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Splitting vector bundles by blowups

by Wojciech Kucharz (Albuquerque, NM)

Abstract. We show some advantages of splitting vector bundles by blowups.

0. Introduction. In topology and algebraic geometry the splitting of
vector bundles plays an important role (cf. [5, 8]). Usually, it is based on
the following construction. For any vector bundle E on X, we have the
associated projective bundle q : P(E)→ X. The pullback vector bundle q∗E
contains the tautological line bundle LE on P(E). In algebraic geometry it
is sometimes convenient to use instead the pullback by the projection of an
appropriate blowup (cf. [9]). We demonstrate below that blowups work very
well for smooth vector bundles on smooth manifolds and for algebraic vector
bundles on nonsingular real algebraic sets. As an application, we obtain a
nice description of the Stiefel–Whitney classes. We consider only real vector
bundles.

1. Vector bundles on smooth manifolds. All smooth (of class C∞)
manifolds are assumed to be paracompact and without boundary. Submani-
folds are supposed to be closed subsets of the ambient manifold. The tangent
bundle to a smooth manifold X will be denoted by TX . If Z is a smooth
submanifold of X, dimZ < dimX, we denote by

π(X,Z) : B(X,Z)→ X

the blowup of X at Z. Recall that as a point set B(X,Z) is the union of
X\Z and the projective bundle P(NZX) on Z associated with the normal
bundle

NZX := (TX |Z)/TZ
to Z in X. The map π(X,Z) is the identity on X \ Z and the bundle
projection P(NZX)→ Z on P(NZX). On B(X,Z) there is a natural smooth
manifold structure, and π(X,Z) is a smooth map.
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If E is a vector bundle on X and s : X → E is a section, we denote by
Z(s) the zero locus of s,

Z(s) = {x ∈ X | s(x) = 0}.

Theorem 1.1. Let X be a smooth manifold. Let E be a smooth vector
bundle on X and let s : X → E be a smooth section transverse to the zero
section. If π(X,Z) : B(X,Z) → X is the blowup of X at Z = Z(s), then
the pullback vector bundle π(X,Z)∗E on B(X,Z) contains a smooth line
subbundle.

Proof. We regard X as a submanifold of E, identifying it with its image
by the zero section. Moreover, we identify the normal bundle to X in E
with E. Thus as a point set B(E,X) is the union of E \X and P(E), while
π(E,X) : B(E,X)→ E is the identity on E \X and the bundle projection
P(E) → X on P(E). If p : E → X is the bundle projection, then the
pullback vector bundle (p ◦ π(E,X))∗E on B(E,X) contains a smooth line
subbundle L defined as follows. The fiber of L over a point e in E \X is the
line {e} × (Re), and the restriction L|P(E) is the tautological line bundle
on P(E).

Since s is transverse to X in E, for every point z in Z, the differential
dsz : TX,z → TE,z induces a linear isomorphism

d̄sz : (NZX)z → (NXE)z = Ez

between the fibers over z of the normal bundle to Z in X and the normal
bundle to X in E.

Define s̄ : B(X,Z) → B(E,X) by s̄(x) = x for all x in X \ Z and
s̄(l) = d̄sz(l) for all l in P((NZX)z) (thus s̄(l) is in P(Ez)). By construction,
s̄ is a smooth map satisfying

p ◦ π(E,X) ◦ s̄ = π(X,Z).

Hence s̄∗L is a smooth line subbundle of

s̄∗((p ◦ π(E,X))∗E) = (p ◦ π(E,X) ◦ s̄)∗E = π(X,Z)∗E.

The proof is complete.

Corollary 1.2. Let X be a smooth manifold and let E be a smooth
vector bundle on X of rank r + 1, r ≥ 1. Then there exists a sequence of
smooth maps

X̃ = Xr
πr−→ Xr−1

πr−1−→ · · · π2−→ X1
π1−→ X0 = X

such that each πi is the blowup of Xi−1 at a smooth submanifold which is
either empty or of codimension r+ 2− i, 1 ≤ i ≤ r, and the pullback vector
bundle π∗E by the composite map π = π1 ◦ · · · ◦πr is a direct sum of smooth
line bundles on X̃.
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Proof. This follows by induction from Theorem 1.1 since every smooth
vector bundle has a smooth section transverse to the zero section, and every
smooth subbundle is a direct summand.

Corollary 1.2 can be useful in the computation of the kth Stiefel–Whitney
class wk(E) of E, k ≥ 0. Indeed, it should be easy in principle to compute
wk(π∗E) since π∗E is a direct sum of line bundles. Moreover, basic topo-
logical properties of the map π : X̃ → X are well understood: see Corollary
1.3 below. For simplicity we will assume that X is compact.

For any compact smooth manifold M of dimension m, we have the
Poincaé duality isomorphism

DM : Hk(M ; Z/2)→ Hm−k(M ; Z/2), DM (v) = v ∩ [M ],

where [M ] is the fundamental class of M in Hm(M ; Z/2).

Corollary 1.3. With notation as in Corollary 1.2, dim X̃ = dimX
and π : X̃ → X is a proper map. If X is compact , then the induced homo-
morphism

π∗ : H∗(X; Z/2)→ H∗(X̃; Z/2)

is injective and

DX(wk(E)) = π∗(D eX(wk(π∗E))) for all k ≥ 0.

Proof. It follows directly from the construction that dim X̃ = dimX and
π : X̃ → X is a proper map. If X is compact, then π∗([X̃]) = [X] (mod 2
topological degree of π is equal to 1) and for every cohomology class v in
Hk(X; Z/2), we have

DX(v) = v ∩ [X] = v ∩ π∗([X̃]) = π∗(π∗(v) ∩ [X̃]) = π∗(D eX(π∗(v))).

In particular, π∗(v) = 0 implies v = 0, and hence π∗ is injective.
Taking v = wk(E), we get

DX(wk(E)) = π∗(D eX(π∗(wk(E)))) = π∗(D eX(wk(π∗E))).

The proof is complete.

It is not hard to prove that π∗ is injective even if X is not necessarily
compact. The equality in Corollary 1.3 is also true in the noncompact case,
provided that one uses the Borel–Moore homology instead of the singular
homology. A very readable introduction to the Borel–Moore homology is in
[4, Appendix B].

2. Vector bundles on nonsingular real algebraic varieties. In this
section by a real algebraic variety we mean a locally ringed space isomorphic
to a real algebraic set (in Rn for some n) endowed with the Zariski topol-
ogy and the sheaf of regular functions. In [2] such objects are called affine
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real algebraic varieties. Subvarieties will be assumed to be Zariski closed
in the ambient variety. Morphisms between real algebraic varieties will be
called regular maps. Every real algebraic variety also carries the Euclidean
topology, that is, the topology induced by the usual metric on R. Unless
explicitly stated otherwise, all topological notions related to real algebraic
varieties will refer to the Euclidean topology.

Every nonsingular real algebraic variety is in a natural way a smooth
manifold. Recall that every Zariski locally closed subset of real projective
space Pn(R), with the sheaf of regular functions on it, is a real algebraic
variety (cf. [2, Proposition 3.2.10, Theorem 3.4.4]). In particular, if X is a
nonsingular real algebraic variety and Z is a nonsingular subvariety of X
with dimZ < dimX, then the blowup B(X,Z) of X at Z is a nonsingular
real algebraic variety, and the blowup projection π(X,Z) : B(X,Z)→ X is
a regular map (cf. [2, Proposition 3.5.11]). For basic properties of algebraic
vector bundles on real algebraic varieties the reader may refer to [2]. Let us
mention that algebraic vector bundles considered here and in [2] are called
strongly algebraic vector bundles in [1].

Theorem 2.1. Let X be a nonsingular real algebraic variety. Let E be
an algebraic vector bundle on X and let s : X → E be an algebraic section
transverse to the zero section. If π(X,Z) : B(X,Z) → X is the blowup
of X at Z = Z(s), then the pullback vector bundle π(X,Z)∗E on B(X,Z)
contains an algebraic line subbundle.

Proof. The same as the proof of Theorem 1.1. It is sufficient to observe
that the map s̄ : B(X,Z) → B(E,X) constructed in the proof of Theorem
1.1 is regular in the case under consideration here.

Every algebraic vector bundle E on a nonsingular real algebraic variety
X has an algebraic section transverse to the zero section. In fact, a slightly
stronger statement, needed in the proof of Corollary 2.3 below, is true.
Consider X as a subvariety of E, identifying it with its image by the zero
section. If A is a finite collection of nonsingular Zariski locally closed subsets
of X, then there exists an algebraic section of E which is transverse to X
and to each A ∈ A. Indeed, E is generated by some global algebraic sections
s1, . . . , se (cf. [2, Theorem 12.1.7]), and hence for almost all (t1, . . . , te) ∈ Re,
the algebraic section t1s1 + · · · + tese satisfies the required transversality
conditions (cf. [7, p. 79, Theorem 2.7]).

Moreover, if E′ is an algebraic subbundle of E, then there exists an
algebraic subbundle E′′ of E such that E = E′ ⊕ E′′. To construct E′′, we
regard E as an algebraic subbundle of X×Rm for some m (cf. [2, Definition
12.1.6]). As E′′ we can take the orthogonal complement of E′ in E with
respect to the standard scalar product on Rm.
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Corollary 2.2. Let X be a nonsingular real algebraic variety and let
E be an algebraic vector bundle on X of rank r+1, r ≥ 1. Then there exists
a sequence of regular maps

X̃ = Xr
πr−→ Xr−1

πr−1−→ · · · π2−→ X1
π1−→ X0 = X

such that each πi is the blowup of Xi−1 at a nonsingular subvariety which
is either empty or of codimension r + 2 − i, 1 ≤ i ≤ r, and the pullback
vector bundle π∗E by the composite map π = π1 ◦ · · · ◦ πr is a direct sum of
algebraic line bundles on X.

Proof. In view of the remarks preceding Corollary 2.2, the argument
used in the proof of Corollary 1.2 is applicable here.

Let X be a compact real algebraic variety. We denote by HA
d (X; Z/2)

the subgroup of Hd(X; Z/2) generated by all homology classes of the form
ϕ∗([V ]), where V is a compact d-dimensional irreducible nonsingular real
algebraic variety, ϕ : V → X is a regular map, and ϕ is a birational map
between X and the Zariski closure of ϕ(V ) in X.

Remark. Although we do not need this here, it is worth while to make
some comments. The Zariski closure W of ϕ(V ) in X is an irreducible subva-
riety of X of dimension d. The set W 0 of nonsingular points of W is Zariski
open in W . Furthermore, the excision property implies

Hd(W,W \ {x}; Z/2) ∼= Z/2 for every x ∈W 0.

Since the regular map ϕ̄ : V →W defined by ϕ is birational, the image of the
homology class ϕ̄∗([V ]) ∈ Hd(W ; Z/2) under the canonical homomorphism

Hd(W ; Z/2)→ Hd(W,W \ {x}; Z/2)

generates Hd(W,W \ {x}; Z/2) for all x in a nonempty Zariski open subset
of W 0, and hence by continuity, for all x ∈W 0. There is only one homology
class in Hd(W ; Z/2) with this property (note dim(W \W 0) < d); it is called
the fundamental class of W and denoted by [W ]. Thus ϕ̄∗([V ]) = [W ],
whereas ϕ∗([V ]) ∈ HA

d (X; Z/2) is the homology class represented by W ,
that is, ϕ∗([V ]) = i∗([W ]), where i : W ↪→ X is the inclusion map.

In fact, every d-dimensional subvariety ofX carries a unique fundamental
class (cf. [3] or [2, Proposition 11.3.1]). The argument above shows

HA
d (X; Z/2) ⊆ Halg

d (X; Z/2),

where Halg
d (X; Z/2) is the subgroup of Hd(X; Z/2) generated by the homol-

ogy classes represented by d-dimensional subvarieties of X. By Hironaka’s
resolution of singularities theorem [6], this inclusion is an equality.

As an application of Corollaries 1.3 and 2.2, we obtain a very elementary
proof (compare with [3, (5.18)] and [1, Theorem 2.4]) of the following:
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Corollary 2.3. Let X be a compact nonsingular real algebraic variety
of dimension n. If E is an algebraic vector bundle on X, then the homology
class DX(wk(E)) is in HA

n−k(X; Z/2) for all k ≥ 0.

Proof. We may assume that E is of constant rank r + 1, r ≥ 0, and
1 ≤ k ≤ min{r + 1, n}.

First suppose r ≥ 1, and let π : X̃ → X be as in Corollary 2.2. In
particular, π∗E is a direct sum of algebraic line bundles, π∗E = L1 ⊕ · · · ⊕
Lr+1. Hence wk(π∗E) is the sum of the cohomology classes of the form
wk(F ), where F = Li1⊕· · ·⊕Lik , 1 ≤ i1 < · · · < ik ≤ r+1. By Corollary 1.3,

DX(wk(E)) = π∗(D eX(wk(π∗E))),

which implies that DX(wk(E)) is the sum of the π∗(D eX(wk(F ))). It remains
to prove that each π∗(D eX(wk(F ))) is in HA

n−k(X; Z/2). This can be done
as follows. For any d-dimensional smooth submanifold D of X̃, denote by
[D] eX its homology class in Hd(X̃; Z/2). Consider X̃ as a subvariety of F ,
identifying it with its image by the zero section. Since F is of rank k, it is
a purely topological fact that

D eX(wk(F )) = [Z(u)] eX
for any smooth section u : X̃ → F transverse to X̃. There is a subvariety Y
of X such that dimY < dimX and the restriction

π|X̃ \ π−1(Y ) : X̃ \ π−1(Y )→ X \ Y

is a biregular isomorphism. The subvariety π−1(Y ) of X̃ can be expressed as
the union of a finite collection A of nonsingular Zariski locally closed subsets
of X̃. Let u : X̃ → F be an algebraic section of F which is transverse to
X̃ and to each A ∈ A. Let V1, . . . , Vl be the irreducible components of the
nonsingular subvariety Z(u) of X̃. Then

π∗(D eX(wk(F ))) = π∗([Z(u)] eX) = π∗([V1] eX) + · · ·+ π∗([Vl] eX)

= ϕ1∗([V1]) + · · ·+ ϕk∗([Vl]),

where ϕj = π|Vj : Vj → X for 1 ≤ j ≤ l. Note that Vj is not contained
in π−1(Y ), and hence ϕj is a birational map between Vj and the Zariski
closure of ϕj(Vj) in X. It follows that π∗(D eX(wk(F ))) is in HA

n−k(X; Z/2),
as required. The proof for r ≥ 1 is complete.

Now suppose r = 0, that is, E is a line bundle. Let s : X → E be an alge-
braic section transverse to the zero section. The homology class DX(w1(E))
is in HA

n−1(X; Z/2) since it is represented by the nonsingular subvariety Z(s)
of X.

There is a version of Corollary 2.3 for X not necessarily compact, with
HA
d (X; Z/2) defined to be a suitable subgroup of the Borel–Moore homology
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group HBM
d (X; Z/2). Such a generalization is an easy exercise for the reader

familiar with the Borel–Moore homology.
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