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Uniqueness of meromorphic functions and
differential polynomials sharing one value with finite weight

by Hong-Yan Xu (Jingdezhen), Cai-Feng Yi (Nanchang) and
Ting-Bin Cao (Nanchang)

Abstract. This paper deals with the uniqueness problem for meromorphic functions
sharing one value with finite weight. Our results generalize those of Fang, Hong, Bhoos-
nurmath and Dyavanal.

1. Introduction and main results. Let f(z) be a non-constant mero-
morphic function in the whole complex plane. We shall use the following
standard notations of value distribution theory:

T (r, f), m(r, f), N(r, f), N(r, f), . . .

(see Hayman [8], Yang [16] and Yi and Yang [18]). We denote by S(r, f) any
quantity satisfying

S(r, f) = o(T (r, f))

as r → +∞, possibly outside a set of finite measure. For a ∈ C ∪ {∞}, we
define

Θ(a, f) = 1− lim
r→∞

N(r, a; f)
T (r, f)

.

For a ∈ C ∪ {∞} and k a positive integer, we denote by N(r, a; f |=1)
the counting function of simple a-points of f , and by N(r, a; f | ≤k) (resp.
N(r, a; f | ≥k)) the counting functions of those a-points of f whose multi-
plicities are not greater (resp. less) than k where each a-point is counted ac-
cording to its multiplicity (see [8]). The functions N(r, a; f | ≤k) and N(r, a;
f | ≥k) are defined similarly, where in counting the a-points of f we ignore
the multiplicities.

Set

Nk(r, a; f) = N(r, a; f) +N(r, a; f | ≥2) + · · ·+N(r, a; f | ≥k).
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We define

δk(a, f) = 1− lim
r→∞

Nk(r, a; f)
T (r, f)

.

Let f(z) and g(z) be two nonconstant meromorphic functions on C. If
for some a ∈ C∪{∞} the roots of f(z)−a and g(z)−a (if a =∞, the roots
of f(z) − a and g(z) − a are poles of f(z) and g(z) respectively) coincide
in locations and multiplicities, we say that f(z) and g(z) share the value a
CM (counting multiplicities), and if they coincide in locations only, we say
that f(z) and g(z) share a IM (ignoring multiplicities).

Yang and Hua [15] proved the following result.

Theorem A ([15]). Let f(z) and g(z) be two nonconstant meromorphic
functions, n ≥ 11 an integer , and a ∈ C−{0}. If fn(z)f ′(z) and gn(z)g′(z)
share the value a CM , then either f(z) = dg(z) for some (n + 1)th root of
unity d, or

g(z) = c1e
cz and f(z) = c2e

−cz

where c, c1, and c2 are constants satisfying (c1c2)n+1c2 = −a2.

Using the same argument as in [15], Fang and Hong [6] proved the fol-
lowing result.

Theorem B ([6]). Let f(z) and g(z) be two nonconstant entire func-
tions, and n ≥ 11 an integer. If the functions [fn(z)(f(z) − 1)]f ′(z) and
[gn(z)(g(z)− 1)]g′(z) share the value 1 CM , then f(z) ≡ g(z).

To state the next result, we require the following definition.

Definition 1.1 ([10, 11]). Let k be a nonnegative integer or infinity.
For a ∈ C ∪ {∞}, we denote by Ek(a; f) the set of all a-points of f , where
an a-point of multiplicity m is counted m times if m ≤ k and k + 1 times
if m > k. If Ek(a; f) = Ek(a; g), we say that f, g share the value a with
weight k.

The definition implies that if f, g share a value a with weight k then z0
is a zero of f −a with multiplicity m (≤ k) if and only if it is a zero of g−a
with multiplicity m (≤ k); and z0 is a zero of f−a with multiplicity m(> k)
if and only if it is a zero of g − a with multiplicity n (> k) where m is not
necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with
weight k; clearly if f, g share (a, k), then f, g share (a, p) for all integers
p with 0 ≤ p ≤ k. Also, we note that f, g share a value a IM or CM if and
only if they share (a, 0) or (a,∞), respectively.

With the notion of weighted sharing of values the following results im-
proving Theorem A are proved in [4].
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Theorem C ([4]). Let f(z) and g(z) be two nonconstant entire func-
tions, and n ≥ 9 an integer. If

E2(1, fn(z)(f(z)− 1)]f ′(z)) = E2(1, [gn(z)(g(z)− 1)]g′(z)),

then f(z) ≡ g(z).

Theorem D ([4]). Let f(z) and g(z) be two nonconstant entire func-
tions, and n ≥ 17 an integer. If [fn(z)(f(z) − 1)]f ′(z) and [gn(z)(g(z) −
1)]g′(z) share (1, 0), then f(z) ≡ g(z).

W. C. Lin and H. X. Yi [13] and Fang [5] obtained some unicity theorems
corresponding to Theorem B.

Theorem E ([13]). Let f(z) and g(z) be two nonconstant meromorphic
functions with Θ(∞, f)>2/(n+ 1) for some n≥12. If [fn(z)(f(z)−1)]f ′(z)
and [gn(z)(g(z)− 1)]g′(z) share 1 CM , then f(z) ≡ g(z).

Theorem F ([5]). Let f(z) and g(z) be two nonconstant entire func-
tions, and let n, k be positive integers with n > 2k+8. If [fn(z)(f(z)−1)](k)

and [gn(z)(g(z)− 1)](k) share 1 CM , then f(z) ≡ g(z).

Bhoosnurmath and Dyavanal proved the following theorem.

Theorem G ([3]). Let f(z) and g(z) be two nonconstant meromorphic
functions, and let n, k be two positive integers with n > 3k+13. If Θ(∞, f) >
3/(n+ 1), and if [fn(z)(f(z)− 1)](k) and [gn(z)(g(z)− 1)](k) share 1 CM ,
then f(z) ≡ g(z).

Now one may ask the following question which is the motivation for this
paper.

Question. In Theorems E, F and G, can the nature of sharing 1 CM
be further relaxed?

We now state the following three main results of this paper.

Theorem 1.2. Let f(z), g(z) be two nonconstant meromorphic func-
tions, and let n, k be two positive integers with n ≥ 8k + 18. If Θ(∞, f) +
Θ(∞, g) > 4/n, and if [fn(z)(f(z) − 1)](k) and [gn(z)(g(z) − 1)](k) share
(1, 0), then f ≡ g.

Theorem 1.3. Let f(z), g(z) be two nonconstant meromorphic func-
tions, and let n, k be two positive integers with n ≥ 7k+ 23/2. If Θ(∞, f) +
Θ(∞, g) > 4/n, and if [fn(z)(f(z) − 1)](k) and [gn(z)(g(z) − 1)](k) share
(1, 1), then f ≡ g.

Theorem 1.4. Let f(z), g(z) be two nonconstant meromorphic func-
tions, and let n, k be two positive integers with n ≥ 5k + 11. If Θ(∞, f) +
Θ(∞, g) > 4/n, and if [fn(z)(f(z) − 1)](k) and [gn(z)(g(z) − 1)](k) share
(1, 2), then f ≡ g.
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When f and g are two entire functions we can similarly get the following
results.

Corollary 1.5. Let f(z) and g(z) be two nonconstant entire functions,
and let n, k be two positive integers with n > 4k+ 11. If [fn(z)(f(z)− 1)](k)

and [gn(z)(g(z)− 1)](k) share (1, 0), then f ≡ g.

Corollary 1.6. Let f(z) and g(z) be two nonconstant entire functions,
and let n, k be two positive integers with n > 4k + 9. If [fn(z)(f(z)− 1)](k)

and [gn(z)(g(z)− 1)](k) share (1, 1), then f ≡ g.

Corollary 1.7. Let f(z) and g(z) be two nonconstant entire functions,
and let n, k be two positive integers with n > 3k + 7. If [fn(z)(f(z)− 1)](k)

and [gn(z)(g(z)− 1)](k) share (1, 2), then f ≡ g.

Now we explain some definitions and notations which are used in the
paper.

Definition 1.8 ([2, 18]). When f and g share 1 IM, we denote by
NL(r, 1; f) the counting function of the 1-points of f whose multiplicities
are greater than the multiplicites of the corresponding 1-points of g, where
each zero is counted only once; similarly, we have NL(r, 1; g). We also denote
by N11(r, 1; f) the counting function of common simple a-points of f and g;
and N (2

E (r, 1; f) denotes the counting function of those multiplicity 1-points
of f and g, each point in these counting functions is counted only once. In
the same way, one can define N11(r, 1; g), N (2

E (r, 1; g).
In addition, let z0 be the zeros of f − 1 with multiplicity p and zeros of

g − 1 with multiplicity q. We denote by Nf>k(r, 1; g) the reduced counting
function of those zeros of f − 1 and g− 1 such that p > q = k; Ng>k(r, 1; f)
is defined analogously.

Definition 1.9 ([10, 11]). Let f, g share the value 1 IM. We denote by
N∗(r, 1; f, g) the reduced counting function of those 1-points of f whose
multiplicities differ from the multiplicities of the corresponding 1-points
of g. Clearly N∗(r, 1; f, g) ≡ N∗(r, 1; g, f) and N∗(r, 1; f, g) = NL(r, 1; f) +
NL(r, 1; g).

2. Some lemmas. For the proof of our results we need the following
lemmas.

Lemma 2.1 ([8]). Let f be a nonconstant meromorphic function, k a
positive integer , and c a nonzero finite complex number. Then

T (r, f) ≤ N(r, f) +N(r, 0; f) +N(r, c; f (k))−N(r, 0; f (k+1)) + S(r, f),

T (r, f) ≤ N(r, f) +Nk+1(r, 0; f) +N(r, c; f (k))−N0(r, 0; f (k+1)) + S(r, f),
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where N0(r, 0; f (k+1)) only counts those points such that f (k+1) = 0 but
f(f (k) − c) 6= 0.

Lemma 2.2 ([8]). Let f be a meromorphic function and α1, α2 be two
meromorphic functions such that T (r, αi) = S(r, f) (i = 1, 2). Then

T (r, f) ≤ N(r, f) +N(r, α1(z); f) +N(r, α2(z); f) + S(r, f).

Lemma 2.3 ([14]). Let f be a nonconstant meromorphic function and
P (f) = a0 + a1f + a2f

2 + · · ·+ anf
n, where a0, a1, . . . , an are constants and

an 6= 0. Then
T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.4 ([1]). Let f be a nonconstant meromorphic function and k
be a positive integer. Then

N2(r, 1/f (k)) ≤ kN(r, f) +Nk+2(r, 1/f) + S(r, f).

Lemma 2.5 ([7]). Let f be a nonconstant entire function and k ≥ 2 be
a positive integer. If f(z)f (k)(z) 6= 0, then f = eaz+b, where a 6= 0, b are
constants.

Lemma 2.6 ([11]). Let F and G be two nonconstant meromorphic func-
tions sharing (1, 0), and H 6≡ 0. Then

N11(r, 1;F ) ≤ N(r,H) + S(r, F ) + S(r,G),

where H =
(

F ′′

F ′ − 2F ′

F−1

)
−
(

G′′

G′ − 2G′

G−1

)
.

Lemma 2.7 ([1]). Let F and G be two nonconstant meromorphic func-
tions sharing (1, 0), and H 6≡ 0. Then

N(r,∞;H) ≤ N(r,∞;F | ≥2) +N(r,∞;G | ≥2) +N(r, 0;F | ≥2)

+N(r, 0;G | ≥2) +N0(r, 0;F ′) +N0(r, 0;G′)

+N∗(r, 1;F,G) + S(r, F ) + S(r,G),

where N0(r, 0;F ′) is the reduced counting function of those zeros of F ′ which
are not zeros of F (F − 1), and N0(r, 0;G′) is similarly defined.

Lemma 2.8 ([1]). Let F and G be two meromorphic functions sharing
(1, 0). Then

NG>1(r, 1;F ) ≤ N(r, 0;G) +N(r,∞;G)−N0(r, 0;G′) + S(r,G),

NF>1(r, 1;G) ≤ N(r, 0;F ) +N(r,∞;F )−N0(r, 0;F ′) + S(r, F ).

Lemma 2.9 ([17]). Let F and G be two meromorphic functions sharing
(1, 0). Then

NL(r, 1;F ) ≤ N(r, 0;F ) +N(r,∞;F ) + S(r, F ),

NL(r, 1;G) ≤ N(r, 0;G) +N(r,∞;G) + S(r,G).
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Lemma 2.10 ([1]). Let f, g share (1, 1). Then

Nf>2(r, 1; g) ≤ 1
2N(r, 0; f) + 1

2N(r,∞; f)− 1
2N0(r, 0; f ′) + S(r, f),

Ng>2(r, 1; f) ≤ 1
2N(r, 0; g) + 1

2N(r,∞; g)− 1
2N0(r, 0; g′) + S(r, g).

Lemma 2.11 ([11]). If two nonconstant meromorphic functions f, g share
(1, 2) then

N0(r, 0; g′)+N(r, 1; g | ≥2)+N∗(r, 1; f, g) ≤ N(r,∞; g)+N(r, 0; g)+S(r, g).

Lemma 2.12. Let f and g be two meromorphic functions, and let k be a
positive integer. Suppose that f (k) and g(k) share (1, l) (l = 0, 1, 2).

(i) If l = 0 and

∆1 = (2k + 4) min{Θ(∞, f), Θ(∞, g)}(1)
+ (2k + 3) min{Θ(∞, f), Θ(∞, g)}+ δk+1(0, f) + δk+1(0, g)
+ δk+2(0, f) + δk+2(0, g) + min{Θ(0, f), Θ(0, g)}

> 4k + 11,

then either f (k)g(k) ≡ 1 or f ≡ g.
(ii) If l = 1 and

∆2 = (k + 5/2) min{Θ(∞, f), Θ(∞, g)}(2)
+ (2k + 2) min{Θ(∞, f), Θ(∞, g)}+ δk+1(0, f)
+ δk+1(0, g) + δk+2(0, f) + δk+2(0, g)

> 3k + 15/2,

then either f (k)g(k) ≡ 1 or f ≡ g.
(iii) If l = 2 and

∆3 = (k + 2) min{Θ(∞, f), Θ(∞, g)}(3)
+ (k + 2) min{Θ(∞, f), Θ(∞, g)}
+ min{δk+1(0, f), δk+1(0, g)}
+ δk+2(0, f) + δk+2(0, g)

> 2k + 6,

then either f (k)g(k) ≡ 1 or f ≡ g.

Proof. Let F = f (k) , G = g(k) and

H ≡
(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

(i) If l = 0, then F,G share (1, 0). Suppose H 6≡ 0. Then we have

(4) N11(r, 1;F ) ≤ N(r, 0;H) ≤ N(r,H) + S(r, F ) + S(r,G).
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So using Lemmas 2.6–2.9 and (4), we get

(5) N(r, 1;F ) +N(r, 1;G)

≤ N11(r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G)

+N
(2
E (r, 1;F ) +N(r, 1;G)

≤ N11(r, 1;F ) +N(r, 1;G)−NL(r, 1;G)

+NG>1(r, 1;F ) +NF>1(r, 1;G)

≤ N(r,∞;F | ≥2) +N(r,∞;G | ≥2) +N(r, 0;F | ≥2)

+N(r, 0;G | ≥2) +N∗(r, 1;F,G) + T (r,G)−m(r, 1;G)

+O(1)−NL(r, 1;G)−NF>1(r, 1;G) +NG>1(r, 1;F )
+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r, F ) +N2(r,G)

+ T (r,G) +N(r, 0;F ) +N(r, F ) +N0(r, 0;F ′)
+N0(r, 0;G′) + S(r, F ) + S(r,G).

Since F = f (k) and G = g(k), from Lemma 2.4 and (5) we obtain

(6) N(r, 1;F ) +N(r, 1;G)

≤ N2(r, 0; f (k)) +N2(r, 0; g(k)) +N2(r, f (k)) +N2(r, g(k))

+ T (r, g(k)) +N(r, 0; f (k)) +N(r, f (k)) +N0(r, 0; f (k+1))

+N0(r, 0; g(k+1)) + S(r, f) + S(r, g)

≤ (2k + 3)N(r, f) + (2k + 2)N(r, g) +N(r, 0; f) + T (r, g)

+Nk+2(r, 0; f) +Nk+2(r, 0; g) +N0(r, 0; f (k+1))

+N0(r, 0; g(k+1)) + S(r, f) + S(r, g).

And from Lemma 2.1, we have

T (r, f) ≤ N(r, f) +Nk+1(r, 0; f) +N(r, c; f (k))(7)

−N0(r, 0; f (k+1)) + S(r, f),

T (r, g) ≤ N(r, g) +Nk+1(r, 0; g) +N(r, c; g(k))(8)

−N0(r, 0; g(k+1)) + S(r, g).

Thus, from (4)–(8) (let c = 1) we get

T (r, f) + T (r, g) ≤ (2k + 4)N(r, f) + (2k + 3)N(r, g) +N(r, 0; f)
+ T (r, g) +Nk+1(r, 0; f) +Nk+1(r, 0; g)
+Nk+2(r, 0; f) +Nk+2(r, 0; g) + S(r, f) + S(r, g).
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This becomes

T (r, f) ≤ (2k + 4)N(r, f) + (2k + 3)N(r, g) +N(r, 0; f)(9)
+Nk+1(r, 0; f) +Nk+1(r, 0; g) +Nk+2(r, 0; f)
+Nk+2(r, 0; g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I of infinite
measure such that T (r, g) ≤ T (r, f) for r ∈ I. Hence

T (r, f) ≤ [4k + 12− (2k + 4)Θ(∞, f)− (2k + 3)Θ(∞, g)
− δk+1(0, f)− δk+1(0, g)− δk+2(0, f)− δk+2(0, g)
−Θ(0, f) + ε]T (r, f) + S(r, f)

for r ∈ I and 0 < ε < ∆1 − 4k − 11, that is, {∆1 − (4k + 11)− ε}T (r, f) ≤
S(r, f), so ∆1 − (4k + 11) ≤ 0, contrary to hypothesis.

Therefore, we have H ≡ 0. Then

f (k+2)

f (k+1)
− 2f (k+1)

f (k) − 1
≡ g(k+2)

g(k+1)
− 2g(k+1)

g(k) − 1
.

From this equation we get

(10) g(k) =
(b+ 1)f (k) + (a− b− 1)

bf (k) + (a− b)
,

where a (6= 0), b are two constants.
Now, we consider three cases as follows.

(i)1 Suppose b 6= 0,−1. If a− b− 1 6= 0, then by (10) we know that

N

(
r,
a− b− 1
b+ 1

; f (k)

)
= N(r, 0; g(k)).

By Lemma 2.1 we have

T (r, f) ≤ N(r, f) +Nk+1(r, 0; f) +N(r, c; f (k))

−N0(r, 0; f (k+1)) + S(r, f)

≤ N(r, f) +Nk+1(r, 0; f) +N

(
r,
a− b− 1
b+ 1

; f (k)

)
+ S(r, f)

≤ N(r, f) +Nk+1(r, 0; f) + kN(r, g)

+N(r, 0; g) + S(r, f)

≤ (2k + 4)N(r, f) + (2k + 3)N(r, g) +N(r, 0; f)
+Nk+1(r, 0; f) +Nk+1(r, 0; g) +Nk+2(r, 0; f)
+Nk+2(r, 0; g) + S(r, f) + S(r, g).

Hence, by (1) we deduce that T (r, f) ≤ S(r, f) for r ∈ I, a contradiction.
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If a − b − 1 = 0, then by (10) we know g(k) = ((b + 1)f (k))/(bf (k) + 1).
Obviously,

N(r, 1/b; f (k)) = N(r, g(k)).

By Lemma 2.1 we have

T (r, f) ≤ N(r, f) +Nk+1(r, 0; f) +N(r, c; f (k))

−N0(r, 0; f (k+1)) + S(r, f)

≤ N(r, f) +Nk+1(r, 0; f) +N(r, 1/b; f (k)) + S(r, f)

≤ N(r, f) +Nk+1(r, 0; f) +N(r, g)
+Nk+1(r, 0; f) +Nk+1(r, 0; g) +Nk+2(r, 0; f)
+Nk+2(r, 0; g) + S(r, f) + S(r, g).

Hence, by (1) we deduce that T (r, f) ≤ S(r, f) for r ∈ I, a contradiction.

(i)2 Suppose b = −1. Then (10) becomes g(k) = a/(a+ 1− f (k)).
If a + 1 6= 0, then N(r, a + 1; f (k)) = N(r, g(k)), and we can deduce a

contradiction as in (i)1.
If a+ 1 = 0, then f (k)g(k) ≡ 1.

(i)3 Suppose b = 0. Then (10) becomes g(k) = (f (k) + a− 1)/a.
If a − 1 6= 0, then N(r, 1 − a; f (k)) = N(r, 0; g(k)), and again we deduce

a contradiction as in (i)1.
If a− 1 = 0, then f (k) ≡ g(k). From this, we obtain

f = g + p(z),

where p(z) is a polynomial, so T (r, f) = T (r, g) + S(r, f). If p(z) 6≡ 0, then
by Lemma 2.2, we have

T (r, f) ≤ N(r, f) +N(r, 0; f) +N(r, p; f) + S(r, f)

≤ N(r, f) +N(r, 0; f) +N(r, 0; g) + S(r, f).

Hence,

T (r, f) ≤ {3− [Θ(∞, f) +Θ(0, g) +Θ(0, f)] + ε}T (r, f) + S(r, f),

where 0 < ε < (2k+3)[1−Θ(∞, f)]+(2k+3)[1−Θ(∞, g)+1−δk+1(0, f)+
1− δk+2(0, f) + 1− δk+2(0, g). Therefore

{∆1 − 4k − 11}T (r, f) ≤ S(r, f).

Hence, by (1), we deduce that T (r, f) ≤ S(r, f) for r ∈ I, a contradiction.
Therefore, we conclude that p(z) ≡ 0, that is, f ≡ g.
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(ii) If l = 1, then F,G share (1, 1). By Lemma 2.10, (5) becomes

N(r, 1;F ) +N(r, 1;G)

≤ N11(r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G)

+N
(2
E (r, 1;F ) +N(r, 1;G)

≤ N11(r, 1;F ) +N(r, 1;G)−NL(r, 1;G)

−NL(r, 1;F ) +NF>2(r, 1;G)

≤ N(r,∞;F | ≥2) +N(r,∞;G | ≥2) +N(r, 0;F | ≥2)

+N∗(r, 1;F,G) + T (r,G)−m(r, 1;G) +O(1)

−NL(r, 1;G) +N(r, 0;G | ≥2)−NL(r, 1;F )

+ 1
2N(r, 0;F ) + 1

2N(r,∞;F ) +N0(r, 0;F ′)
+N0(r, 0;G′) + S(r, F ) + S(r,G).

By Lemma 2.4, this becomes

N(r, 1;F ) +N(r, 1;G) ≤ (k + 3/2)N(r, f) + (2k + 1)N(r, g) + T (r, g)

+Nk+2(r, 0; f) +Nk+2(r, 0; g) +N0(r, 0; f (k+1))

+N0(r, 0; g(k+1)) + S(r, f) + S(r, g).

Then (9) becomes

T (r, f) ≤ (k + 5/2)N(r, f) + (2k + 2)N(r, g) +Nk+1(r, 0; f)
+Nk+1(r, 0; g) +Nk+2(r, 0; f) +Nk+2(r, 0; g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I of infinite
measure such that T (r, g) ≤ T (r, f) for r ∈ I. Hence

T (r, f) ≤ [3k + 17/2− (k + 5/2)Θ(∞, f)− (2k + 2)Θ(∞, g)
− δk+1(0, f)−δk+1(0, g)−δk+2(0, f)−δk+2(0, g)+ε]T (r, f)+S(r, f)

for r ∈ I and 0 < ε < ∆2 − 3k − 15/2, that is,

{∆2 − (3k + 15/2)− ε}T (r, f) ≤ S(r, f),

so ∆2 ≤ 3k + 15/2, contrary to hypothesis.
Therefore, we have H ≡ 0, and using the same argument of (ii), we

deduce that p(z) ≡ 0, that is, f ≡ g.

(iii) If l = 2, then F,G share (1, 2), and we see that N(r, 1;F | ≥2) =
N(r, 1;G | ≥2). By Lemmas 2.4, 2.5 and 2.11, we obtain
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N(r, 1;F |=1) ≤ N(r, 0;F | ≥2) +N(r, 0;G | ≥2)

+N(r,∞;F | ≥2) +N(r,∞;G | ≥2)

+N(r, 0;G)−N(r, 1;G | ≥2)

+N0(r, 0;F ′) + S(r, F ) + S(r,G).

Since N(r, 1;F ) = N(r, 1;F |=1) + N(r, 1;F | ≥2), by Lemmas 2.1 and 2.4
and F = f (k), G = g(k), we have

T (r, f) ≤ 2N(r, f) + 2N(r, g) +Nk+1(r, 0; f) +N(r, 0; f (k) | ≥2)

+N(r, 0; g(k) | ≥2) +N(r, 0; g(k)) + S(r, f) + S(r, g).

Then we obtain

T (r, f) ≤ (k + 2)N(r, f) + (k + 2)N(r, g) +Nk+1(r, 0; f)
+Nk+2(r, 0; f) +Nk+2(r, 0; g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I of infinite
measure such that T (r, g) ≤ T (r, f) for r ∈ I. Hence

T (r, f) ≤ [2k + 7− (k + 2)Θ(∞, f)− (k + 2)Θ(∞, g)− δk+1(0, f)
− δk+2(0, f)− δk+2(0, g) + ε]T (r, f) + S(r, f)

for r ∈ I and 0 < ε < ∆3−2k−6, that is, {∆3−(2k+6)−ε}T (r, f) ≤ S(r, f),
so ∆3 ≤ 2k + 6, contrary to hypothesis.

Therefore, H ≡ 0, and using the same argument of (i), we deduce that
p(z) ≡ 0, that is, f ≡ g.

This completes the proof of Lemma 2.12.

3. Proof of Theorem 1.2. Let

F (z) = fn(z)(f(z)− 1) and G(z) = gn(z)(g(z)− 1).

We have

∆1 = (2k + 4) min{Θ(∞, F ), Θ(∞, G)}+ (2k + 3) min{Θ(∞, F ), Θ(∞, G)}
+ min{Θ(0, F ), Θ(0, G)}+ δk+1(0, F )
+ δk+1(0, G) + δk+2(0, F ) + δk+2(0, G).

Since

Θ(0, F ) = 1− lim
r→∞

N(r, 0;F )
T (r, F )

= 1− lim
r→∞

N(r, 0; fn(f − 1))
(n+ 1)T (r, f)

= 1− lim
r→∞

N(r, 0; f) +N(r, 1; f)
(n+ 1)T (r, f)

≥ 1− lim
r→∞

2T (r, f)
(n+ 1)T (r, f)

,

we obtain

(11) Θ(0, F ) ≥ n− 1
n+ 1

.
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Similarly,

(12) Θ(0, G) ≥ n− 1
n+ 1

.

And since

Θ(∞, F ) = 1− lim
r→∞

N(r, F )
T (r, F )

= 1− lim
r→∞

N(r, fn(f − 1))
(n+ 1)T (r, f)

= 1− lim
r→∞

N(r, f)
(n+ 1)T (r, f)

≥ 1− lim
r→∞

T (r, f)
(n+ 1)T (r, f)

,

it follows that

(13) Θ(∞, F ) ≥ n

n+ 1
.

Similarly,

(14) Θ(∞, G) ≥ n

n+ 1
.

Next, by the definition of Nk(r, a; f) we have

δk+1(0, f) = 1− lim
r→∞

Nk+1(r, 0; f)
T (r, f)

≥ 1− lim
r→∞

(k + 1)N(r, 0; f)
T (r, f)

,

δk+1(0, F ) = 1− lim
r→∞

Nk+1(r, 0; fn(f − 1))
T (r, F )

≥ 1− lim
r→∞

(k + 1)N(r, 0;F )
T (r, F )

.

Therefore

(15) δk+1(0, F ) ≥ 1− lim
r→∞

(k + 2)T (r, f)
(n+ 1)T (r, f)

= 1− k + 2
n+ 1

.

Similarly,

(16) δk+1(0, G) ≥ 1− k + 2
n+ 1

and

(17) δk+2(0, F ) ≥ 1− k + 3
n+ 1

, δk+2(0, G) ≥ 1− k + 3
n+ 1

.

From (11)–(17), we get

∆1 ≥ (2k + 4)
n

n+ 1
+ (2k + 3)

n

n+ 1
+
n− 1
n+ 1

+ 2
(

1− k + 2
n+ 1

)
+ 2
(

1− k + 3
n+ 1

)
.

Since n > 8k + 18, we get ∆1 > 4k + 11.
From the assumption of Theorem 1.2, we deduce that F (k) =[fn(f−1)](k)

and G(k) = [gn(g − 1)](k) share 1 IM and F,G satisfy the assumptions of
Lemma 2.10. By that lemma, either F (k)G(k) ≡ 1 or F ≡ G.

Next, we consider the following two cases:
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Case 1: F (k)G(k) ≡ 1, i.e.

(18) [fn(f − 1)](k)[gn(g − 1)](k) ≡ 1.

(i) Let z0 be a zero of f of order p. By (18), z0 is a pole of g, say of
order q; (18) yields np−k = nq+q+k, i.e., n(p−q) = q+2k, which implies
that p ≥ q + 1 and q + 2k ≥ n. Thus

(19) p ≥ n− 2k + 1.

(ii) Let z1 be a zero of f−1 of order p1. Then it is a zero of [fn(f−1)](k)

of order p1 − k and hence a pole of g, say of order q1. By (18) we obtain
p1 − k = nq1 + q1 + k, i.e., p1 = (n+ 1)q1 + 2k, so

p1 ≥ n+ 2k + 1.

(iii) Let z2 be a zero of f ′ of order p2 that is not a zero of f(f−1). Then z2
is a pole of g, say of order q2, and by (18) we obtain p2−(k−1) = nq2+q2+k,
i.e., p2 = (n+ 1)q2 + 2k + 1, so

p2 ≥ n+ 2k.

We have similar results for the zeros of [gn(g − 1)](k).
Thus we know that possible poles of g occur at (i) the zeros of f ; (ii) the

zeros of f − 1; (iii) the zeros of f ′ that are not zeros of f(f − 1). Thus

N(r, g) ≤ N(r, 0; f) +N(r, 1; f) +N(r, 0; f ′)

≤ 1
n− 2k + 1

N(r, 0; f) +
1

n+ 2k + 1
N(r, 1; f) +

1
n+ 2k

N(r, 0; f ′).

Since n ≥ 8k + 18, we get

N(r, g) ≤ 1
6k + 19

N(r, 0; f) +
1

10k + 19
N(r, 1; f) +

1
10k + 18

N(r, 0; f ′)

≤ 1
25
N(r, 0; f) +

1
29
N(r, 1; f) +

1
28
N(r, 0; f ′)

≤
(

1
25

+
1
29

+
2
28

)
T (r, f) + S(r, f)

≤ 0.1102T (r, f) + S(r, f).

By the second fundamental theorem and the above, we obtain

T (r, g) ≤ N(r, 0; g) +N(r, 1; g) +N(r, g) + S(r, g)(20)

≤ 1
25
N(r, 0; g) +

1
29
N(r, 1; g) + 0.1102T (r, f)

+ S(r, f) + S(r, g)
≤ 0.0745T (r, g) + 0.1102T (r, f) + S(r, f) + S(r, g).

Similarly,

(21) T (r, f) ≤ 0.0745T (r, f) + 0.1102T (r, g) + S(r, f) + S(r, g).
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Adding (20) and (21), we have

T (r, f) + T (r, g) ≤ 0.1848[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

so

(22) 0.8152[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

which yields a contradiction.

Case 2: Suppose F ≡ G, that is,

fn(f − 1) ≡ gn(g − 1).

We consider the following two cases.
(i) Suppose h = f/g is a constant. If h ≡ 1, then f ≡ g. If h 6≡ 1, we

deduce that

g =
1− hn

1− hn+1
and f =

h(1− hn)
(1− hn+1)

.

This is a contradiction because f, g are nonconstant.
(ii) Suppose h = f/g is not a constant. Thus we get

g =
hn

1 + h+ h2 + · · ·+ hn
− 1.

Then by Nevanlinna’s first fundamental theorem and Lemma 2.3,

T (r, g) = T

(
r,

n∑
j=0

1
hj

)
+ S(r, h) = nT (r, 1/h) + S(r, h)

= nT (r, h) + S(r, h).

Now we note that a pole of h is not a pole of hn/(1 +h+h2 + · · ·+hn)− 1.
So

n∑
j=0

N

(
r,

1
h− uk

)
≤ N(r, g),

where uk = exp(2kπi/n) for k = 1, . . . , n. By the second fundamental theo-
rem we get

(n− 2)T (r, h) ≤
n∑

k=1

N

(
r,

1
h− uk

)
+ S(r, h) ≤ N(r,∞; g) + S(r, h)

< (1−Θ(∞, g) + ε)T (r, g) + S(r, h)
= n(1−Θ(∞, g) + ε)T (r, h) + S(r, h)

for all ε > 0. Again putting h1 = 1/h, noting that T (r, h) = T (r, h1) +O(1)
and proceeding as above we get

(n− 2)T (r, h) ≤ n(1−Θ(∞, f) + ε)T (r, h) + S(r, h)
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for all ε > 0. Since Θ(∞, f) + Θ(∞, g) > 4/n, there exists a δ (> 0) such
that Θ(∞, f) +Θ(∞, g) > δ + 4/n. Then

2(n− 2)T (r, h) ≤ n(2−Θ(∞, f)−Θ(∞, g) + 2ε)T (r, h) + S(r, h)
< n(2− 4/n− δ + 2ε)T (r, h) + S(r, h),

and so (δ − 2ε)T (r, h) ≤ S(r, h), which is a contradiction for 0 < 2ε < δ.
Therefore, f ≡ g and so Theorem 1.2 is proved completely.

4. Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3. From (11)–(17), we have

∆2 ≥
(
k +

5
2

)
n

n+ 1
+ (2k + 2)

n

n+ 1
+ 2
(

1− k + 2
n+ 1

)
+ 2
(

1− k + 3
n+ 1

)
.

Since n > 7k + 23/2, we get ∆2 > 3k + 15/2.
Considering F (k) = [fn(f − 1)](k) and G(k) = [gn(g − 1)](k), by the

assumptions of Theorem 1.2, F (k) and G(k) share (1, 1), and F and G satisfy
the assumptions of Lemma 2.12; by that lemma, either F (k)G(k) ≡ 1 or
F ≡ G.

Using the same argument of Theorem 1.2, we deduce f ≡ g.

Proof of Theorem 1.4. From (11)–(17), we have

∆3 ≥ (k + 2)
n

n+ 1
+ (k + 2)

n

n+ 1
+
(

1− k + 2
n+ 2

)
+ 2
(

1− k + 3
n+ 1

)
.

Since n > 5k + 11, we get ∆3 > 2k + 6.
Considering F (k) = [fn(f − 1)](k) and G(k) = [gn(g − 1)](k), by the

assumptions of Theorem 1.2, F (k) and G(k) share (1, 2), and F and G satisfy
the assumptions of Lemma 2.12; by that lemma, either F (k)G(k) ≡ 1 or
F ≡ G.

Using the same argument of Theorem 1.2, we deduce f ≡ g.
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