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Uniqueness theorems and normal families of entire functions
and their derivatives

by Feng Lü (Jinan), Junfeng Xu (Jiangmen) and Hongxun Yi (Jinan)

Abstract. We use the theory of normal families to obtain some uniqueness theorems
for entire functions, which improve and generalize the related results of Rubel and Yang,
and Li and Yi. Some examples are provided to show the sharpness of our results.

1. Introduction and main results. Let f(z) and g(z) be two noncon-
stant meromorphic functions in the complex plane C and let a be a complex
number. If g(z) = a whenever f(z) = a, we write f(z) = a ⇒ g(z) = a.
If f(z) = a ⇒ g(z) = a and g(z) = a ⇒ f(z) = a, we write f(z) = a ⇔
g(z) = a and say that f and g share the value a IM (ignoring multiplicity).
If f −a and g−a have the same zeros with the same multiplicities, we write
f(z) = a 
 g(z) = a and say that f and g share the value a CM (counting
multiplicity) (see [13]). It is assumed that the reader is familiar with the
standard symbols and fundamental results of Nevanlinna theory, as found
in [3, 13].

In 1977, Rubel and Yang [10] proved the well-known theorem.

Theorem A. Let a and b be complex numbers such that b 6= a, and let
f(z) be a nonconstant entire function. If f(z) and f ′(z) share the values a
and b CM , then f = f ′.

This result has undergone various extensions and improvements (see
[13]). Mues and Steinmetz [7] proved

Theorem B. Let a and b be complex numbers such that b 6= a, and
let f(z) be a non-constant entire function. If f(z) = a ⇔ f ′(z) = a and
f(z) = b⇔ f ′(z) = b, then f ≡ f ′.

Recently, Li and Yi [5] proved the following related results.
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Theorem C. Let a and b be complex numbers such that b 6= a, 0, and
let f(z) be a nonconstant entire function. If f(z) = a 
 f ′(z) = a and
f ′(z) = b⇒ f(z) = b, then f ≡ f ′.

Theorem D. Let a and b be complex numbers such that b 6= a, 0, and
let f(z) be a nonconstant entire function. If f(z) = a ⇒ f ′(z) = a and
f(z) = b 
 f ′(z) = b, then one of the following cases must occur :

(1) f ≡ f ′,
(2) f = Cebz/(b−a) + a, where C is a nonzero constant.

It is natural to ask whether the conclusion of Theorem C remains valid
if the hypothesis that f and f ′ share a CM is replaced by f and f ′ sharing a
IM. In the present paper, we answer this question by proving the following
result.

Theorem 1.1. Let a and b be two nonzero distinct complex numbers,
and let f(z) be a nonconstant entire function. If f(z) = a⇔ f ′(z) = a and
f ′(z) = b⇒ f(z) = b, then f ≡ f ′.

The following two examples show that the conditions a 6= 0 and b 6= 0
cannot be omitted in Theorem 1.1.

Example 1. Let f = (b/4)z2. Then

f(z) = 0⇔ f ′(z) = 0 and f ′(z) = b⇒ f(z) = b,

but f 6≡ f ′.
Example 2. Let f = Ae(a/A)z + a−A, where A is a nonzero constant.

Then
f(z) = a⇔ f ′(z) = a and f ′(z) 6= 0,

but f 6≡ f ′.
Similarly, we can ask whether Theorem D still holds when the hypothesis

that f(z) = b 
 f ′(z) = b is replaced by f(z) = b⇒ f ′(z) = b. The answer
is negative in general, as shown by the following example.

Example 3. Let f = ez/2 + 2ez/4 + 1. It is easy to see that

f = 0⇒ f ′ = 0 and f = 1⇒ f ′ = 1,

but f does not satisfy any case of Theorem D.

However, we shall prove the following theorem:

Theorem 1.2. Let a and b be complex numbers such that b 6= a, 0, and
let f(z) be a nonconstant entire function. If f(z) = a ⇒ f ′(z) = a and
f(z) = b⇒ f ′(z) = b, then one of the following cases must occur :

(a) f ≡ f ′,
(b) f = Aebz/(b−a) + a with a 6= 0,
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(c) f = Aeaz/(a−b) + b with a 6= 0,
(d) f = b

{
1
4A

2ez/2 +Aez/4 + 1
}

with a = 0,

where A is a nonzero constant.

From the proof of Theorem 1.2, we can easily get the following corollary.

Corollary 1.1. Let b be a nonzero number , and let f(z) be a noncon-
stant entire function. If f(z) = 0 ⇒ f ′(z) = 0 and f(z) = b ⇒ f ′(z) = b,
then one of the following cases must occur :

(a) f ≡ f ′,
(b) f = b

{
1
4A

2ez/2 +Aez/4 + 1
}

, where A is a nonzero constant.

Remark 1.1. Obviously, Theorems 1.1 and 1.2 partially improve the
former theorems.

It does not seem that the above theorems can be proved by using the
methods in [5, 7]. In order to prove our theorems, we need the following
result relating to normal families, which is interesting in its own right.

Theorem 1.3. Let F be a family of functions holomorphic on a do-
main D, and let a and b be distinct complex numbers. If for all f ∈ F ,
f(z) = a⇒ f ′(z) = a and f(z) = b⇒ f ′(z) = b, then F is normal in D.

In 1999, Xu [12] proved the following theorem.

Theorem E. Let F be a family of functions holomorphic on a domain D,
and let a and b be distinct complex numbers. If for all f ∈ F , f(z) = a ⇔
f ′(z) = a and f(z) = b⇔ f ′(z) = b, then F is normal in D.

Obviously, Theorem 1.3 improves Theorem E.

2. Some lemmas

Lemma 2.1 ([9]). Let F be a family of functions holomorphic on the unit
disc, and suppose that there exists A ≥ 1 such that |f ′(z)| ≤ A whenever
f ∈ F and f(z) = 0. If F is not normal , then there exist , for each 0 ≤ α ≤ 1,

(a) a number 0 < r < 1,
(b) points zn with |zn| < 1,
(c) functions fn ∈ F ,
(d) positive numbers an → 0 such that

a−αn fn(zn + anξ) = gn(ξ)→ g(ξ)

locally uniformly , where g is a nonconstant holomorphic function on
C with order at most 1 such that g](ξ) ≤ g](0) = A+ 1, where

g](ξ) =
|g′(ξ)|

1 + |g(ξ)|2
is the spherical derivative.
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Lemma 2.2 ([5]). Let F be a family of functions holomorphic on a do-
main D, and let a and b be distinct complex numbers such that b 6= 0. If
for all f ∈ F , f(z) = a ⇒ f ′(z) = a and f ′(z) = b ⇒ f(z) = b, then F is
normal in D.

Lemma 2.3 ([2, 6]). Let f be an entire function and M be a positive
number. If f ](z) ≤M for any z ∈ C, then f is of exponential type.

Lemma 2.4 ([11]). Let ζ be a family of meromorphic functions in a
domain D. Then ζ is normal in D if and only if the spherical derivatives of
functions f ∈ ζ are uniformly bounded on compact subsets of D.

Lemma 2.5 ([8], [4, Theorem 4.1]). Let f be an entire function of order
at most 1, and k be a positive integer. Then

m(r, f (k)/f) = o(log r) as r →∞.

3. Proof of Theorem 1.3. Since normality is a local property, we may
assume that the domain D is the unit disc. Suppose, to the contrary, that
F is not normal in D. Since a 6= b, we can assume b 6= 0. Set F1 = {f − a :
f ∈ F}. Then F1 is not normal in D. By assumption, for any function
h(z) = f(z)−a, we have |h′(z)| ≤ |a|+ 1 whenever h(z) = 0. By Lemma 2.1
(with α = 0 and A = |a|+ 1), there exist fn − a ∈ F1, zn ∈ D, and an → 0
as n→∞ such that

(3.1) gn(ξ) = fn(zn + anξ)− a→ g(ξ)

locally uniformly, g is a nonconstant entire function with order %(g)≤1, and

(3.2) g](ξ) ≤ g](0) = |a|+ 2.

Suppose that g(η0) = 0. Hurwitz’s theorem implies the existence of a
sequence ηn → η0 with

gn(ηn) = fn(zn + anηn)− a = 0.

Since f(z) = a⇒ f ′(z) = a, we have f ′n(zn + anηn) = a. Then

g′(η0) = lim
n→∞

g′n(ηn) = lim
n→∞

anf
′
n(zn + anηn) = 0,

and hence the zeros of g(ξ) are of multiplicity at least 2. Similarly, we find
that the zeros of g(ξ)− (b− a) are of multiplicity at least 2.

Next, we shall prove that g(ξ) 6= b−a. Suppose ξ0 is a zero of g(ξ)−(b−a)
with multiplicity m (≥ 2). Then g(m)(ξ0) 6= 0. Thus there exists a positive
number δ such that

(3.3) g(ξ) 6= 0, g′(ξ) 6= 0, g(m)(ξ) 6= 0

on Do
δ = {z : 0 < |ξ − ξ0| < δ}.

Noting that g(ξ) 6≡ b − a, by the Rouché theorem, there exist ξn,j
(j = 1, . . . ,m) in Dδ/2 = {ξ : |ξ − ξ0| < δ/2} such that gn(ξn,j) = b − a.
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Since

g′n(ξn,j) = anf
′
n(zn + anξn,j) = anb 6= 0 (j = 1, . . . ,m),

each ξn,j is a simple zero of gn(ξ)−(b−a), that is, ξn,j 6= ξn,i (1 ≤ i 6= j ≤ m).
On the other hand,

lim
n→∞

g′n(ξn,j) = lim
n→∞

anb = 0.

From (3.3), we have

lim
n→∞

ξn,j = ξ0 (j = 1, . . . ,m).

By (3.3), since g′n(ξ)−anb has m zeros ξn,j (j = 1, . . . ,m) in Dδ/2, it follows
that ξ0 is a zero of g′(ξ) with multiplicity m, and thus g(m)(ξ0) = 0. This is
a contradiction. Hence g(ξ) 6= b− a.

By the Nevanlinna second fundamental theorem, we arrive at a contra-
diction. This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.1. First, we prove that f is of exponential type.
Set F = {f(z + w) : w ∈ C}. Then F is a family of holomorphic functions
on the unit disc 4. By assumption, for any function h(z) = f(z + w), we
have h(z) = a ⇒ h′(z) = a and h′(z) = b ⇒ h(z) = b for all z ∈ 4. Hence
by Lemma 2.2, F is normal in 4. Thus by Lemma 2.4, there exists M > 0
satisfying f ](z) ≤ M for all z ∈ C. From Lemma 2.3, we deduce that f
is of exponential type. Since f(z) = a ⇔ f ′(z) = a, it follows that f is a
transcendental entire function.

Set

(4.1) g =
(f ′ − f)f ′′

(f − a)(f ′ − b)
.

From the assumption that f = a ⇔ f ′ = a and f ′ = b ⇒ f = b, we derive
that g is an entire function. By (4.1), we have

g =
f ′

f − a
f ′′

f ′ − b
− (f − a+ a)f ′′

(f − a)(f ′ − b)

=
f ′

f − a
f ′′

f ′ − b
− f ′′

f ′ − b
− f ′

f − a
af ′′

(f ′ − b)f ′
.

Thus, by Lemma 2.5,

T (r, g) = m(r, g) ≤ m
(
r,

f ′

f − a
f ′′

f ′ − b

)
+m

(
r,

f ′′

f ′ − b

)
+m

(
r,

f ′

f − a
af ′′

(f ′ − b)f ′

)
= o(log r),

which implies that g is a constant. We can write g = c.
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Suppose that c 6= 0. By (4.1) we find that f ′ − a has only simple zeros,
hence f = a 
 f ′ = a. From Theorem C we obtain f ≡ f ′, thus g = c = 0,
a contradiction.

Suppose now that c = 0. Then f ≡ f ′ or f ′′ ≡ 0. If f ′′ ≡ 0, then f is a
polynomial, which is a contradiction. Thus f ≡ f ′.

5. Proof of Theorem 1.2. Set F = {f(z + w) : w ∈ C}. Then F
is a family of holomorphic functions on the unit disc 4. By assumption,
for each function l(z) = f(z + w), we have l(z) = a ⇒ l′(z) = a and
l(z) = b⇒ l′(z) = b for all z ∈ 4. Hence by Theorem 1.3, F is normal in 4.
Thus by Lemma 2.4, there exists M > 0 satisfying f ](z) ≤M for all z ∈ C.
By Lemma 2.3, f is of exponential type.

Suppose that f is a polynomial. From f = b ⇒ f ′ = b, we deduce
that f is a linear polynomial and f = bz + d, where d is a constant. As
f = a ⇒ f ′ = a, we obtain a contradiction. So f is a transcendental entire
function.

In the following, we consider two cases:

Case 1: ab 6= 0. Set

(5.1) µ =
f ′(f − f ′)

(f − a)(f − b)
.

Then µ is an entire function and

T (r, µ) = m(r, µ)

≤ m
(
r,

f ′f

(f − a)(f − b)

)
+m

(
r,

f ′f ′

(f − a)(f − b)

)
+O(1)

= m

(
r,

1
b− a

(
bf ′

f − b
− af ′

f − a

))
+m

(
r,

f ′f ′

(f − a)(f − b)

)
+O(1).

By Lemma 2.5, we see that T (r, µ) = o(log r), thus µ is a constant.
If µ = 0, then f ≡ f ′.
Suppose µ 6= 0. Thus, f ′ 6= 0. Set

(5.2) f ′(z) = Aeλz,

where A and λ are two nonzero constants. Then

(5.3) f = c+
A

λ
eλz,

where c is a constant. Next we consider three subcases:

Subcase 1.1: a is not a Picard value of f . Then a 6= c. Let z0 be a zero
of f − a. By (5.2) and (5.3), we have

(5.4) λ =
a

a− c
.

Then f = c+Aeaz/(a−c).



Uniqueness theorems and normal families 73

Suppose b is a Picard value of f . Then c = b. Thus f = b+Aeaz/(a−b).
Now assume that b is not a Picard value of f . Let b0 be a zero of f ′ − b.

By (5.2) and (5.3), we have c = 0 and f = Aez, thus f ≡ f ′.

Subcase 1.2: b is not a Picard value of f . Similarly to Case 1, we deduce
f = a+Aebz/(b−a).

Subcase 1.3: a and b are two Picard values of f . Then by Nevanlinna’s
second fundamental theorem, we arrive at a contradiction.

Case 2: ab = 0. Then a = 0. Let h = f/b. Then h = 0 ⇒ h′ = 0,
h = 1 ⇒ h′ = 1 and {h(z + ω) : ω ∈ C} is normal in ∆. Then h is of
exponential type. Set

(5.5) g =
h′(h′ − h)
h(h− 1)

.

We see that g is a entire function. As above, we have

T (r, g) = m(r, g) = o(log r),

thus g is a constant.
If g = 0, then h ≡ h′ and f ≡ f ′.
Now, we assume that g 6= 0. By (5.5) we have

h′(h′ − h) = gh(h− 1).

Taking the derivative, we obtain

(5.6) h′′(h′ − h) + h′(h′′ − h′) = g[h′(h− 1) + hh′]

and

(5.7) h′′′(h′ − h) + 2h′′(h′′ − h′) + h′(h′′′ − h′′) = g[h′′(h− 1) + 2h′2 + hh′′].

If h 6= 1, we set h = A1e
λ1z + 1, where A1 and λ1 are nonzero constants.

From h = 0⇒ h′ = 0, we get a contradiction. Thus h− 1 has zeros.
Let c0 be a zero of h − 1. By (5.6), we get h′′(c0) = g + 1, which yields

h = 1⇒ h′′ = g + 1.
Put

(5.8) φ =
h′′ − (1 + g)h′

h− 1
;

this is an entire function. Similarly to the above, we find that φ is a constant.
Taking the derivative, we have

(5.9) φh′ = h′′′ − (1 + g)h′′.

Substitute c0 into (5.7) and (5.9) to obtain

φ = −2g2.
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If 0 is a Picard value of h, we set h = A2e
λ2z, where A2, λ2 are nonzero

constants. From h = 1 ⇒ h′ = 1, we derive that λ2 = 1. Thus h ≡ h′ and
g ≡ 0, a contradiction. Hence 0 is not a Picard value of h.

Let a0 be a zero of h. Then from (5.7), we deduce

2h′′(a0)2 = −gh′′(a0).

If h′′(a0) = 0, then a0 is a multiple zero of f ′ − f . By (5.5), we find g = 0,
a contradiction.

Hence, h′′(a0) 6= 0 and 2h′′(a0) = −g. Put a0 into (5.8) to find h′′(a0) =
−φ. This yields g = 2φ.

Thus, we get g = −1/4 and φ = −1/8. By (5.8), we have

h′′ − 3
4h
′ + 1

8(h− 1) = 0.

Solving the equation gives

h = C1e
z/2 + C2e

z/4 + 1.

From h = 0⇒ h′ = 0, h = 1⇒ h′ = 1, we get 4C1 = C2
2 . Hence

f = b
{

1
4C

2
2e
z/2 + C2e

z/4 + 1
}
.

Remark 5.1. For further study, we ask some questions.

Question 1. What will happen if b = 0 in Theorem 1.1?

Question 2. What will happen if the hypothesis f(z) = a⇔ f ′(z) = a
is replaced by f(z) = a⇒ f ′(z) = a in Theorem 1.1?

Unfortunately, we cannot answer the questions with the above methods.
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