 is a polynomial, we

deduce that K = P2e
Q + C, where P2 is a polynomial and C is a constant.

We claim that C = 0. Indeed, assume C 6= 0. We have

(4.9) − K ′2

K
= φ =

K ′F ′′ − (K ′ +K ′′)F ′

F
.
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Thus, by the left side of (4.9),

(4.10) T (r, φ) = T

(
r,−K

′2

K

)
= T

(
r,− (P1)2e2Q

P2eQ + C

)
= 2T (r, eQ)+S(r, eQ),

while by the right side of (4.9) and Lemma 2.4,

T (r, φ) = m

(
r,
K ′F ′′ − (K ′ +K ′′)F ′

F

)
+N

(
r,
K ′F ′′ − (K ′ +K ′′)F ′

F

)(4.11)

= m

(
r,
K ′[F ′′ − (1 + K′′

K′ )F ′]
F

)
+N(r, φ)

≤ m
(
r,
K ′[F ′′ − (1 + K′′

K′ )F ′]
F

)
+O(log r)

≤ m(r,K ′) +m

(
r,
F ′′

F

)
+m

(
r,
F ′

F

)
+m

(
r, 1 +

K ′′

K ′

)
+O(log r)

= T (r, eQ) +O(log r).

Comparing (4.10) and (4.11), we have T (r, eQ) ≤ S(r, eQ) + O(log r), a
contradiction.

Thus, the claim is true: K = P2e
Q. It is easy to deduce that K ′′ = P3e

Q,
where P3 is a polynomial. Furthermore,

(4.12) deg(P1) = deg(P2) + deg(Q′), deg(P3) = deg(P2) + 2 deg(Q′).

From (4.9), we derive that

(4.13) F ′′ +R1F
′ +R2F = 0,

where

R1 = −
(

1 +
K ′′

K ′

)
= −

(
1 +

P3

P1

)
, R2 =

K ′

K
=
P1

P2

are rational functions with deg(R1) = deg(R2) = deg(Q′).
It follows from Lemma 2.5 that

ρ(f) ≤ 1 + max{deg(R1),deg(R2)/2} = 1 + deg(Q′)
= deg(Q) = ρ(α) < ρ(f),

a contradiction. Thus, this case is impossible.

Case 2. A4 6= 0. Then

(4.14)
A4

F ′ − β
= A2

F ′′ − β′

F ′ − β
+A3

F ′′′ − β′′

F ′ − β
−A1.
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Thus, by the lemma of logarithmic derivative, we obtain

(4.15) m

(
r,

1
F ′ − β

)
≤ m

(
r,

A4

F ′ − β

)
+m

(
r,

1
A4

)
≤ m

(
r,A2

F ′′ − β′

F ′ − β
+A3

F ′′′ − β′′

F ′ − β
−A1

)
+ S(r, F ) ≤ S(r, F ).

Then

(4.16) N

(
r,

1
F ′ − β

)
= T (r, F ′ − β) + S(r, F ) = T (r, F ′) + S(r, F ).

Next we will prove N
(
r, 1
F ′−β

)
= N

(
r, 1
F

)
+ S(r, F ).

Denote by N(r, β;F ′ | F 6= 0) the counting function of those 0-points of
F ′ − β, counted with multiplicity, which are not 0-points of F ; and denote
by N(r, β;F ′ | F = 0) the counting function of the remaining 0-points of
F ′ − β.

Suppose z0 is a zero of F ′ − β of multiplicity m, and not a zero of F .
By (4.1), z0 is also a zero of φ. Moreover, it follows from the fact F ′ = β ⇒
F ′′ = β − β′ that F ′ − β has finitely many multiple zeros, which means
N(2

(
r, 1
F ′−β

)
= O(log r) = S(r, F ). Therefore,

(4.17) N(r, β;F ′ | F 6= 0) ≤ N
(
r,

1
φ

)
+N(2

(
r,

1
F ′ − β

)
= S(r, F ).

Furthermore, by (II), we have

N

(
r,

1
F ′ − β

)
= N(r, β;F ′ | F 6= 0) +N(r, β;F ′ | F = 0)(4.18)

≤ N
(
r,

1
F

)
+N(2

(
r,

1
F ′ − β

)
+ S(r, F )

= N

(
r,

1
F

)
+ S(r, F ).

On the other hand, from (I), we obtain N(2(r, 1/F ) = O(log r) = S(r, F ).
Moreover, (I) implies

(4.19) N

(
r,

1
F

)
≤N

(
r,

1
F ′−β

)
+N(2

(
r,

1
F

)
=N

(
r,

1
F ′−β

)
+S(r, F ).

Combining (4.18) and (4.19) yields

N

(
r,

1
F ′ − β

)
= N

(
r,

1
F

)
+ S(r, F ).

as desired.
Rewrite (4.1) as

(4.20) F =
βF ′′ − (β + β′)F ′

φ
.
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Then

(4.21) T (r, F ) = m(r, F ) = m

(
r,
βF ′′ − (β + β′)F ′

φ

)
= m

(
r,
F ′[β F

′′

F ′ − (β + β′)]
φ

)
≤ m(r, F ′) + S

(
r,
β

φ

F ′′

F ′

)
+m

(
r,
β + β′

φ

)
+O(1)

= m(r, F ′) + S(r, F ) = T (r, F ′) + S(r, F ) ≤ T (r, F ) + S(r, F ),

which implies that

(4.22) T (r, F ′) = T (r, F ) + S(r, F ).

Furthermore, the above discussion yields

N

(
r,

1
F

)
+m

(
r,

1
F

)
= T (r, F ) + S(r, F ) = T (r, F ′) + S(r, F )(4.23)

= T (r, F ′ − β) + S(r, F ) = T

(
r,

1
F ′ − β

)
+ S(r, F )

= m

(
r,

1
F ′ − β

)
+N

(
r,

1
F ′ − β

)
+ S(r, F )

= N

(
r,

1
F ′ − β

)
+ S(r, F ) = N

(
r,

1
F

)
+ S(r, F ),

which indicates that m(r, 1/F ) = S(r, F ).
Define

(4.24) ϕ =
F ′ − β
F

.

If ϕ = 0, then F ′ = β, a contradiction. Thus, ϕ 6= 0. By (I) and the
lemma of logarithmic derivative, it is easy to see that N(r, ϕ) = S(r, F ) and
m(r, ϕ) ≤ m(r, F ′/F ) +m(r, β) +m(r, 1/F ) +O(1) = S(r, F ). Thus,

(4.25) T (r, ϕ) = m(r, ϕ) +N(r, ϕ) = S(r, F ).

Rewrite (4.24) as

(4.26) F ′ = ϕF + β.

By differentiating (4.26), we have

(4.27) F ′′ = ϕ′F + ϕF ′ + β′ = (ϕ′ + ϕ2)F + β′ + ϕβ.

Assume that c0 is a zero of F , hence of F ′′ − (β + β′). Substituting c0 into
(4.27) yields β(c0)(1− ϕ(c0)) = 0.
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If β(1− ϕ) 6= 0, then by (4.16), we derive that

T (r, F ′) = N

(
r,

1
F ′ − β

)
+ S(r, F ) = N

(
r,

1
F

)
+ S(r, F )

≤ N
(
r,

1
β(1− ϕ)

)
+S(r, F ) = T (r, β(1− ϕ))+S(r, F ) = S(r, F ),

a contradiction. Hence β(1−ϕ) = 0, so obviously 1 = ϕ. Thus, from (4.26),
we have F ′ − β = F , that is, f = f ′.

This completes the proof of the theorem.

5. Supplement to Theorem 1.1. In Remark 2, we claim that if
degP ≤ 2, then case (b) cannot occur. Indeed, suppose that it can. Let
β = α − α′ and F = f − α. Noting that α reduces to a polynomial in
case (b), we have deg β = degα = degP . By assumption,

(I) F (z) = 0⇒ F ′(z) = β(z), (II) F ′(z) = β(z)⇒ F ′′(z) = β(z) + β′(z).

From case (b),

(5.1) F ′(z) = Aβ(z)ez,

where A is a non-zero constant. Integrating (5.1) yields

(5.2) F (z) = Aκ(z)ez + c,

where κ is a polynomial with

(5.3) deg κ = degP and κ+ κ′ = β.

Suppose that c 6= 0. Then, from (I), we have

Aκ(z)ez + c = 0⇒ β(z)(Aez − 1) = 0,

a contradiction. Thus c = 0 and

(5.4) F (z) = Aκ(z)ez.

Differentiating (5.4) twice yields

F ′(z) = A[κ(z) + κ′(z)]ez = Aβ(z)ez,(5.5)
F ′′(z) = A[κ(z) + 2κ′(z) + κ′′(z)]ez = A[β(z) + β′(z)]ez.(5.6)

We consider three cases.

Case 1: degP = 0. Then α is a constant and it follows from Theorem A
that f = f ′.

Case 2: degP = 1. Then deg κ= degP = 1. Assume that κ(z) =Bz+C,
where B 6= 0 and C are constants. By (5.3), we have β(z) = Bz + B + C.
Substituting κ(z) = Bz + C into (5.5) and (5.6) yields

F ′(z) = A[Bz +B + C]ez,(5.7)
F ′′(z) = A[Bz + 2B + C]ez.(5.8)
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Observing that z = −C/B is a zero of F and (I), we deduce that z = −C/B
is also a zero of F ′− β. Putting z = −C/B into F ′− β = 0, we deduce that
Ae−C/B = 1. Similarly, z = −(B + C)/B is a zero of F ′−β and F ′′−(β+β′).
Putting z = −B+C

B into F ′′ − (β + β′), we obtain Ae−1−C/B = 1. By the
two formulas, we deduce that e−1 = 1, a contradiction.

Case 3: degP = 2. Then deg κ = degP = 2. Assume that κ(z) =
az2+bz+c, where a 6= 0, b, c are constants. Substituting κ(z) = az2+bz+c
into (5.4)–(5.6) yields

F (z) = A[az2 + bz + c]ez,(5.9)
F ′(z) = A[az2 + (2a+ b)z + b+ c]ez,(5.10)
F ′′(z) = A[az2 + (4a+ b)z + 2a+ 2b+ c]ez.(5.11)

We consider two subcases.

Subcase 1: κ has two distinct zeros zi (i = 1, 2). Then z1,2 =
(−b±

√
b2 − 4ac)/(2a) and zi (i = 1, 2) is a simple zero of κ. Thus, κ′(zi) 6= 0

and β(zi) = κ′(zi) + κ(zi) 6= 0 (i = 1, 2).
So, it follows from (I) that Aezi = 1 (i = 1, 2). Putting the form of zi

into Aezi = 1 (i = 1, 2), we easily deduce that

(5.12) b2 − 4ac = −4a2k2π2,

where k 6= 0 is an integer.
From (5.10), we have

(5.13) F ′(z)− β(z) = [az2 + (2a+ b)z + b+ c][Aez − 1].

We know that β(z) = az2 + (2a+ b)z + b+ c has two distinct simple zeros.
In fact, by (5.12), we have

∆1 = (2a+ b)2 − 4a(b+ c) = 4a2 + b2 − 4ac = 4a2[1− k2π2] 6= 0,

thus, β(z) has two distinct simple zeros z3,4 = −(2a+b)±
√

4a2+b2−4ac
2a . Obvi-

ously, β′(zi) 6= 0 and β′(zi) + β(zi) 6= 0 (i = 3, 4). Then (II) yields Aezi = 1
(i = 3, 4). As above, we deduce that

(5.14) ∆1 = 4a2(1− k2π2) = −4a2m2π2,

where m 6= 0 is an integer. This implies that (k2 − m2)π2 = 1, which is
impossible.

Subcase 2: κ has a double zero z5. Similarly to the above discussion, we
have

(5.15) b2 = 4ac.

Noting that β(z) = az2 + (2a + b)z + b + c, from (5.15), we have ∆2 =
(2a+ b)2−4a(b+ c) = 4a2 + b2−4ac = 4a2 6= 0. Thus, β(z) has two distinct
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simple zeros z6 = −b/(2a) − 2 and z7 = −b/(2a). As in the last argument
of Subcase 1, we deduce that

Ae−b/(2a)−2 = 1 and Ae−b/(2a) = 1.

From the two formules, we derive that e−2 = 1, a contradiction.
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