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The principle of moduli flexibility for
real algebraic manifolds

by Edoardo Ballico and Riccardo Ghiloni (Trento)

Abstract. Given a real closed field R, we define a real algebraic manifold as an
irreducible nonsingular algebraic subset of some Rn. This paper deals with deformations
of real algebraic manifolds. The main purpose is to prove rigorously the reasonableness of
the following principle, which is in sharp contrast with the compact complex case: “The
algebraic structure of every real algebraic manifold of positive dimension can be deformed
by an arbitrarily large number of effective parameters”.

1. Introduction and main result

1.1. Introduction. This paper deals with deformations of real algebraic
structures on Nash manifolds. Our main purpose is to show that, in positive
dimension, such deformations can depend on an arbitrarily large number of
effective parameters. Our point of view is purely real.

In order to specify the meaning we give to “purely real” and hence to
place our results in the correct setting, we need to recall some basic facts
concerning the notion of deformation.

The notion of deformation originated in complex analytic geometry. De-
formations of the complex structure of a compact complex analytic mani-
fold have been studied since the time of Riemann. Let B be a domain of
Cb containing 0. A set M = {Mt}t∈B of compact complex analytic mani-
folds, parametrized by B, is said to be a complex analytic family of compact
complex analytic manifolds if there exist a complex analytic manifold M
and a proper holomorphic map π : M → B such that Mt ' π−1(t) for
each t ∈ B. Here Mt ' π−1(t) means that Mt is biholomorphically iso-
morphic to π−1(t). Suppose π has the above properties and hence M is a
complex analytic family. As a differentiable map, π is locally trivial. More
precisely, for each t ∈ B and for each open ball U of Cb centered at t and
contained in B, there exists a differentiable map π′ : π−1(U) → π−1(t)
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such that, denoting by π| : π−1(U) → U the restriction of π, the map

π| × π′ : π−1(U) → U × π−1(t) is a diffeomorphism. It follows that Mt is
diffeomorphic to Ms for each t, s ∈ B. In this sense, M can be considered
as a family of complex structures on the compact differentiable manifold
underlying M0, holomorphically dependent on t ∈ B.

Fix a compact complex analytic manifold M . The complex analytic fami-
ly M is called a deformation of M if M 'M0.

In the context of deformations, a first basic problem is as follows:

Problem. How many effective parameters can a deformation of M de-
pend on?

Riemann himself treated this problem in the one-dimensional case, prov-
ing that the number of effective parameters on which a deformation of his
surfaces of genus g ≥ 2 can depend is ≤ 3g − 3 and hence it is finite. Later,
in the famous papers [34], Kodaira and Spencer discovered that a key tool
to understand the nature of this problem is the first cohomology complex
vector space H1(M,ΘM ) of M with coefficients in its sheaf ΘM of germs
of holomorphic vector fields. Their starting idea was to consider M as a
finite number of polydiscs glued together via certain biholomorphic identi-
fications and to interpret the deformations of M as holomorphic variations
of such identifications. Quite naturally, these variations can be represented
by the elements of H1(M,ΘM ), called infinitesimal deformations of M . The
compactness of M is not only crucial to defining the notion of infinitesimal
deformation, but it also ensures that the complex dimension of H1(M,ΘM ),
which we denote by hM , is finite. With regard to the preceding problem, the
importance of H1(M,ΘM ) was fully clarified by Kuranishi [37]. He proved
that there exist a complex analytic subset K of an open neighborhood of 0
in ChM and a holomorphic map θ : K → K from a complex analytic space
K to K such that 0 ∈ K, θ−1(s) is a compact complex analytic manifold for
each s ∈ K, θ−1(0) ' M and, for each deformation {Mt}t∈B of M with B
sufficiently small around 0, there exists a holomorphic map ϕ : B → K such
that ϕ(0) = 0 and Mt ' θ−1(ϕ(t)) for each t ∈ B.

A philosophical consequence of this completeness result is that the com-
plex analytic structure of every compact complex analytic manifold can be
deformed by an at most finite number of effective parameters.

The latter assertion can be made precise in several ways, depending
on the meaning we give to the term “effective parameters”. Kodaira and
Spencer themselves furnished in [34] a definition of effectively parametrized
family {Mt}t∈B of compact complex analytic manifolds by requiring that
each linear map Tt(B) → H1(Mt, ΘMt), sending tangent vectors of B at t
to the corresponding infinitesimal deformations of Mt, is injective (see also
[33]). However, the aforementioned completeness theorem of Kuranishi sug-
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gests different, and more elementary, ways of defining the notion of effective-
ness of parameters. Let M = {Mt}t∈B be a deformation of M , parametrized
by a domain B of some Cb. We can say that M is perfectly parametrized if
Mt 6' Ms for each t, s ∈ B with t 6= s, where Mt 6' Ms means that Mt is
not biholomorphically isomorphic to Ms. A weaker notion of effectiveness of
parameters is as follows: we can say that M is almost perfectly parametrized
if, for each t ∈ B, the set {s ∈ B | Ms ' Mt} is finite. Evidently, if M is
almost perfectly parametrized, then Kuranishi’s result implies that b ≤ hM .
In the next subsection, the above notions of perfectly parametrized defor-
mation and of almost perfectly parametrized deformation will be suitably
reformulated in our real setting.

It is important to remark that, in contrast to the compact case, the
deformations of noncompact complex analytic manifolds can depend on an
arbitrarily large number of effective parameters. We remind the reader of the
case of bounded domains of Cn, where n ≥ 2, for which a natural parameter
space is the set of their boundaries with the Hausdorff distance (see [23,
p. 289]).

In the setting of complex algebraic geometry, the notion of deformation
has a different, more algebraic, nature. In fact, it is deeply connected with the
moduli problem, that is, the problem of finding spaces, called moduli spaces,
that classify, up to complex biregular isomorphism, all the (irreducible) pro-
jective complex algebraic manifolds with assigned numerical invariants or
additional structures, like polarizations. In any case, since the projective
complex algebraic case is a particular case of the compact complex analytic
one, we can assert again that the complex algebraic structure of every pro-
jective complex algebraic manifold can be deformed by an at most finite
number of effective parameters.

In complex algebraic geometry, a real manifold is usually defined as a pair
(X,σ) in which X is a projective complex algebraic manifold and σ : X → X
is an anti-holomorphic involution. The real part of (X,σ) is the fixed point
set of σ. We will call (X,σ) a real-complex algebraic manifold and σ a
real-complex algebraic structure on X. A complex biregular isomorphism
between real-complex algebraic manifolds is said to be a real isomorphism
if it is invariant under anti-holomorphic involutions. By focusing on the
notions of real-complex algebraic manifold and of real isomorphism, the
moduli problem specializes to the real moduli problem. A very important
formulation of the latter problem is as follows: find spaces, called real moduli
spaces, that classify all real isomorphic classes of real-complex algebraic
manifolds (X,σ) with assigned numerical invariants by considering all the
possible topological types of the real parts of the (X,σ)’s. This is an old
question considered first by Klein and Weichold in the case of real-complex
curves of fixed genus, and later by Comessatti in the cases of real-complex
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surfaces and of real-complex abelian varieties. Presently, the real moduli
problem for real-complex curves of fixed genus is very well understood. In
higher dimensions, the case of real-complex surfaces represents a very active
and fascinating field of research. For these topics, we refer the reader to
the following selection of titles and to the references mentioned therein:
[5, 9, 10, 11, 12, 13, 15, 16, 19, 20, 21, 22, 28, 29, 30, 36, 39, 42, 43].

In the real-complex setting, we do not know a general result which en-
sures that the real-complex algebraic structure of every real-complex al-
gebraic manifold can be deformed by an at most finite number of effec-
tive parameters. However, it is evident that, if the real isomorphic class of
a given real-complex algebraic manifold (X,σ) belongs to a (coarse) real
moduli space R, then the maximum number of effective parameters of the
corresponding deformations of (X,σ) is less than or equal to the real di-
mension of R. An important example is the one of real-complex curves
(see [28, 39]). Furthermore, there are quite rigid examples: the complex
projective line P1(C), viewed as a differentiable surface, admits only two
real-complex algebraic structures and, for each nonnegative even integer n,
the differentiable 2n-manifold Pn(C) admits only one (see Exercises 1.10 and
1.12 of [35]).

In this paper, we treat the notion of deformation of algebraic structures
from the point of view of purely real algebraic geometry; that is, of the real
algebraic geometry systematically studied, as an independent discipline, in
the foundational book [6] and also in the books [1] and [4]. As far as we
know, this is the first time that such a treatment has been done.

Given a real closed field R, by a real algebraic set we simply mean the
set of solutions in some Rn of a polynomial system with coefficients in R.
If a real algebraic set is irreducible and nonsingular, then we call it a real
algebraic manifold.

Roughly speaking, from our point of view, a real-complex algebraic mani-
fold is a real algebraic manifold for which one of its nonsingular projective
complexifications has been fixed. This makes a real-complex algebraic mani-
fold rigid. Changing the point of view, one can say that a real algebraic
manifold is the germ of the real part of a real-complex algebraic manifold.
This makes a real algebraic manifold flexible.

As previously stated, the main aim of this paper is to make rigorous
the following informal principle (see Theorem 1.3 below), which is in sharp
contrast with the compact complex analytic, projective complex algebraic,
and real-complex algebraic cases.

Principle of real moduli flexibility. The algebraic structure of
every real algebraic manifold of positive dimension can be deformed by an
arbitrarily large number of effective parameters.
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Real algebraic geometers are accustomed to the plasticity of real alge-
braic objects. The above principle confirms and extends this plasticity. In
this sense, we can say that the principle was expected. The same is true in
the context of complex analytic and algebraic geometry. In fact, by conside-
ring only the germs of the real parts of real-complex algebraic manifolds, we
lose the “complex” compactness and hence there are no obstructions to the
validity of the principle.

1.2. Main result. Let us fix a real closed field R. As we have just said,
a real algebraic manifold is an irreducible nonsingular real algebraic set. Let
X be a real algebraic manifold. An irreducible nonsingular Zariski closed
subset of X is called a real algebraic submanifold of X. Given another real
algebraic manifold Y , we say that X and Y are birationally isomorphic,
and we write X ∼ Y , if there exists a biregular isomorphism from a Zariski
dense Zariski open subset of X to a Zariski dense Zariski open subset of Y .
If such a biregular isomorphism does not exist, then we say that X and Y
are birationally nonisomorphic and we write X � Y . In what follows, we will
use basic concepts and facts from real semi–algebraic and Nash geometry.
Our standard reference for these topics is [6] (see also [4, 41]).

Let us introduce the definition of algebraic real-deformation of a real
algebraic manifold.

Definition 1.1. Let V be a real algebraic manifold and let π : V → Rb

be a surjective regular map from a real algebraic manifold V to Rb. We
say that π is an algebraic real-deformation of V (parametrized by Rb) if
π is a submersion, π−1(y) is irreducible (and hence it is a real algebraic
submanifold of V) for each y ∈ Rb and there exists a regular map π′ : V → V
such that the map π × π′ : V → Rb × V is a Nash isomorphism and the
restriction of π′ to π−1(0) is a biregular isomorphism.

The reader can observe that an algebraic real-deformation of a real al-
gebraic manifold V , parametrized by Rb, can be interpreted as a family of
real algebraic structures on the Nash manifold underlying V , algebraically
dependent on y ∈ Rb, which coincides with the real algebraic structure of V
itself on y = 0.

Suppose now that π : V → Rb is an algebraic real-deformation of the
real algebraic manifold V . Define the map ρb : Rb×Rb → Rb and the subset
Sπ of Rb ×Rb by setting ρb(y, z) := y and

(1.1) Sπ := {(y, z) ∈ Rb ×Rb | π−1(y) ∼ π−1(z)}.

Definition 1.2. We say that π is perfectly parametrized by Rb if π−1(y)
� π−1(z) for each y, z ∈ Rb with y 6= z. Moreover, we say that π is al-
most perfectly parametrized by Rb if there exists a semialgebraic subset T
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of Rb ×Rb such that T contains Sπ and the restriction of ρb to T has finite
fibers.

The reader can observe that, if π is almost perfectly parametrized by Rb,
then there exists an integer L such that, for each y ∈ Rb, the cardinality of
the set {z ∈ Rb | π−1(y) ∼ π−1(z)} is ≤ L.

The main result of this paper is as follows.

Theorem 1.3. Every real algebraic manifold V of positive dimension
has the following property: for each nonnegative integer b, there exists an
algebraic real-deformation of V almost perfectly parametrized by Rb.

We do not know if, in the above statement, one can omit “almost”.
However, we conjecture that this is the case.

A version of the latter result was conjectured in point (i) of Remark 1.10
of [24]. In [17], Coste and Shiota proved that every connected affine Nash
manifold over R is Nash isomorphic to a real algebraic manifold. By com-
bining this result with Theorem 1.3, we immediately deduce that, given any
connected affine Nash manifold N over R of positive dimension, the set of
birationally nonisomorphic real algebraic manifolds which are Nash isomor-
phic to N has the same cardinality as R. In this way, we have rediscovered
Corollary 2 of [25] (see also [2, 8]).

The remainder of the paper is organized as follows. In Subsection 1.3,
we present the idea of the proof of Theorem 1.3. Section 2 deals with three
preparatory results we use in Section 3 to prove Theorem 1.3, first in the
bounded case and then in the unbouded one.

1.3. Idea of the proof of the main result. The proof of Theorem
1.3 we give in Section 3 is quite long and technical. However, the ideas used
are easy to describe.

Let V ⊂ Rn be a real algebraic manifold of positive dimension and let b
be a nonnegative integer.

First, suppose that V is bounded, that is, contained in some open ball
of Rn. Let C = R[

√
−1] be the algebraic closure of R. Identify Rn with the

subset of Pn(R) consisting of points [x0, x1, . . . , xn] with x0 6= 0, and identity
Pn(R) with the fixed point set of the complex conjugation of Pn(C). Since V
is bounded, up to biregular isomorphism, we may suppose that the Zariski
closure Z of V in Pn(C) is nonsingular.

Fix an odd integer d ≥ 3 and a positive integer k. Consider the family
{Pα}α∈CK of all polynomials in C[X0, X] = C[X0, X1, . . . , Xn] homogeneous

of degree kd, parametrized by their coefficients α ∈ CK , where K :=
(
n+kd
n

)
.

Denote by α0 the element of RK such that Pα0(X0, X) = Xkd
0 and by A the

nonempty Zariski open subset of CK consisting of all nonnull elements α
such that Pα is irreducible and its vanishing set Dα in Pn(C) is nonsin-
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gular and transverse to Z. Evidently, α0 is not an element of A. For each
α ∈ CK , we perform the simple d-cyclic covering πα : Zα → Z of Z branched
along Z ∩Dα, obtaining an “algebraic” family {Zα}α∈CK of projective com-
plex algebraic varieties. Such a family is “singular over α = α0”, but it
becomes a true (flat) algebraic family of projective complex algebraic man-
ifolds over α ∈ A. Let Vα be the real part of each Zα. Since V ∩Dα0 = ∅,
there exists an open neighborhood U of α0 in RK such that, for each α ∈ U ,
V ∩Dα = ∅ or, equivalently, Pα does not vanish on V . Since the integer d
is odd and V ⊂ Rn, we see that, for each α ∈ U , Vα is the graph in V × R
of the Nash function gα : V → R sending x to d

√
Pα(1, x), and hence the

restriction πα(R) of πα from Vα to V is a Nash isomorphism. Moreover, since
gα0 is constantly equal to 1, πα0(R) is a biregular isomorphism.

Choosing k sufficiently large, we may suppose that K is arbitrarily large
and, for each α ∈ A, the canonical complex line bundle ωZα of Zα is ample.
Thanks to the latter property of the ωZα ’s with α ∈ A, we can use the theory
of coarse moduli spaces to distinguish the complex biregular (birational in-
deed) isomorphic classes of the Zα’s with α ∈ A, via a “classifying” complex
regular map u : A→M from A to a suitable quasi-projective complex alge-
braic variety M. Now, since α0 is an accumulation point of A ∩RK in RK

with respect to the euclidean topology, our strategy to complete the proof
consists in costructing a regular map φ : Rb → RK such that φ(0) = α0,
φ(Rb\{0}) ⊂ (U∩A)\{α0} and the family Vφ := {Vφ(y)}y∈Rb is an algebraic

real-deformation of V almost perfectly parametrized by Rb.

Two main difficulties arise. The first is to prove that the complex codi-
mension of each fiber of u is sufficiently large (at least b) and hence that
it is possible to choose φ “transverse” to each fiber of u. The second is to
understand if it is possible to choose φ in such a way that the correspond-
ing family Vφ is “nonsingular over y = 0”. The second difficulty is a fake
(although not trivial) problem, while the first is a delicate problem. The
latter can be solved by a careful procedure in which one must repeat the
construction concerning the simple d-cyclic coverings twice.

Finally, if V is unbounded, then one can reduce to the bounded case by
using the algebraic Alexandrov compactification and Hironaka’s desingular-
ization theorem.

2. Preparatory results

2.1. Terminology for complex objects. Denote by C = R[s]/(s2+1)
the algebraic closure of R. By a (quasi-)projective complex algebraic manifold
we mean an irreducible and nonsingular (quasi-)projective complex algebraic
subvariety of some Pk(C). Let Ω ⊂ Pk(C) be an irreducible quasi-projective
complex algebraic variety. We denote by dimC Ω the complex dimension
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of Ω. Let Θ be another irreducible quasi-projective complex algebraic variety
and let ϕ : Ω → Θ be a complex regular map. We call ϕ a complex biregular
embedding if ϕ(Ω) is Zariski closed in Θ and the restriction of ϕ from Ω to
ϕ(Ω) is a complex biregular isomorphism. If Ω and Θ are nonsingular, ϕ is a
surjective submersion and ϕ−1(y) ⊂ Pk(C) is a projective complex algebraic
manifold for each y ∈ Θ, then we call ϕ an algebraic family of projective
complex algebraic manifolds.

Let n,m ∈ N. Denote by σn : Pn(C) → Pn(C) the complex conjugation
involution of Pn(C) and identify Pn(R) with the fixed point set of σn. Let S
be a subset of Pn(C). The set S is said to be defined over R if σn(S) = S and
its real part S(R) is defined as the intersection S∩Pn(R). Let T be a subset
of Pm(C) and let f : S → T be a map from S to T . We say that f is defined
over R if both sets S and T are defined over R and σm(f(x)) = f(σn(x))
for each x ∈ S. The real part f(R) : S(R) → T (R) of f is defined as the
restriction of f from S(R) to T (R).

Let V ⊂ Rn be a real algebraic manifold. Suppose V is bounded, that
is, contained in an open ball of Rn. Given a projective complex algebraic
manifold Z, we say that Z is a nonsingular complexification of V if it is
defined over R and its real part Z(R) is biregularly isomorphic to V .

2.2. A special embedding of Pn(C). Let n ∈ N∗ := N \ {0}, let x =
(x1, . . . , xn) be the coordinates of Cn, let (x0, x) = (x0, x1, . . . , xn) be the
coordinates of Cn+1 and let [x0, x] = [x0, x1, . . . , xn] be the corresponding
homogeneous coordinates of Pn(C). For each j ∈ {0, 1, . . . , n}, define Un,j :=
{[x0, x] ∈ Pn(C) | xj 6= 0}.

In what follows, we identify Cn with Un,0 via the coordinate chart sending
x to [1, x]. Under this identification, Rn coincides with the Zariski open
subset Un,0(R) of Pn(R). Furthermore, given m ∈ N, we identify Cn × Cm
with Cn+m and hence Rn ×Rm with Rn+m in the natural way.

Define |x|n := (
∑n

j=1 x
2
j )

1/2 for each x = (x1, . . . , xn) ∈ Rn and Sn−1 :=
{x ∈ Rn | |x|n = 1}.

Fix h ∈ N∗. Let Nn+1
h be the subset of Nn+1 consisting of all elements

(α0, α1, . . . , αn) such that
∑n

j=0 αj = h. As is easy to verify, the cardi-

nality of Nn+1
h is equal to

(
n+h
n

)
. Denote by v(n) the cardinality

(
n+2
n

)
=

(n+ 2)(n+ 1)/2 of Nn+1
2 . Let x = (xα)α∈Nn+1

2
be the coordinates of Cv(n)

ordered in some fixed way, let [x] be the corresponding homogeneous co-
ordinates of Pv(n)−1(C) and let νn : Cn+1 → Cv(n) be the map sending
(x0, x) to ((x0, x)α)α∈Nn+1

2
, where (x0, x)α is equal to xα0

0 · x
α1
1 · · ·xαnn if α =

(α0, α1, . . . , αn) (here x
αj
j = 1 if αj = 0). The map Vn : Pn(C)→ Pv(n)−1(C)

sending [x0, x] to [νn(x0, x)] is the classical double Veronese embedding of
Pn(C).
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Let us define a variant V∗n : Pn(C)→ Pv(n)(C) = P(C ×Cv(n)) of Vn by
setting

(2.1) V∗n([x0, x]) := [x20 + x21 + · · ·+ x2n, νn(x0, x)].

Evidently, V∗n is a complex biregular embedding defined over R and

(2.2) V∗n(R)(Pn(R)) is a real algebraic submanifold of Rv(n).

Lemma 2.1. Let V be a bounded real algebraic submanifold of Rn. Then
there exists a projective complex algebraic manifold Z ⊂ Pm(C) such that Z
is a nonsingular complexification of V and Z(R) is contained in Rm.

Proof. By Hironaka’s desingularization theorem [27], there exists a real
algebraic submanifold V ′ of some P`(R) such that V ′ is biregularly iso-
morphic to V and the Zariski closure of V ′ in P`(C) is nonsingular (see
Proposition 2.5 of [7] for details). However, it may happen that V ′ is not
contained in R`, that is, V ′ ∩ {[x0, x1, . . . , x`] ∈ P`(R) | x0 = 0} 6= ∅. In any
case, by (2.2), the Zariski closure Z of V∗` (R)(V ′) in Pv(`)(C) has all the
desired properties.

2.3. The complex line bundles OZ(h). For each i, j ∈ {0, 1, . . . , n},
define the complex regular function gij : Un,j ∩ Un,i → C \ {0} by setting
gij([x0, x]) := xj/xi. Let OPn(C)(h) be the complex line bundle over Pn(C)

defined by the cocycle {(gij)h}i,j∈{0,1,...,n}, let πn,h : LPn(C)(h) → Pn(C)
be the bundle projection of OPn(C)(h) from its total space LPn(C)(h) onto
its base Pn(C) and, for each j ∈ {0, 1, . . . , n}, let ϕn,h,j : Un,j × C →
(πn,h)−1(Un,j) be the corresponding trivialization chart over Un,j . Up to
bundle isomorphism, OPn(C)(h) coincides with OPn(C)(1)⊗h.

Let H0(Pn(C),OPn(C)(h)) be the complex vector space of all complex
regular sections of OPn(C)(h) and let C[X0, X]h = C[X0, X1, . . . , Xn]h be
the complex vector space of all homogeneous polynomials in C[X0, X] =
C[X0, X1, . . . , Xn] of degree h. Each polynomial P ∈ C[X0, X]h determines
uniquely an element σn,h(P ) of H0(Pn(C),OPn(C)(h)) such that

(2.3) σn,h(P )([x0, x]) = ϕn,h,j([x0, x], P (x0/xj , x/xj)) if [x0, x] ∈ Un,j
for some j ∈ {0, 1, . . . , n}. Vice versa, each element of H0(Pn(C),OPn(C)(h))
is of the form σn,h(P ) for some P in C[X0, X]h. In other words, the map
σn,h : C[X0, X]h → H0(Pn(C),OPn(C)(h)) sending P to σn,h(P ) is a com-

plex vector isomorphism. In particular, the complex dimension of H0(Pn(C),
OPn(C)(h)) is equal to

(
n+h
n

)
.

Let Z ⊂ Pn(C) be a projective complex algebraic manifold. Denote by
OZ(h) the complex line bundle over Z obtained restricting OPn(C)(h). Let
r := dimC Z and let deg(Z) be the degree of Z in Pn(C). Recall that,
for each ` ∈ Z and for each i ∈ N, the cohomology complex vector space
H i(Z,OZ(`)) has finite dimension and is null if i > r. This fact allows us
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to define the numerical function χOZ(1) : Z → Z by setting χOZ(1)(`) equal

to the sum
∑r

i=0(−1)i dimC H
i(Z,OZ(`)). It is well-known that there exists

a (unique) polynomial HZ in one indeterminate with coefficients in Q of
degree r such that χOZ(1)(`) = HZ(`) for each ` ∈ Z (see Proposition I.7.3
and Exercise III.5.2 of [26]). Furthermore, the leading coefficient of HZ is
equal to deg(Z)/r! > 0. The polynomial HZ is called the Hilbert polynomial
of OZ with respect to OZ(1). For short, we call HZ the Hilbert polynomial
of Z. We denote by ωZ the canonical complex line bundle of Z.

In the next lemma, we collect some well-known facts concerning the
bundles OZ(h).

Lemma 2.2. Let Z ⊂ Pn(C) be a projective complex algebraic manifold
of complex dimension r, let δ be its degree deg(Z) and let κ := (r+1)(δ−1).
Then:

(i) ωZ ⊗OZ(h) is ample for each h ≥ r + 2.
(ii) H i(Z,OZ(h)) = 0 for each i ≥ 1 and for each h ≥ κ.

(iii) The natural restriction map H0(Pn(C),OPn(C)(h))→H0(Z,OZ(h))
is surjective for each h ≥ κ.

(iv) HZ(h) = dimC H
0(Z,OZ(h)) for each h ≥ κ.

Proof. Example 1.5.35 of [38] contains (i). Point (ii) is an immediate
consequence of Mumford’s bound for the Cartan–Serre–Grothendieck theo-
rem (see Theorem 1.2.6, Definitions 1.8.1 and 1.8.28, and Example 1.8.48 of
[38] for details). Points (iii) and (iv) follow at once from (ii).

2.4. Restrictions with finite fibers. Let R+ := {t ∈ R | t > 0}.
Given n ∈ N∗, x ∈ Rn and ε ∈ R+, we denote by Bn(x, ε) the open ball of
Rn centered at x with radius ε.

We conclude this section by proving a useful result.

Lemma 2.3. Let m, b ∈ N∗ with m ≥ b + 2, let ε ∈ R+, let Ω be a
nonempty proper Zariski open subset of Cm, let w ∈ Rm \ Ω and let u :
Ω → M be a complex regular map from Ω to a quasi-projective complex
algebraic variety M such that

dimC u
−1(u(y)) ≤ m− b− 2 for each y ∈ Ω.

Then there exists a regular map φ : Rb → Rm with the following properties:

(i) φ(0) = w, φ(Rb \ {0}) ⊂ Ω(R) and φ(Rb) ⊂ Bm(w, ε).
(ii) All the fibers of the map uφ : Rb \ {0} → M defined by setting

uφ(y) := u(φ(y)) are finite.

Proof. We subdivide the proof into two steps.

Step I. We begin by proving that, up to restricting Ω, there exists a
complex polynomial embedding g : Cb+2 → Cm defined over R such that
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g(0) = w, g(Cb+2)∩Ω 6= ∅ and the set g(Cb+2)∩u−1(u(y)) is finite for each
y ∈ g(Cb+2) ∩Ω.

For simplicity, we may assume that w = 0. Up to replacing Ω with a
smaller nonempty Zariski open subset of Cm and M with one of its Zariski
locally closed subsets, we may suppose that Ω ∩ ({0} × Cm−1) = ∅, M is
nonsingular and u is surjective. Furthermore, by using Sard’s lemma, we
may also suppose that u is submersive. In this way, for each p ∈M, u−1(p)
is a nonempty nonsingular Zariski closed subset of Ω of dimension m− c for
some c ∈ {b+ 2, . . . ,m}.

If c = m, then it suffices to choose a complex linear injection g :
Cb+2 → Cm defined over R such that g(Cb+2) ∩Ω 6= ∅.

Let c < m. Since Ω ∩ ({0}×Cm−1) = ∅, we can define the map χ : Ω →
Cm−1 by χ(y1, . . . , ym) := (y2, . . . , ym) · y−11 . Observe that, given y ∈ Ω,
(1, χ(y)) is the unique intersection point between the complex vector line of
Cm through y and the affine hyperplane {1}×Cm−1 of Cm. It follows that,
for each p ∈M, dimC χ(u−1(p)) is equal to either m− c or m− c− 1.

Suppose that there exists q ∈ M such that dimC χ(u−1(q)) = m − c.
Thanks to Bertini’s theorem, there exists a complex vector subspace H
of Cm of dimension c defined over R which intersects u−1(q) transversely
in at least one point. Hence q is a regular value of the restriction u∗ :
Ω ∩H →M of u to Ω ∩H. In this way, applying Sard’s lemma to u∗, we
obtain a nonempty Zariski open subset N of M such that, for each p ∈ N ,
H intersects u−1(p) transversely in a nonempty finite set. Now, replacing Ω
with u−1(N ), one can obtain g as in the case c = m.

Finally, suppose that dimC χ(u−1(p)) = m − c − 1 for each p ∈ M.
Proceeding as above, we obtain a complex vector subspace H ′ of Cm of
dimension c+1 defined over R and a nonempty Zariski open subset N ′ ofM
such that, for each p ∈ N ′,H ′ intersects u−1(p) transversely in Cm. It follows
that, for each p ∈ N ′, H ′ ∩ u−1(p) is equal to the nonempty intersection
between Ω and a finite union of complex vector lines of Cm. Let us restrict
Ω by setting Ω := u−1(N ′). By applying a complex linear automorphism of
Cm = Cc+1 × Cm−c−1 defined over R, we may suppose that H ′ is equal to
Cc+1 ×{0} and that (Cb+3 ×{0})∩Ω 6= ∅. Bearing in mind the latter fact,
if we define g : Cb+2 → Cm by g(z1, . . . , zb+2) := (z1, . . . , zb+2, az

2
1 , 0, . . . , 2)

with a ∈ R sufficiently general, then g(Cb+2)∩Ω 6= ∅ and g(Cb+2)∩u−1(u(y))
is finite for each y ∈ g(Cb+2) ∩Ω, as desired.

Step II. Let g be as above, let ε′ ∈ R+ be such that g(Bb+2(0, ε
′)) ⊂

Bm(0, ε) and let E be the proper real algebraic subset of Rb+2 defined by
setting E := Rb+2 \ g−1(Ω). Observe that 0 ∈ E. Since E is proper, its tan-
gent cone at 0 is not the whole Rb+2. In this way, we may suppose that the
vector eb+2 = (0, . . . , 0, 1) of Rb+2 is not contained in such a tangent cone.
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It follows that, for some sufficiently small ε′′ ∈ R+, the “cusp embedding”
φ∗ : Bb+1(0, ε

′′)→ Bb+2(0, ε
′) sending (w1, . . . , wb+1) to (w3

1, . . . , w
3
b+1, w

2
1 +

· · ·+ w2
b+1), is a well-defined injective regular map such that φ∗(0) = 0 and

φ∗(Bb+1(0, ε
′′)\{0})∩E = ∅, that is, φ∗(Bb+1(0, ε

′′)\{0}) ⊂ g−1(Ω). Up to a
homothety of Rb+1, we may suppose that ε′′ = 2. Let S be the sphere of Rb+1

with center eb+1 = (0, . . . , 0, 1) and radius 1, let S′ := S \ {2eb+1} and let
φ∗∗ : Rb → S′ be the inverse stereographic projection, which sends y ∈ Rb to
the unique intersection point between S′ and the affine line of Rb+1 = Rb×R
containing 2eb+1 and (y, 0). By construction, the map φ : Rb → Rm sending
y to g(φ∗(φ∗∗(y))) is a well-defined regular map with the desired proper-
ties.

3. Proof of Theorem 1.3

3.1. Proof in the bounded case. In this subsection, given a bounded
real algebraic manifold V of positive dimension and an arbitrarily large in-
teger b, we construct, in a rather explicit way, an algebraic real-deformation
of V almost perfectly parametrized by Rb.

Here is a detailed reformulation of Theorem 1.3:

Theorem 3.1. Let V be a bounded real algebraic manifold of positive
dimension, let b ∈ N∗ and let d be an odd integer ≥ 3. Then there exist
M ∈ N∗, a real algebraic submanifold V of Rb × V × RM × R × R × R
and regular maps φ1 : Rb → RM , φ2 : Rb → R, G1 : Rb × V → R and
G2 : Rb × V ×R→ R with the following properties:

(i) G1(R
b × V ) ⊂ (0, 2) and G2(R

b × V × (0, 2)) ⊂ R+.
(ii) G1(0, x) = 1 and G2(0, x, 1) = 1 for each x ∈ V .

(iii) V is equal to the subset of Rb × V ×RM ×R×R×R consisting of
points (y, x, a, s, t, v) such that a = φ1(y), s = φ2(y), td = G1(y, x)
and vd = G2(y, x, t). In particular, V is the graph of a Nash map
from Rb × V to RM ×R×R×R.

(iv) The projection π : V → Rb sending (y, x, a, s, t, v) to y is an alge-
braic real-deformation of V almost perfectly parametrized by Rb.

Our proof of this result requires nine steps. In order to make the reading
of the proof easier, we first give an informal description of these steps. Some
notations used here do not coincide with the ones employed in the postponed
rigorous proof.

Steps of the proof. Step I. First, by Lemma 2.1, we embed V into some
Rn in such a way that its Zariski closure Z in Pn(C) is nonsingular. Then,
by using point (i) of Lemma 2.2, we choose an integer k1 ∈ N∗ so large that
ωZ ⊗OZ(k1(d− 1)) is ample.
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Step II. By Bertini’s theorem, there exist a homogeneous polynomial
P ∈ C[X0, X]k1d = C[X0, X1, . . . , Xn]k1d with coefficients in R and a finite
subset F of C defined over R and containing 0 such that: if Ps denotes the
homogeneous polynomial Xk1d

0 + sP(X0, X) and Ds is the vanishing set of
Ps in Pn(C) for each s ∈ C, then Ps is irreducible and Ds is a nonsingular
divisor of Pn(C) transverse to Z for each s ∈ C \ F . Define S := C \ F .
Observe that the divisor D0 of Pn(C) is equal to the hyperplane at infinity
{X0 = 0} of Cn in Pn(C) counted with multiplicity k1d > 1. Now, for each
s ∈ C, we perform the simple d-cyclic covering πn,k1,s : Z(s) → Z of Z
branched along Z ∩ Ds. It follows that {Z(s)}s∈C is an “algebraic” family
of projective complex algebraic varieties, singular over s = 0, which turns
out to be a true algebraic family of projective complex algebraic manifolds
over S. A crucial point here is that the above-mentioned singularity over
s = 0 disappears in the real setting. In fact, since V ∩ D0 = ∅, there exists
an open neighborhood U of 0 in R such that, for each s ∈ U , V ∩Ds = ∅ or,
equivalently, Ps does not vanish on V . Since d is odd and V ⊂ Rn, we infer
that, over U × V , the real algebraic variety Z :=

⋃
s∈R({s} × Z(s)(R)) is

nonsingular and coincides with the graph of the Nash function g : U×V → R
sending (s, x) to d

√
Ps(1, x). In particular, it follows that g(0, x) = 1 for

each x ∈ V and hence the real part πn,k1,0(R) : Z(0)(R)→ V of πn,k1,0 is a
biregular isomorphism.

Finally, since ωZ ⊗OZ(k1(d− 1)) is ample, it follows that ωZ(s) is ample
for each s ∈ S.

Step III. By using the complex biregular embeddings V∗n defined in (2.1),
we embed each Z(s) in a suitable Pm(C) in such a way that Z(s)(R) is
contained in Rm. Each variety Z(s) is now renamed as Z ′(s).

Step IV. Since S is connected with respect to the euclidean topology and
{Z ′(s)}s∈S is an algebraic family of projective complex algebraic manifolds
with ample canonical complex line bundles, it is known that all the Z ′(s)’s
have the same Hilbert polynomial. Combining this fact with Lemma 2.2,
we infer at once the existence of an integer k2 ∈ N∗ so large that, for each
s ∈ S, the following statements hold:

ωZ′(s) ⊗OZ′(s)(k2(d− 1)) is ample,(3.1)

dimC H
0(Z ′(s),OZ′(s)(k2d)) ≥ b+ 3,(3.2)

and the natural restriction map

(3.3) H0(Pm(C),OPm(C)(k2d))→ H0(Z ′(s),OZ′(s)(k2d))

is surjective.

Step V. We use again the argument of Step II. Let M :=
(
m+k2d
m

)
.

Identify each polynomial in C[W0,W1, . . . ,Wm]k2d with the M -uple in CM
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formed by its coefficients, ordered in some fixed way. Given a ∈ CM , denote
by Qa the polynomial in C[W0,W1, . . . ,Wm]k2d corresponding to a via such
an identification and by Ea the vanishing set of Qa in Pm(C). Let E be the
element of CM such that QE is equal to W k2d

0 . There exists a nonempty
Zariski open subset Ω of (CM \ {0})× S defined over R such that, for each
(a, s) ∈ Ω, Qa is irreducible and Ea is nonsingular and transverse to Z ′(s)
in Pm(C). Evidently, Ω does not contain (E, 0).

Now, for each (a, s) ∈ CM × C, we perform the simple d-cyclic covering
πm,k2,a,s : Z ′(a, s)→ Z ′(s) of Z ′(s) branched along Z ′(s)∩Ea. It follows that
{Z ′(a, s)}(a,s)∈CM×C is an “algebraic” family of projective complex algebraic
varieties, singular over (a, s) = (E, 0), which turns out to be a true algebraic
family of projective complex algebraic manifolds over Ω. As above, the real
part {Z ′(a, s)(R)}(a,s)∈RM×R of such a family has good properties over (E, 0):
the real part πm,k2,E,0(R) : Z ′(E, 0)(R)→ Z ′(0)(R) of πm,k2,E,0 is a biregular
isomorphism (in particular Z ′(E, 0)(R) is biregularly isomorphic to V ) and
there exists an open neighborhood U ′ of (E, 0) in RM × R such that, over
U ′×V , the real algebraic variety Z′ :=

⋃
(a,s)∈RM×R({(a, s)}×Z ′(a, s)(R)) is

nonsingular and coincides with the graph of a Nash map. Furthermore, (3.1)
ensures that {Z ′(a, s)}(a,s)∈Ω is an algebraic family of projective complex
algebraic manifolds with ample canonical complex line bundles. This allows
us to apply the theory of coarse moduli spaces, obtaining a complex regular
map u : Ω →M from Ω to a quasi-projective complex algebraic varietyM,
which is able to distinguish the complex birational classes of the Z ′(a, s)’s:
for each (a, s), (a′, s′) ∈ Ω, Z ′(a, s) is complex birationally isomorphic to
Z ′(a′, s′) if and only if u(a, s) = u(a′, s′).

Step VI. In this step, we prove that

(3.4) sup
(a,s)∈Ω

dimC u
−1(u(a, s)) ≤M − b− 1 = (M + 1)− b− 2.

This uniform upper bound for the complex dimension of the fibers of u is the
reason why we have performed the construction concerning simple d-cyclic
coverings twice, first in Step II and then in Step V.

Let (a, s) ∈ Ω and let s′ ∈ S. Define Us′ as the subset of CM consisting
of all points a′ such that (a′, s′) ∈ Ω and there exists a complex biregular
isomorphism ϕa′ from Z ′(a, s) to Z ′(a′, s′). Since u−1(u(a, s))∩(CM×{s′}) =
Us′ × {s′}, s′ varies in S and dimC S = 1, in order to prove (3.4), it suffices
to see that

(3.5) dimC Us′ ≤M − b− 2.

Let us prove the latter inequality. Consider the complex linear map r :
CM = H0(Pm(C),OPm(C)(k2d)) → H0(Z ′(s′),OZ′(s′)(k2d)) sending a′ to
the restriction of the section σm,k2d(Qa′) to Z ′(s′) (see (2.3) for the definition
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of σm,k2d). If a′ ∈ Us′ , then (a′, s′) ∈ Ω and hence r(a′) 6= 0. Furthermore, if
a′′ is another element of Us′ , then r(a′) is proportional to r(a′′) if and only
if Z ′(s′)∩Ea′ = Z ′(s′)∩Ea′′ . Thanks to (3.2) and (3.3), the fibers of r have
complex dimension ≤ M − b − 3. In this way, in order to prove (3.5), it
suffices to show that r(Us′) is contained in a finite union of complex vector
lines of H0(Z ′(s′),OZ′(s′)(k2d)). Suppose this is false. Then there exists a
sequence {ai}i∈N in Us′ such that r(ai) is not proportional to r(aj) (or,
equivalently, Z ′(s′) ∩ Eai 6= Z ′(s′) ∩ Eaj ) for each i, j ∈ N with i 6= j. For
each i ∈ N, the composition map fi := πm,k2,ai,s′ ◦ϕai : Z ′(a, s)→ Z ′(s′) is a
surjective complex regular map having Z ′(s′)∩Eai as branched locus. Since
Z ′(s′) ∩ Eai 6= Z ′(s′) ∩ Eaj if i 6= j, the maps fi and fj are different and
hence the set {fi}i∈N is infinite. This is impossible by a classical finiteness
result, because Z ′(s′) is of general type (see [32]). Inequality (3.4) is proved.

Step VII. We describe explicitly each real algebraic variety Z ′(a, s)(R)
as follows. Since Z(R) = V ⊂ Rn (see Step I) and Z ′(s)(R) ⊂ Rm for each
s ∈ R (see Step III), up to biregular isomorphism, we can write

Z ′(a, s) = {(x, t, v) ∈ V ×R×R | td = 1 + sP(1, x), vd = Qa(1, ψ1(x, t))}
for each (a, s) ∈ RM×R, where P is the homogeneous polynomial considered
in Step II and ψ1 : Rn ×R→ Rm is a certain biregular embedding.

Step VIII. Thanks to (3.4), we can apply Lemma 2.3 obtaining a regular
map φ = (φ1, φ2) : Rb → RM × R such that φ(0) = (E, 0), φ(Rb \ {0})
⊂ Ω(R), the map uφ : Rb → M sending y to u(φ(y)) has finite fibers
and the family {Z ′(φ(y))(R)}y∈Rb satisfies points (i)–(iii) of Theorem 3.1
with maps G1 and G2 defined as follows: G1(y, x) := 1 + φ2(y)P(1, x) and
G2(y, x, t) := Qφ1(y)(1, ψ1(x, t)).

Step IX. By combining the property of u stated at the end of Step V,
the above–mentioned properties of φ and the fact that each birational iso-
morphism between real algebraic manifolds extends to a complex birational
isomorphism between anyway fixed complexifications of those manifolds, it
follows easily that {Z ′(φ(y))(R)}y∈Rb is an algebraic real-deformation of V

almost perfectly parametrized by Rb, completing the proof.

Given a set S, denote by idS : S → S the identity map on S.

Proof of Theorem 3.1. Suppose that V is a bounded real algebraic sub-
manifold of some Rn of positive dimension r. As outlined above, the proof
is divided into nine steps.

Step I. Thanks to Lemma 2.1, we may suppose that the Zariski closure
Z of V in Pn(C) is nonsingular. In particular,

(3.6) Z(R) = V is contained in Rn.
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By Lemma 2.2(i), ωZ ⊗OZ(h) is ample for each h ≥ r + 2. Choose k1 ∈ N∗
in such a way that k1(d− 1) ≥ r + 2. In this way, we find that

(3.7) ωZ ⊗OZ(k1(d− 1)) is ample.

Step II. LetN =
(
n+k1d
n

)
be the cardinality of Nn+1

k1d
and let ω be a bijec-

tive map from {1, . . . , N} to Nn+1
k1d

such that ω(1) = (k1d, 0, . . . , 0). For each

a = (a1, . . . , aN ) ∈ CN , define the polynomial Pa(X0, X) in C[X0, X]k1d =
C[X0, X1, . . . , Xn]k1d by setting

Pa(X0, X) :=
N∑
j=1

aj(X0, X)ω(j),

where (X0, X)ω(j) denotes the monomial Xα0
0 ·X

α1
1 · · ·Xαn

n if ω(j) is equal
to (α0, α1, . . . , αn). Identify CN with C[X0, X]k1d via the complex vector
isomorphism sending a to Pa. Observe that, if e = (1, 0, . . . , 0) denotes the
first element of the canonical base of CN , then

(3.8) Pe(X0, X) is equal to Xk1d
0 .

Let A be the subset of CN \ {0} consisting of all elements a such that the
polynomial Pa is irreducible and its vanishing set Da in Pn(C) is a nonsin-
gular divisor of Pn(C) which intersects Z transversely; that is, Da ∩ Z 6= ∅
and Da is transverse to Z in Pn(C). Since r ≥ 1, Bertini’s theorem ensures
that A is a nonempty Zariski open subset of CN . Evidently, e does not be-
long to A. Choose a point v in A(R). Define the complex affine embedding
L : C → CN by setting

(3.9) L(s) := e + s(v − e)

and S := L−1(A). Observe that S is equal to C with a finite set (containing
the origin) removed.

Denote by τ the tautological section of (πn,k1)∗(OPn(C)(k1)) and by τd

the complex regular section τ⊗d of (πn,k1)∗(OPn(C)(k1d)) (recall that πn,k1 :
LPn(C)(k1) → Pn(C) denotes the bundle projection of OPn(C)(k1)). Let Z
be the complex algebraic subvariety of C × LPn(C)(k1) consisting of points
(s, ν) such that

(3.10) πn,k1(ν) ∈ Z and τd(ν) = (πn,k1)∗(σn,k1d(PL(s)))(ν)

(see (2.3) for the definition of σn,k1d), let Π : Z → C be the projection
sending (s, ν) to s and, for each s ∈ C, let Z(s) be the complex algebraic
subvariety of LPn(C)(k1) such that Π−1(s) = {s} × Z(s). Observe that, for
each s ∈ S, DL(s) intersects Z transversely in Pn(C) and hence Z(s) is
nonsingular and the restriction πn,k1,s : Z(s) → Z of πn,k1 from Z(s) to Z
is a simple d-cyclic covering (see [3, Section I.17] or [14] for basic results
concerning simple d-cyclic coverings). It is immediate to verify that Π−1(S)
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is nonsingular and Zariski closed in S×LPn(C)(k1), and the restriction of Π

from Π−1(S) to S is a submersion.

Let s ∈ S. Lemma 17.1(iii) of [3, p. 55] asserts that ωZ(s) is bundle iso-
morphic to (πn,k1,s)

∗(ωZ ⊗OZ(k1(d− 1))). On the other hand, by construc-
tion, πn,k1,s is a finite complex regular map and, by (3.7), ωZ⊗OZ(k1(d−1))
is ample. In this way, by applying Proposition 1.2.13 of [38] (or Theorem
1.19 of [18]), we infer that

(3.11) ωZ(s) is ample for each s ∈ S.

Step III. Let P = P(OPn(C)(k1) ⊗ OPn(C)) be the P1(C)-bundle over
Pn(C) obtained by performing the projective closure of each fiber of
OPn(C)(k1), let LPn(C)(k1) be the total space of P and let η : LPn(C)(k1)→
LPn(C)(k1) be the inclusion map. The equation τd = (πn,k1)∗(σn,k1d(PL(s)))
in definition (3.10) of Z ensures that (idC × η)(Z) is Zariski closed in
C×LPn(C)(k1). It is well-known that the total space LPn(C)(k1) of P is a pro-
jective complex algebraic manifold defined over R. Fix a complex biregular
embedding ς : LPn(C)(k1) → P`(C) defined over R of LPn(C)(k1) into some

P`(C). Let m :=
(
`+2
`

)
and let V∗` : P`(C)→ Pm(C) be the complex biregu-

lar embedding defined in (2.1). Define the map ψ : LPn(C)(k1)→ Pm(C) by
setting

(3.12) ψ := V∗` ◦ ς ◦ η,

the map Ψ : Z → C×Pm(C) as the restriction of idC×ψ : C×LPn(C)(k1)→
C×Pm(C) to Z and the subset Z ′ of C×Pm(C) as Ψ(Z). Since (idC×η)(Z)
is Zariski closed in C ×LPn(C)(k1) and Z ′ = (idC × (V∗` ◦ ς))((idC × η)(Z)),
it follows that Z ′ is Zariski closed in C × Pm(C) and hence Ψ is a complex
biregular embedding defined over R.

Moreover, thanks to property (2.2) of V∗` , we know that

(3.13) Z ′(R) is contained in R×Rm.

For each s ∈ C, define the complex algebraic subvariety Z ′(s) of Pm(C) by
setting

Z ′(s) := ψ(Z(s)).

Let Π ′ : Z ′ → C be the projection sending (s, q) to s. Observe that
(Π ′)−1(s) = {s} × Z ′(s) for each s ∈ C, Z ′(s) is nonsingular for each s ∈ S
and the restriction Π∗ : Z∗ → S of Π ′ from Z∗ := (Π ′)−1(S) to S is an
algebraic family of projective complex algebraic manifolds. By definition,
for each s ∈ S, Z ′(s) is complex biregularly isomorphic to Z(s). In this way,
by (3.11), we infer that

(3.14) ωZ′(s) is ample for each s ∈ S.
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Step IV. For each s ∈ S, let Hs be the Hilbert polynomial of Z ′(s)
and let δs be the degree of Z ′(s) in Pm(C). Since Π∗ is an algebraic family
of projective complex algebraic manifolds with ample canonical complex
line bundles and S is connected with respect to the euclidean topology,
the Hilbert polynomial Hs (and hence δs) does not depend on s ∈ S. Define
H := Hs and δ := δs for some (and hence for all) s ∈ S. Let κ := (r+1)(δ−1).
Since deg(H) = r > 0 and the leading coefficient of H is δ/r! > 0, there
exists h0 ∈ N∗ such that h0 ≥ κ and H(h) ≥ b + 3 for each h ≥ h0. By
Lemma 2.2(iv), it follows that

dimC H
0(Z ′(s),OZ′(s)(h)) = Hs(h) = H(h) ≥ b+ 3

for each s ∈ S and for each h ≥ h0. Point (i) of Lemma 2.2 implies that
ωZ′(s)⊗OZ′(s)(h) is ample for each h ≥ r+ 2 and for each s ∈ S. Moreover,
thanks to point (iii) of the same lemma, the natural restriction map

ρs,h : H0(Pm(C),OPm(C)(h))→ H0(Z ′(s),OZ′(s)(h))

is surjective for each h ≥ κ and for each s ∈ S. Choose k2 ∈ N∗ in such a
way that k2(d− 1) ≥ r + 2 and k2d ≥ h0(≥ κ). We have just proved that

ωZ′(s) ⊗OZ′(s)(k2(d− 1)) is ample for each s ∈ S,(3.15)

dimC H
0(Z ′(s),OZ′(s)(k2d)) ≥ b+ 3 for each s ∈ S,(3.16)

ρs,k2d is surjective for each s ∈ S.(3.17)

Step V. Let M =
(
m+k2d
m

)
be the cardinality of Nm+1

k2d
and let ξ be

a bijective map from {1, . . . ,M} to Nm+1
k2d

such that ξ(1) = (k2d, 0, . . . , 0),

and for each a = (a1, . . . , aM ) ∈ CM define the polynomial Qa(W0,W ) in
C[W0,W ]k2d = C[W0,W1, . . . ,Wm]k2d by setting

Qa(W0,W ) :=

M∑
j=1

aj(W0,W )ξ(j),

where (W0,W )ξ(j) denotes the monomial Wα0
0 ·W

α1
1 · · ·Wαm

m if ξ(j) is equal
to (α0, α1, . . . , αm). Identify CM with C[W0,W ]k2d via the complex vector
isomorphism sending a to Qa. Observe that, if E = (1, 0, . . . , 0) denotes the
first element of the canonical base of CM , then

(3.18) QE(W0,W ) is equal to W k2d
0 .

Let B be the nonempty Zariski open subset of CM \ {0} consisting of all
elements a such that the polynomial Qa is irreducible and its vanishing set
Ea in Pm(C) is nonsingular. Evidently, E does not belong to B. Define the
complex algebraic subvariety Γ of B×Z∗ ⊂ B×C×Pm(C) and the complex
regular map Λ : Γ → B × S by setting

Γ := {(a, s, [w0, w]) = (a, (s, [w0, w1, . . . , wm])) ∈ B ×Z∗ | Qa(w0, w) = 0}
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and

Λ(a, s, [w0, w]) := (a, s),

respectively. By direct computations, which are standard in the context of
Bertini-type theorems (see [31]), one can easily verify that Γ is nonsingular
and a point (a, s) in B×S is a regular value of Λ if and only if the nonsingular
divisor Ea of Pm(C) is transverse to Z ′(s). By applying Sard’s lemma to Λ,
we obtain a nonempty Zariski open subset Ω of CM ×C contained in B×S
such that, for each (a, s) ∈ Ω, Ea is transverse to Z ′(s) in Pm(C). Observe
that Ω does not contain (E, 0).

Denote by Υ the tautological section of (πm,k2)∗(OPm(C)(k2)) and by Υ d

the complex regular section Υ⊗d of (πm,k2)∗(OPm(C)(k2d)). Let Z be the

complex algebraic subvariety of C := CM ×C×LPm(C)(k2) consisting of all
points (a, s, υ) such that

(3.19) (s, πm,k2(υ)) ∈ Z ′ and Υ d(υ) = (πm,k2)∗(σm,k2d(Qa))(υ),

let P : Z → CM × C be the projection sending (a, s, υ) to (a, s), and for
each (a, s) ∈ CM × C let Z ′(a, s) be the complex algebraic subvariety of
LPm(C)(k2) such that P−1((a, s)) = {(a, s)} × Z ′(a, s). For each (a, s) ∈ Ω,
Ea intersects Z ′(s) transversely in Pm(C), so Z ′(a, s) is a projective complex
algebraic manifold and the restriction πm,k2,a,s : Z ′(a, s)→ Z ′(s) of πm,k2 is
a simple d-cyclic covering of Z ′(s). Moreover, the restriction P∗ : Z ∗ → Ω
of P from Z ∗ := P−1(Ω) to Ω is an algebraic family of projective complex
algebraic manifolds.

Let (a, s) ∈ Ω. Thanks to (3.15), we know that ωZ′(s)⊗OZ′(s)(k2(d−1))
is ample. Bearing in mind this fact, we can apply Lemma 17.1(iii) of [3,
p. 55] and Proposition 1.2.13 of [38] to πm,k2,a,s. We find that ωZ′(a,s) is
ample for each (a, s) ∈ Ω. It follows that P∗ is an algebraic family of
projective complex algebraic manifolds with ample canonical complex line
bundles. Since Ω is connected with respect to the euclidean topology, the
Hilbert polynomial Ha,s of OZ′(a,s) with respect to ωZ′(a,s) does not depend
on (a, s) ∈ Ω. Define H := Ha,s for some (and hence for all) (a, s) in Ω.
LetM be the coarse moduli space of all canonically polarized r-dimensional
projective complex algebraic manifolds with ample canonical complex line
bundle and with corresponding Hilbert polynomial equal to H . By Theorem
1.11 of [44], M exists and is a quasi-projective complex algebraic variety.
In this way, there exists a complex regular map u : Ω →M such that, for
each (a, s), (a′, s′) ∈ Ω, u(a, s) = u(a′, s′) if and only if Z ′(a, s) is complex
biregularly isomorphic to Z ′(a′, s′).

We remind the reader that two projective complex algebraic manifolds
with ample canonical complex line bundles are complex biregularly isomor-
phic if and only if they are complex birationally isomorphic (see [18, p. 170]).
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It follows that

(3.20) for each (a, s), (a′, s′) ∈ Ω, u(a, s) = u(a′, s′) if and only if

Z ′(a, s) is complex birationally isomorphic to Z ′(a′, s′).

Step VI. Now we give an upper bound for the complex dimension of
the fibers of u.

Let θ : Ω → S be the projection sending (a, s) to s, let λ : Ω → B be
the projection sending (a, s) to a, and for each s ∈ S let Ωs be the Zariski
open subset of CM contained in B defined by setting Ωs := λ(θ−1(s)).

Fix (a, s) ∈ Ω and s′ ∈ S. By (3.14), ωZ′(s′) is ample and hence Z ′(s′)

is of general type. Denote by Hs′ the set H0(Z ′(s′),OZ′(s′)(k2d)) \ {0}, by

PHs′ the projectivization of H0(Z ′(s′),OZ′(s′)(k2d)), by µ : Hs′ → PHs′ the
corresponding natural projection, by

ρ′ : H0(Pm(C),OPm(C)(k2d))→ H0(Z ′(s′),OZ′(s′)(k2d))

the natural restriction map, by K the set H0(Pm(C),OPm(C)(k2d))\ker(ρ′),
by ρ : K → Hs′ the restriction of ρ′ from K to Hs′ and by Us′ the set
λ(u−1(u(a, s)) ∩ θ−1(s′)). Observe that

Us′ = {a′ ∈ Ωs′ | Z ′(a′, s′) is complex biregularly isomorphic to Z ′(a, s)}.
Since σm,k2d(Us′) ⊂ σm,k2d(Ωs′) ⊂ K, we can define the map σ : Us′ → K as
the restriction of σm,k2d from Us′ to K. Consider the sequence of maps

Us′
σ→ K

ρ→ Hs′
µ→ PHs′

and two points a′ and a′′ in Us′ . Evidently, (µ ◦ ρ ◦ σ)(a′) 6= (µ ◦ ρ ◦ σ)(a′′)
is equivalent to saying that the restricted sections σm,k2d(Qa′)|Z′(s′) and
σm,k2d(Qa′′)|Z′(s′) are not proportional. On the other hand, the latter condi-
tion is equivalent to saying that the zero locus Z ′(s′)∩Ea′ of σm,k2d(Qa′)|Z′(s′)

and the zero locus Z ′(s′) ∩ Ea′′ of σm,k2d(Qa′′)|Z′(s′) are different as subsets
of Z ′(s′). In this way, we have

(3.21) (µ ◦ ρ ◦ σ)(a′) 6= (µ ◦ ρ ◦ σ)(a′′) ⇔ Z ′(s′) ∩ Ea′ 6= Z ′(s′) ∩ Ea′′ .

Let us prove that

(3.22) (µ ◦ ρ ◦ σ)(Us′) is finite.

Suppose this is false. Let {ai}i∈N be a subset of Us′ such that (µ◦ρ◦σ)(ai) 6=
(µ ◦ ρ ◦ σ)(aj) for each i, j ∈ N with i 6= j. By definition of Us′ , for each
i ∈ N, there exists a complex biregular isomorphism ϕi : Z ′(a, s)→ Z ′(ai, s

′)
and hence the composition map fi := πm,k2,ai,s′ ◦ ϕi : Z ′(a, s) → Z ′(s′) is
a surjective complex regular map having Z ′(s′) ∩ Eai as branched locus.
Given i, j ∈ N with i 6= j, by (3.21), we know that the sets Z ′(s′) ∩ Eai

and Z ′(s′) ∩Eaj are different and hence the maps fi and fj are different as
well. In this way, we have found an infinite set {fi}i∈N of surjective complex
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regular maps from Z ′(a, s) to the projective complex algebraic manifold
Z ′(s′) of general type. This is impossible by a classical finiteness theorem of
S. Kobayashi and T. Ochiai [32]. By combining (3.22) and (3.17), we see that
Us′ is contained in the union of a finite number of complex vector subspaces
of CM of complex dimension M −dimC H

0(Z ′(s′),OZ′(s′)(k2d))+1. Thanks

to (3.16), we infer that dimC(u−1(u(a, s)) ∩ θ−1(s′)) ≤ M − b − 2 for each
(a, s) ∈ Ω and for each s′ ∈ S. Since dimC S = 1, we have

(3.23) dimC u
−1(u(a, s)) ≤M − b− 1 = (M + 1)− b− 2

for each (a, s) ∈ Ω.

Step VII. Let us give an explicit description of the real part of P :
Z → CM ×C via the trivialization charts ϕn,k1,0 of OPn(C)(k1) and ϕm,k2,0
of OPm(C)(k2).

Let x = (x1, . . . , xn) be the coordinates of Cn and let χ1 : Cn → Un,0
be the coordinate chart sending x to [1, x]. Consider the trivialization chart
ϕn,k1,0 : Un,0 × C → (πn,k1)−1(Un,0) of OPn(C)(k1) over Un,0. Define the

complex biregular isomorphism g1 : Cn×C → (πn,k1)−1(Un,0) and the subset
Z of C×Cn×C by setting g1 := ϕn,k1,0◦(χ1×idC) and Z := (idC×g1)−1(Z),
respectively (Z was defined in (3.10)). Thanks to (3.8), (3.9) and (3.10), we
have

Z = {(s, x, t) ∈ C × (Z ∩ Cn)× C | td = 1 + s(Pv(1, x)− 1)}.

Let P (X) be the polynomial in R[X] = R[X1, . . . , Xn] such that P (x) =
Pv(1, x)− 1 for each x ∈ Rn. By (3.6), it follows that

(3.24) Z(R) = {(s, x, t) ∈ R× V ×R | td = 1 + sP (x)}.

Let w = (w1, . . . , wm) be the coordinates of Cm, let χ2 : Cm → Um,0 be the
coordinate chart sending w to [1, w], let ϕm,k2,0 : Um,0×C → (πm,k2)−1(Um,0)
be the trivialization chart of OPm(C)(k2) over Um,0, let g2 : Cm × C →
(πm,k2)−1(Um,0) be the complex biregular isomorphism defined by setting
ϕm,k2,0 ◦ (χ2 × idC) and let Z := (idCM × idC × g2)−1(Z ). Thanks to (3.18)
and (3.19), we have

Z = {(a, (s, w), v) ∈ CM × (Z ′ ∩ (C × Cm))× C | vd = Qa(1, w)}

(Z ′ was defined in Step III). Thanks to (3.13), we obtain

(3.25) Z(R) = {(a, (s, w), v) ∈ RM ×Z ′(R)×R | vd = Qa(1, w)}.

For each (a, s) ∈ RM × R, let Z(R)(a, s) be the real algebraic subset of
Rm × R such that Z(R) ∩ ({(a, s)} × Rm × R) = {(a, s)} × Z(R)(a, s). By
construction, it follows that

(3.26) Z(R)(a, s) is biregularly isomorphic to Z ′(a, s)(R)
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for each (a, s) ∈ RM ×R. Define the regular map ψ1 : Rn ×R→ Rm by

ψ1(x, t) := ψ(g1(x, t)),

where ψ : LPn(C)(k1)→ Pm(C) is the embedding defined in (3.12). Observe
that the restriction Ψ1 : Z(R)→ Z ′(R) of idR×ψ1 : R×(Rn×R)→ R×Rm
from Z(R) to Z ′(R) is a well-defined biregular isomorphism. Define V as
the real algebraic subset of RM × (R × V × R)× R consisting of all points
(a, (s, x, t), v) such that

td = 1 + sP (x) and vd = Qa(1, ψ1(x, t)).

Thanks to (3.24) and to (3.25), we infer that the restriction of idRM×Ψ1×idR
from V to Z(R) is a biregular isomorphism. For each (a, s) ∈ RM × R, let
V(a, s) be the real algebraic subset of V ×R×R such that V ∩ ({(a, s)} ×
V ×R×R) = {(a, s)} ×V(a, s). By (3.26), it follows that

(3.27) V(a, s) is biregularly isomorphic to Z ′(a, s)(R)

for each (a, s) ∈ RM ×R.

Step VIII. For each α = (α0, α1, . . . , αm) ∈ Nm+1
k2d

, denote by Mα :
Rm → R the polynomial function sending w = (w1, . . . , wm) to (1, w)α =
wα1
1 · · ·wαmm (here w

αj
j = 1 if αj = 0). Since V is bounded in Rn, there exists

β ∈ R+ such that

(3.28) P (V ) ⊂ (−β, β) and (Mα ◦ ψ1)(V × [0, 2]) ⊂ (−β, β)

for each α ∈ Nm+1
k2d

.

Define ε := 1/(2 + Mβ) (recall that M =
(
m+k2d
m

)
). Thanks to (3.23)

and to Lemma 2.3, there exist a regular map φ1 = (φ1,1, φ1,2, . . . , φ1,M ) :
Rb → RM and a regular function φ2 : Rb → R such that the regular map
φ := (φ1, φ2) : Rb → RM ×R has the following properties:

(3.29) φ1(0) = E and φ2(0) = 0,

φ(Rb \ {0}) ⊂ Ω(R), φ(Rb) ⊂ BM+1((E, 0), ε) and the map uφ : Rb \ {0}
→ M defined by setting uφ(y) := u(φ(y)) has finite fibers. Since E =
(1, 0, . . . , 0) ∈ RM , the inclusion φ(Rb) ⊂ BM+1((E, 0), ε) implies that

(3.30) φ1,1(R
b) ⊂ (1− ε, 1 + ε) and φ1,j(R

b) ⊂ (−ε, ε)

for each j ∈ {2, . . . ,M}, and

φ2(R
b) ⊂ (−ε, ε).

By combining the latter inclusion, the first part of (3.28) and the obvious
inequality ε < 1/β, we infer that

(3.31) 0 < 1 + φ2(y)P (x) < 2 for each (y, x) ∈ Rb × V.
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Let φ3 : Rb × V → R be the function sending (y, x) to d
√

1 + φ2(y)P (x).
Inequalities (3.31) imply that φ3 is a Nash function and

(3.32) 0 < φ3(y, x) < 2 for each (y, x) ∈ Rb × V.
Moreover, by the second part of (3.29), we have

(3.33) φ3(0, x) = 1 for each x ∈ V.
Observe that ε < 1/(1+Mβ) or, equivalently, 1−ε−εMβ > 0. By combining
the latter inequality with (3.30) and with the second part of (3.28), it follows
that

Qφ1(y)(1, ψ1(x, t)) = φ1,1(y) +

M∑
j=2

φ1,j(y) ·Mξ(j)(ψ1(x, t))(3.34)

> 1− ε− εMβ > 0

for each (y, x, t) ∈ Rb × V × (0, 2). Define the function φ4 : Rb × V → R by
setting

φ4(y, x) := d

√
Qφ1(y)(1, ψ1(x, φ3(y, x))).

Thanks to (3.32) and (3.34), we infer that φ4 is a Nash function. Further-
more, (3.18) and the first part of (3.29) imply that

(3.35) φ4(0, x) = 1 for each x ∈ V.
Let p : V→ RM ×R be the projection sending (a, s, x, t, v) to (a, s), let

R := Rb × RM × R × V × R × R and let V be the fiber product between
φ = (φ1, φ2) and p. The set V consists of all points (y, a, s, x, t, v) of R
satisfying the following conditions:

(3.36) a = φ1(y), s = φ2(y), td = 1 + sP (x), vd = Qa(1, ψ1(x, t)).

Denote by π : V → Rb and by π′ : V → V the projections sending
(y, a, s, x, t, v) to y and to x, respectively. Thanks to (3.27), we know that

(3.37) Vy := π−1(y) is biregularly isomorphic to Z ′(φ(y))(R)

for each y ∈ Rb.
By rearranging the coordinates, we may suppose that R is equal to the

real algebraic submanifold Rb × V ×RM ×R×R×R of Rb ×Rn ×RM ×
R×R×R. Denote by F : Rb ×Rn ×RM ×R×R×R→ RM ×R×R×R
the regular map sending (y, x, a, s, t, v) to(

a− φ1(y), s− φ2(y), td − 1− φ2(y)P (x), vd −Qφ1(y)(1, ψ1(x, t))
)
.

By (3.36), V is equal to R ∩ F−1((0, 0, 0, 0)). Let p0 := (y0, x0, a0, s0, t0, v0)
∈ V and let J0 be the (M + 3) × (M + 3)-matrix with coefficients in R
obtained by extracting the last M + 3 columns from the jacobian matrix of
F valued at p0. Thanks to (3.32) and (3.34), we see that t0 and v0 belong
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to R+ and hence they are nonnull. Since det(J0) = d2td−10 vd−10 6= 0, we infer
that p0 is a nonsingular point of V. It follows that V is a real algebraic
submanifold of R. Define G1 : Rb × V → R and G2 : Rb × V × R → R
by setting G1(y, x) := 1 + φ2(y)P (x) and G2(y, x, t) := Qφ1(y)(1, ψ1(x, t)),
respectively. Then (3.31) and (3.34) imply (i), (3.18) and (3.29) imply (ii),
while (iii) follows from (3.36).

Step IX. We complete the proof by showing that π also satisfies (iv).
Thanks to the explicit description of V given in (3.36), we see that V is the
graph in R of the Nash map Φ : Rb × V → RM × R × R × R defined by
setting Φ(y, x) := (φ1(y), φ2(y), φ3(y, x), φ4(y, x)). In other words, π × π′ :
V → Rb × V is a Nash isomorphism. Furthermore, (3.29), (3.33) and (3.35)
imply that Φ(0, x) = (E, 0, 1, 1) for each x ∈ V and hence the restriction
of π′ to V0 is a biregular isomorphism. This proves that π is an algebraic
real-deformation of V .

It remains to show that π is almost perfectly parametrized by Rb. We
have to prove the existence of a semialgebraic subset T of Rb×Rb containing
Sπ such that the projection ρT : T → Rb sending (y, y′) to y has finite
fibers. Denote by T the subset of Rb consisting of points y such that Vy is
birationally isomorphic to V (or, equivalently, to V0) and by R2b

∗ the subset
(Rb \ {0})× (Rb \ {0}) of Rb ×Rb. Define

T1 := {(y, y′) ∈ R2b
∗ | uφ(y) = uφ(y′)} and T := T1 ∪ (T × {0}) ∪ ({0} × T ).

Let (y, y′) ∈ Sπ ∩ R2b
∗ . By definition of Sπ (see (1.1)), Vy and Vy′ are bi-

rationally isomorphic and hence, by (3.37), there exists a biregular isomor-
phism from a Zariski dense Zariski open subset of Z ′(φ(y))(R) to a Zariski
dense Zariski open subset of Z ′(φ(y′))(R). Such a biregular isomorphism
extends to a complex birational isomorphism from Z ′(φ(y)) to Z ′(φ(y′)). In
this way, by (3.20), uφ(y) is equal to uφ(y′), that is, (y, y′) ∈ T1. It follows
that Sπ ⊂ T . Since all the fibers of uφ are finite, we infer that T is finite
as well. In particular, the subset T of Rb × Rb is semialgebraic and ρT has
finite fibers.

Remark 3.2. Given ` ∈ N∗, the algebraic real-deformation π : V → Rb

of V almost perfectly parametrized by Rb just constructed in the preceding
proof can be choosen with the following additional property:

(v) There exists c ∈ N∗ with c ≥ ` such that, for each y ∈ Rb \ {0},
π−1(y) admits a nonsingular complexification Zy with ample canoni-
cal complex line bundle ωZy and ωrZy = c, where r = dimV .

Let us re-examine a part of the construction of π. Fix y ∈ Rb \ {0}. The
fiber π−1(y) is biregularly isomorphic to the real part of some Z ′(a, s). Up to
complex biregular isomorphism, the projective complex algebraic manifold
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Z2 := Z ′(a, s) is obtained as follows: first, one perfoms the simple d-cyclic
covering πn,k1,s : Z ′(s) → Z branched along a nonsingular divisor of Z and
then the simple d-cyclic covering πm,k2,a,s : Z2 → Z ′(s) branched along a
nonsingular divisor of Z ′(s). Here, d is a fixed odd integer ≥ 3, k1 is an
integer ≥ (r + 2)/(d − 1) and k2 is a positive integer so large that ωZ2 is
ample.

Choose k1 := r + 2. For brevity, write Z1 := Z ′(s), π1 := πn,k1,s and
π2 := πm,k2,a,s.

In the remainder of this remark, we abuse notations by confusing complex
line bundles with their first Chern classes.

Let us compute the self-intersection number ωrZ2
of ωZ2 . Since π1 and

π2 are finite complex regular maps of degree d, the homomorphisms Z ∼=
H2r(Z;Z) → H2r(Z1;Z) ∼= Z induced by π1 and Z ∼= H2r(Z1;Z) →
H2r(Z2;Z) ∼= Z induced by π2 coincide with the multiplication by d. Since
ωZ1
∼= π∗1

(
ωZ ⊗ OZ(k1(d − 1))

)
and ωZ2

∼= π∗2
(
ωZ1 ⊗ OZ1(k2(d − 1))

)
, we

have

ωrZ2
= d
(
ωZ1 + (k2(d− 1))OZ1(1)

)r
= d

( r∑
i=0

(
r

i

)
(k2(d− 1))r−iωiZ1

· OZ1(1)r−i
)

and

ωiZ1
· OZ1(1)r−i = d

(
ωZ + (k1(d− 1))OZ(1)

)i · OZ(1)r−i

for each i ∈ {0, 1, . . . , r}. In this way, bearing in mind that OZ(1)r is equal
to the degree deg(Z) of Z, there exists a polynomial U in one indeterminate
of degree < r with integer coefficients depending only on Z such that ωrZ2

=

deg(Z)d2(d−1)rkr2+U(k2). It follows that ωrZ2
can be made arbitrarily large

by choosing k2 sufficiently large. This proves (v).

3.2. Proof in the unbounded case. Let V be an unbounded real
algebraic submanifold of some Rn of positive dimension. We remind the
reader that the Alexandrov compactification of V can be made algebraic
(see Lemma 2.6.2 of [1] and [6, pp. 76–77]). More precisely, there exist a
bounded real algebraic subset V̇ of some Rm, a point p ∈ V̇ and a biregular
isomorphism from V to V̇ \{p}. Identify V with V̇ \{p} via such a biregular
isomorphism. Observe that V is contained in the nonsingular locus of V̇ . By
Hironaka’s desingularization theorem, there exist a bounded real algebraic
submanifold V ∗ of some Rm and a regular map % : V ∗ → V̇ such that
the restriction of % from %−1(V ) to V is a biregular isomorphism. Identify
V with %−1(V ) via %. Let b ∈ N∗. By Theorem 1.3, there exists an algebraic
real-deformation π∗ : V∗ → Rb of V ∗ almost perfectly parametrized by Rb.
Let π′ : V∗ → V ∗ be a regular map such that the restriction of π′ to (π∗)−1(0)
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is a biregular isomorphism and π∗×π′ : V∗ → Rb×V ∗ is a Nash isomorphism.
Define V := (π∗×π′)−1(Rb×V ) and π : V → Rb as the restriction of π∗ to V.
It is evident that π is an algebraic real-deformation of V almost perfectly
parametrized by Rb. The proof is complete.
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