Hölder regularity of three-dimensional minimal cones in \mathbb{R}^{n}

by Tien Duc Luu (Orsay)

Abstract

We show the local Hölder regularity of Almgren minimal cones of dimension 3 in \mathbb{R}^{n} away from their centers. The proof is almost elementary but we use the generalized theorem of Reifenberg. In the proof, we give a classification of points away from the center of a minimal cone of dimension 3 in \mathbb{R}^{n}, into types \mathbb{P}, \mathbb{Y} and \mathbb{T}. We then treat each case separately and give a local Hölder parameterization of the cone.

1. Introduction. In this paper, we prove Hölder regularity for threedimensional minimal cones in \mathbb{R}^{n}. This is a continuation of $[\mathrm{D}$ in which G. David proved the Hölder regularity for two-dimensional almost minimal sets in \mathbb{R}^{n}. The structure of two-dimensional minimal cones in \mathbb{R}^{n} is quite clear now, as in (】, G. David has classified them into three types: \mathbb{P}, \mathbb{Y} and \mathbb{T} (see Section 15 of [D] for the definition). For now we do not know yet the list of cones of type \mathbb{T}. For three-dimensional minimal cones, Almgren Al] has showed that any cone of dimension 3 in \mathbb{R}^{4}, centered at the origin and over a smooth surface of \mathbb{S}^{3}, must be a 3 -plane. But for three-dimensional minimal cones in general, the structure of their singularities is still unclear. This paper is a first step towards understanding this structure, and we hope it may help to study the structure of singularities of three-dimensional minimal sets in \mathbb{R}^{4}.

Let us first give the definition of Almgren minimal sets of dimension d in \mathbb{R}^{n}.

Definition 1.1. Let E be a closed set in \mathbb{R}^{n} and $d \leq n-1$ be an integer. An Almgren competitor (Al-competitor) for E is a closed set $F \subset \mathbb{R}^{n}$ that can be written as $F=\varphi(E)$, where $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a Lipschitz mapping such that $W_{\varphi}=\left\{x \in \mathbb{R}^{n} ; \varphi(x) \neq x\right\}$ is bounded.

An Al-minimal set of dimension d in \mathbb{R}^{n} is a closed set $E \subset \mathbb{R}^{n}$ such that $H^{d}(E \cap B(0, R))<\infty$ for every $R>0$ and

$$
H^{d}(E \backslash F) \leq H^{d}(F \backslash E)
$$

for every Al-competitor F for E.

[^0]Even if we think that the applications will be essentially in \mathbb{R}^{4}, we shall treat the problem in the general case of \mathbb{R}^{n}. So we need the following descriptions of cones of type \mathbb{P}, \mathbb{Y} or \mathbb{T} of dimension d in \mathbb{R}^{n} DDT].

We denote by \mathcal{P} the collection of d-dimensional affine planes, which we shall also call cones of type \mathbb{P}.

We next define the collection \mathcal{Y} of cones of type \mathbb{Y}. We take a propeller Y in a plane, which is the union of three half-lines with the same endpoint 0 and that make 120° angles at 0 . We obtain a first set of type \mathbb{Y} as the product $Y_{0}=Y \times V$, where V is a $(d-1)$-dimensional vector space that is orthogonal to the plane that contains Y. We shall call V the spine of \mathbb{Y}_{0}. Finally, \mathcal{Y} is the collection of sets \mathbb{Y} of the form $\mathbb{Y}=j\left(\mathbb{Y}_{0}\right)$, where j is an isometry of \mathbb{R}^{n}. The spine of \mathbb{Y} is the image under j of the spine of \mathbb{Y}_{0}.

We now define the collection \mathcal{T} of sets of type \mathbb{T}. The set \mathcal{T} will be the collection of sets $T=g\left(T_{0} \times V\right)$, where T_{0} lies in a set \mathcal{T}_{0} of 2-dimensional cones in \mathbb{R}^{n-d+2} and V is the $(d-2)$-plane orthogonal to \mathbb{R}^{n-d+2} in \mathbb{R}^{n}, and g is an isometry of \mathbb{R}^{n}.

Each $T_{0} \in \mathcal{T}_{0}$ will be the cone over a set $K \subset \partial B(0,1)$, with the following properties. First, $K=\bigcup_{j \in J} C_{j}$ is a finite union of great circles, or closed arcs of great circles. Denote by Q the collection of extremities of the $\operatorname{arcs} C_{j}$, $j \in J$; each point $y \in Q$ lies in exactly three C_{j}, y is an endpoint for each such C_{j}, and the three C_{j} make 120° angles at y. The C_{j} can only meet at their endpoints (and hence the full arcs of circles are disjoint from the rest of K). In addition, we choose a small constant $\eta_{0}>0$, which depends only on n, such that

$$
\begin{equation*}
H^{1}\left(C_{j}\right) \geq \eta_{0} \quad \text { for } j \in J \tag{1}
\end{equation*}
$$

and if $y \in C_{i}$ and $\operatorname{dist}\left(y, C_{j}\right) \leq \eta_{0}$ for some other j, then C_{i} and C_{j} have a common extremity in $B\left(y, \operatorname{dist}\left(y, C_{j}\right)\right)$. Finally, we exclude the case when T is a plane or a set of type \mathbb{Y}.

For a set $T \in \mathcal{T}$ as above, denote by $\hat{C}_{j}, j \in J$, the cone over C_{j}. Then we call $g\left(\hat{C}_{j} \times V\right), j \in J$, the d-faces of T. We call the sets $g(0 y \times V), y \in Q$, the $(d-1)$-faces of Q. We call $g(V)$ the spine of T.

Finally, we set $\mathcal{Z}=\mathcal{P} \cup \mathcal{Y} \cup \mathcal{T}$.
Note that the cones of type \mathbb{T} are not all minimal, but they are good enough to apply the generalized Reifenberg theorems [DDT, 1.1 and 2.2].

Although we give the descriptions for all dimensions, we need mostly the cases $d=2$ and $d=3$. Moreover, in [D, Section 14], G. David classifies the two-dimensional minimal cones in \mathbb{R}^{n} into types \mathbb{P}, \mathbb{Y} and \mathbb{T} described above, with a suitable choice of η_{0} for cones of type \mathbb{T}.

We can now give the definition of a Hölder ball for a set $E \subset \mathbb{R}^{n}$.

Definition 1.2. Let E be a closed set in \mathbb{R}^{n}. Suppose that $0 \in E$. We say that $B(0, r)$ is a Hölder ball of type \mathbb{P}, \mathbb{Y} or \mathbb{T} with exponent $1+\alpha$ if there exist a homeomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a minimal cone Y of dimension d, centered at the origin, of type \mathbb{P}, \mathbb{Y} or \mathbb{T}, respectively, such that

$$
\begin{equation*}
|f(x)-x| \leq \alpha r \quad \text { for } x \in B(0, r) \tag{1.2.1}
\end{equation*}
$$

We then also say that E is bi-Hölder equivalent to Y in $B(0, r)$, with exponent $1+\alpha$.

Our main theorem is the following.
Theorem 1. Let E be an Al-minimal cone of dimension 3 in \mathbb{R}^{n} and $x \in E \cap B(0,1)$. Let H be the tangent plane to $\partial B(0,1)$ at x and $E^{\prime}=E \cap H$. Then for each $\alpha>0$, there exists $r>0$, which depends on x, such that $B(x, r)$ is a Hölder ball of type \mathbb{P}, \mathbb{Y} or \mathbb{T} for E^{\prime} in H, with exponent $1+\alpha$.

Our strategy is the following: for each $y \in B(x, r)$ and each radius t such that $B(y, t) \subset B(x, r)$, we shall find a minimal cone Y of dimension 2 in H such that $d_{y, t}\left(E^{\prime}, Y\right) \leq \epsilon$ (see the beginning of Section 2 for the definition), where $\epsilon>0$ depends on the exponent $1+\alpha$. We shall then use the generalized theorem of Reifenberg [DDT, 1.1 and 2.2] to conclude that E^{\prime} is bi-Hölder equivalent to a two-dimensional minimal cone in H, with exponent $1+\alpha$.
2. Proof of Theorem 1. Let us give a list of notations that we shall use in this paper.

- H^{d} is the d-dimensional Hausdorff measure.
- $\theta_{A}(x, r)=H^{d}(A \cap B(x, r)) / r^{d}$, where $A \subset \mathbb{R}^{n}$ is an H^{d}-measurable set and $x \in A$.
- $\theta_{A}(x)=\lim _{r \rightarrow 0} \theta_{A}(x, r)$ is called the density of A at x, if the limit exists and is finite.
- Local Hausdorff distance $d_{H}(E, F)$. Let $E, F \subset \mathbb{R}^{n}$ be closed sets and $H \subset \mathbb{R}^{n}$ be a compact set. We define

$$
d_{H}(E, F)=\sup \{\operatorname{dist}(x, F) ; x \in E \cap H\}+\sup \{\operatorname{dist}(x, E) ; x \in F \cap H\}
$$

when $E \cap H$ and $F \cap H$ are not empty. We use the convention that $\sup \{\operatorname{dist}(x, F) ; x \in E \cap H\}=0$ when $E \cap H$ is empty.

We also define

$$
\begin{aligned}
d_{x, r}(E, F)= & \frac{1}{r} \sup \{\operatorname{dist}(z, F) ; z \in E \cap B(x, r)\} \\
& +\sup \{\operatorname{dist}(z, E) ; z \in F \cap B(x, r)\},
\end{aligned}
$$

where E, F are closed sets which meet $B(x, r)$.

- Convergence of a sequence of sets. Let $U \subset \mathbb{R}^{n}$ be an open set, $\left\{E_{k}\right\}_{k=1}^{\infty}$ be a sequence of closed sets in U, and $E \subset U$. We say that $\left\{E_{k}\right\}$ converges to E in U, and we write $\lim _{k \rightarrow \infty} E_{k}=E$, if for each compact $H \subset U$,

$$
\lim _{k \rightarrow \infty} d_{H}\left(E_{k}, E\right)=0
$$

- Blow-up limit. Let $E \subset \mathbb{R}^{n}$ be a closed set and $x \in E$. A blow-up limit F of E at x is defined as

$$
F=\lim _{k \rightarrow \infty} \frac{E-x}{r_{k}}
$$

where $\left\{r_{k}\right\}$ is any sequence of positive numbers such that $\lim _{k \rightarrow \infty} r_{k}=0$ and the limit exists in \mathbb{R}^{n}.

For two points $a, b \in \mathbb{R}^{n}$, we denote by $a b$ the line passing through a and b, and by $\overrightarrow{a b}$ the half-line through a and b with starting point a.

Now we fix an Al-minimal cone $E \subset \mathbb{R}^{n}$ of dimension 3, centered at 0 , and $x \in E \cap \partial B(0,1)$. For each $y \in E \cap \partial B(0,1)$, we denote by H_{y} the tangent plane to $\partial B(0,1)$ at y and write $E_{y}=E \cap H_{y}$. For simplicity, we set $H_{x}=H$. Note that since E is minimal, the density $\theta_{E}(y)$ always exists for all $y \in E$.

Lemma 2.1. Each blow-up limit of E at x is of the form $F=F^{\prime} \times 0 x$, where F^{\prime} is a two-dimensional Al-minimal cone in H and $0 x$ denotes the line from 0 through x.

Proof. Let F be a blow-up limit of E at x. Then $F=\lim _{k \rightarrow \infty}(E-x) / r_{k}$ with $\lim _{k \rightarrow \infty} r_{k}=0$. Let $y \in F$. We want to show that $y+0 x \subset F$. Setting $E_{k}=(E-x) / r_{k}$, as $\left\{E_{k}\right\}$ converges to F, we can find points $y_{k} \in E_{k}$ such that $\left\{y_{k}\right\}_{k=1}^{\infty}$ converges to y. Set $z_{k}=r_{k} y_{k}+x$; then $z_{k} \in E$ by definition of E_{k}, and z_{k} converges to x because r_{k} converges to 0 . We fix $\lambda \in \mathbb{R}$ and we set $v_{k}=\left(1+\lambda r_{k}\right) z_{k}$. Then $v_{k} \in E$ as E is a cone centered at 0 . We have $w_{k}=r_{k}^{-1}\left(v_{k}-x\right) \in E_{k}$. On the other hand,

$$
\begin{aligned}
w_{k} & =r_{k}^{-1}\left(\left(1+\lambda r_{k}\right) z_{k}-x\right)=r_{k}^{-1}\left(\left(1+\lambda r_{k}\right)\left(r_{k} y_{k}+x\right)-x\right) \\
& =r_{k}^{-1}\left(r_{k} y_{k}+\lambda r_{k}^{2} y_{k}+\lambda r_{k} x\right)=y_{k}+\lambda x+\lambda r_{k} y_{k}
\end{aligned}
$$

and we see that $\lim _{k \rightarrow \infty} w_{k}=y+\lambda x$. As $\left\{E_{k}\right\}$ converges to F, we see that $y+\lambda x \in F$. Now for each $y \in F$ and $\lambda \in \mathbb{R}$, we have $y+\lambda x \in F$, which implies that $F=F^{\prime} \times 0 x$ with $F^{\prime} \subset F \cap H$. Next, as E is a minimal set and F is a blow-up limit of E at x, by [D, 7.31], F is a minimal cone centered at 0 . But $F=F^{\prime} \times 0 x$, so by [D, 8.3], F^{\prime} is a minimal cone in H, centered at x.

By [D, Section 14], F^{\prime} is of type \mathbb{P}, \mathbb{Y} or \mathbb{T} as above. Note that the classification of two-dimensional minimal cones in \mathbb{R}^{3} was established earlier (see [He] and Tay $)$. Now, since $F=F^{\prime} \times \mathbb{R}, F$ is also a cone of type \mathbb{P}, \mathbb{Y}
or \mathbb{T} of dimension 3 in \mathbb{R}^{n}. If F is of type \mathbb{P}, we set $\theta_{F}(0)=d_{P}$, which is the Hausdorff measure of the three-dimensional unit ball. If F is of type \mathbb{Y}, we set $\theta_{F}(0)=d_{Y}$, which is the density at any point of the spine of a \mathbb{Y} of dimension 3. Otherwise F is of type \mathbb{T}, and we deduce from [D, Section 14] that there exists a constant $d_{T}>d_{Y}$, which depends only on n, such that $\theta_{F}(0) \geq d_{T}$. Now by [D, 7.31], $\theta_{E}(x)=\theta_{F}(0)$, so we call the point $x \in$ $E \cap \partial B(0,1)$ of type \mathbb{P} if $\theta_{E}(x)=d_{P}$, of type \mathbb{Y} if $\theta_{E}(x)=d_{Y}$, and finally of type \mathbb{T} if $\theta_{E}(x)=\theta_{F}(0) \geq d_{T}$.

Lemma 2.2. For each $\epsilon>0$, we can find $r_{x}>0$ such that if $r \leq r_{x}$, then there is a three-dimensional minimal cone $F(x, r)$ of type \mathbb{P}, \mathbb{Y} or \mathbb{T}, and whose spine passes through 0 and x, such that

$$
d_{x, r}(E, F(x, r)) \leq \epsilon
$$

Proof. Suppose that the lemma fails; then there is a sequence $\left\{r_{k}\right\}$; converging to 0 and such that for each minimal cone F as above,

$$
\begin{equation*}
d_{x, r_{k}}(E, F)>\epsilon \tag{2.2.1}
\end{equation*}
$$

Set $E_{k}=(E-x) / r_{k}$; without loss of generality, we may assume that $\left\{E_{k}\right\}$ converges in \mathbb{R}^{n}; set $\lim _{k \rightarrow \infty} E_{k}=M$.

Since M is a blow-up limit of E at x, by Lemma 2.1, $M=M^{\prime} \times D_{x}$ where M^{\prime} is a two-dimensional minimal cone in H centered at x, and D_{x} is the line $0 x$. So M is a three-dimensional minimal cone of type \mathbb{P}, \mathbb{Y} or \mathbb{T}, whose spine passes through 0 and x. Since $\left\{E_{k}\right\}$ converges to M, there exists $k>0$ such that $d_{0,1}\left(E_{k}, M\right) \leq \epsilon$. This means that $d_{x, r_{k}}(E, x+M) \leq \epsilon$. But $M=M^{\prime} \times D_{x}$, so $M=x+M$ and hence $d_{x, r_{k}}(E, M) \leq \epsilon$, which contradicts (2.2.1).

Lemma 2.3. For each $\delta>0$, we can find $\epsilon>0$ with the following properties:

Let R be a radius. Let $I \in \mathbb{R}^{n}$ with $d(0, I)>100 R$ and C be a minimal cone of dimension 3 centered at I with the property that for each $y \in C \cap$ $B(I, R)$ and each $y^{\prime} \in 0 y \cap B(I, R)$, there exists $z^{\prime} \in C$ such that

$$
\begin{equation*}
d\left(y^{\prime}, z^{\prime}\right)<\epsilon R . \tag{2.3.1}
\end{equation*}
$$

Then there exists a three-dimensional minimal cone Y_{C}, of type \mathbb{P}, \mathbb{Y} or \mathbb{T}, whose spine contains 0 and I, such that $d_{I, R / 2}\left(C, Y_{C}\right) \leq \delta$.

Proof. Suppose that the lemma fails. By homogeneity, we can fix I such that $d(0, I)=1000$. Then there exist a sequence $\epsilon_{k} \rightarrow 0$, radii $R_{k}<10$ and minimal cones C_{k} centered at I such that each C_{k} satisfies the hypothesis corresponding to ϵ_{k} in the ball $B\left(I, R_{k}\right)$ but does not satisfy the conclusion. That is, for each minimal cone Y as above, $d_{I, 1}\left(C_{i}, Y\right)>\delta$. Now we can find a subsequence $\left\{C_{i_{j}}\right\}_{j=1}^{\infty}$ which converges to a set E. Since each $C_{i_{j}}$ is a minimal cone centered at I, so is E. We shall show that

Fig. 1. Minimal cone C
(2.3.2) E is a three-dimensional minimal cone of type \mathbb{P}, \mathbb{Y} or \mathbb{T} whose spine contains 0 and I.
We consider two cases.
CASE 1: $\lim _{\sup _{j \rightarrow \infty}} R_{i_{j}}>0$. In that case, without loss of generality, we may assume that $R_{i_{j}}=1$ for all j. Now take $u \in E \cap B(I, 1 / 2)$; as $\left\{C_{i_{j}}\right\}$ converges to E, there exist $u_{i_{j}} \in C_{i_{j}}, j \geq 1$, such that $\left\{u_{i_{j}}\right\}$ converges to u.

If $u^{\prime} \in 0 u \cap B(I, 1 / 2)$, we take $y_{i_{k}}^{\prime} \in 0 u_{i_{k}}$ such that $\left|0 y_{i_{k}}^{\prime}\right| /\left|0 u_{i_{k}}\right|=$ $\left|0 u^{\prime}\right| /|0 u|$, where $|A B|$ denotes the length of the segment $A B$. Then $\left|y_{i_{k}}^{\prime} u^{\prime}\right|=$ $\left(\left|0 u^{\prime}\right| /|0 u|\right) \cdot\left|u_{i_{k}} u\right|$, by Thales' theorem, and we deduce that $\lim _{j \rightarrow \infty} y_{i_{j}}^{\prime}=u^{\prime}$.

But for each j, there exists $u_{i_{j}}^{\prime} \in C_{i_{j}}$ such that $d\left(u_{i_{j}}^{\prime}, y_{i_{j}}^{\prime}\right)<\epsilon_{i_{j}}$, by (2.3.1). So $\left\{u_{i_{j}}^{\prime}\right\}$ converges to u^{\prime} and thus $u^{\prime} \in E$. Now

$$
\begin{equation*}
0 u \cap B(I, 1 / 2) \subset E \quad \text { for each } u \in E \cap B(I, 1 / 2) \tag{2.3.3}
\end{equation*}
$$

In particular $0 I \cap B(I, 1 / 2) \subset E$.
In addition, E is a cone centered at I, so $\overrightarrow{I u} \subset E$, where $\overrightarrow{I u}$ denotes the half-line from I and passing through u. Now if u does not lie on the line $0 I$, let $u_{1} \in P \cap B(I, 1 / 2)$, where P is the open half-plane with boundary $0 I$ and containing u. We take $u_{2} \in\left[I u_{1}\right]$, where $[A B]$ denotes the segment with endpoints A and B, which is close to I so that the half-line $0 \vec{u}_{2}$ intersects the segment $[I u]$. Set $u_{3}=0 \vec{u}_{2} \cap[I u]$; then $u_{3} \in E$ since E is a cone centered at I and $u \in E$. By (2.3.3), $u_{2} \in 0 u_{3} \cap B(I, 1 / 2)$ belongs to E too. Finally, we use the fact that E is a cone centered at I to conclude that $u_{1} \in E$.

So for each $u \in E \cap B(I, 1 / 2) \backslash 0 I$, we have $P \cap B(I, 1 / 2) \subset E$, where P is the open half-plane with boundary $0 I$ containing u. Since E is closed, we also have $0 I \subset E$. We deduce that $E=E^{\prime} \times 0 I$, where E^{\prime} is a two-dimensional
set in the hyperplane orthogonal to $0 I$ and passing through I. Since E is a minimal cone centered at I, so is E^{\prime}, by [D, 8.3]. Since E^{\prime} is a two-dimensinal minimal cone, by [D, Section 14], E^{\prime} is of type \mathbb{P}, \mathbb{Y} or \mathbb{T} and so is E, as $E=E^{\prime} \times 0 I$. We thus have (2.3.2) in this case.

CASE 2: $\lim \sup _{j \rightarrow \infty} R_{i_{j}}=0$. In this case we want to show that
(2.3.4) for each $u \in E \cap B(I, 1 / 2) \backslash 0 I$, we have $B(u,|I u| / 4) \cap l_{u} \subset E$, where l_{u} is the line passing through u and parallel to $0 I$.

Indeed, we take a sequence $\left\{u_{i_{j}} \in C_{i_{j}}\right\}$ which converges to u as above. Let $u_{i_{j}}^{\prime}=0 u_{i_{j}} \cap B\left(I, R_{i_{j}} / 2\right)$. Then by (2.3.1), for each $z \in 0 u_{i_{j}}^{\prime} \cap B\left(u_{i_{j}}^{\prime}, R_{i_{j}} / 4\right)$, there exists $w \in C_{i_{j}}$ such that $d(z, w) \leq \epsilon_{i_{j}} R_{i_{j}}$. Let $l_{u_{i_{j}}}$ be the line passing through $u_{i_{j}}$ and parallel to $0 u_{i_{j}}^{\prime}$. Since $C_{i_{j}}$ is a cone centered at I, by homothety for each $z^{\prime} \in l_{u_{i_{j}}} \cap B\left(u_{i_{j}},\left|I u_{i_{j}}\right| / 2\right)$, there exists $w^{\prime} \in C_{i_{j}}$ such that

$$
\begin{equation*}
d\left(z^{\prime}, w^{\prime}\right) \leq \epsilon_{i_{j}}\left|I u_{i_{j}}\right| \leq \epsilon_{i_{j}} \tag{2.3.5}
\end{equation*}
$$

Since $\lim \sup _{j \rightarrow \infty} R_{i_{j}}=0$, the lines $l_{u_{i_{j}}}$ converge to the line l_{u} in \mathbb{R}^{n}. Next, if j is large enough, then $B(u,|I u| / 4) \subset B\left(u_{i_{j}},\left|I u_{i_{j}}\right| / 2\right)$, and so for each $v \in B(u,|I u| / 4) \cap l_{u}$, there exists a sequence $v_{i_{j}} \in C_{i_{j}}$ which converges to v. We deduce $v \in E$ and we have (2.3.4).

Now for each $u \in E \cap B(I, 1 / 2) \backslash 0 I$, by repeating this argument for the two endpoints of the segment $B(u,|I u| / 4) \cap l_{u}$, we can conclude that $l_{u} \cap B(I, 1 / 2) \subset E$. We want to show next that

$$
\begin{equation*}
l_{u} \subset E \tag{2.3.6}
\end{equation*}
$$

For this, take any point $v \in l_{u}$. Let $v^{\prime}=I v \cap B(I, 1 / 4)$ and let $u^{\prime} \in I u$ be such that the line $u^{\prime} v^{\prime}$ is parallel to l_{u}. Clearly $v^{\prime} \in l_{u^{\prime}} \cap B(I, 1 / 2)$, where $l_{u^{\prime}}$ is defined just as l_{u}, and $u^{\prime} \in E$ since E is the cone centered at I. So by (2.3.4), $v^{\prime} \in E$ and hence $v \in E$, so that (2.3.6) follows.

Since E is closed, we deduce that $0 I \subset E$; together with (2.3.6) we then see that E is of the form $E=E^{\prime} \times 0 I$, where E^{\prime} is a two-dimensional set in the hyperplane orthogonal to $0 I$ and passing through I. By the same arguments as above, we deduce that E is a three-dimensional minimal cone of type \mathbb{P}, \mathbb{Y} or \mathbb{T} whose spine contains $0 I$. We also have (2.3.2) in this case.

As $\lim _{j \rightarrow \infty} C_{i_{j}}=E$, there exists an integer $l>0$ such that $d_{I, 1}\left(C_{i_{l}}, E\right)$ $<\delta / 2$, which is a contradiction as E is a minimal cone of type \mathbb{P}, \mathbb{Y} or \mathbb{T} whose spine contains $0 I$.

We now want to use Lemma 2.3 to control the distance in the ball $B(x, r)$ between E and a three-dimensional minimal cone $C(x, r)$ of type \mathbb{P}, \mathbb{Y} or \mathbb{T} whose spine passes through 0 and x.

Lemma 2.4. For each $\delta>0$, we can find $\epsilon>0$ such that the following properties hold. Suppose that $0<r<1 / 100$ satisfies

$$
\begin{equation*}
\left|\theta_{E}(x, r)-\theta_{E}(x)\right| \leq \epsilon ; \tag{2.4.1}
\end{equation*}
$$

then there exists a minimal cone Y of dimension 3 , of type \mathbb{P}, \mathbb{Y} or \mathbb{T} and whose spine contains 0 and x, such that $d_{x, r / 8}(E, Y) \leq \delta$. In addition, the type of Y is exactly the type of x.

Proof. By [D, 7.1], for each $\epsilon_{1}>0$ very small, to be chosen later, we can find $\epsilon>0$ such that if (2.4.1) holds then there exists a minimal cone C of dimension 3 centered at x, such that

$$
\begin{equation*}
d_{x, r / 2}(E, C) \leq \epsilon_{1} \tag{2.4.2}
\end{equation*}
$$

We now check the conditions of Lemma 2.3 for the cone C.
Since $d_{x, r / 2}(E, C) \leq \epsilon_{1}$, whenever $z \in C \cap B(x, r / 3)$, there exists $y \in$ $E \cap B(x, r / 2)$ such that $d(z, y) \leq \epsilon_{1} r / 2$. Because E is a cone centered at 0 , the half-line $0 y$ lies in E. Now if $z^{\prime} \in 0 z \cap B(x, r / 3)$, take the point $y^{\prime} \in 0 y$ such that $y^{\prime} z^{\prime}$ is parallel to $y z$; then $d\left(y^{\prime}, z^{\prime}\right) \leq \epsilon_{1} r$, and clearly $y^{\prime} \in E \cap B(x, r / 2)$. By (2.4.2), there exists $u \in C$ such that $d\left(u, y^{\prime}\right) \leq \epsilon_{1} r$. Then $d\left(z^{\prime}, u\right) \leq 2 \epsilon_{1} r$. So the cone C satisfies the assumptions of Lemma 2.3 with radius $r / 3$ and with constant $8 \epsilon_{1}$; here x stands for I. Lemma 2.3 shows that for each $\epsilon_{2}>0$, we can find $\epsilon_{1}>0$ such that there exists a three-dimensional minimal cone Y, of type \mathbb{P}, \mathbb{Y} or \mathbb{T}, whose spine passes through 0 and x, such that

$$
\begin{equation*}
d_{x, r / 4}(C, Y) \leq \epsilon_{2} \tag{2.4.3}
\end{equation*}
$$

From (2.4.2) and (2.4.3) we have

$$
\begin{align*}
d_{x, r / 8}(E, Y) & \leq 2\left(d_{x, r / 4}(E, C)+d_{x, r / 4}(C, Y)\right) \leq 2\left(2 \epsilon_{1}+\epsilon_{2}\right) \tag{2.4.4}\\
& =4 \epsilon_{1}+2 \epsilon_{2}
\end{align*}
$$

For each $\delta>0$, we can find $\epsilon>0$ such that $4 \epsilon_{1}+2 \epsilon_{2} \leq \delta$. So from (2.4.4) we have $d_{x, r / 8}(E, Y) \leq \delta$, which we wanted to prove.

Lemma 2.5. Let C and C_{1} be two cones centered at 0 , and $\epsilon>0$ be a small constant. Let $r \leq 1 / 100$ be a small radius, $y \in C \cap \partial B(0,1)$ and H_{y} be the hyperplane which is tangent to $\partial B(0,1)$ at $y, C^{\prime}=C \cap H_{y}, C_{1}^{\prime}=C_{1} \cap H_{y}$. If $z \in C \cap B(y, r / 2) \cap H_{y}$ and $t \leq r$ are such that $d_{z, t}\left(C, C_{1}\right) \leq \epsilon$, then

$$
d_{z, t / 2}\left(C^{\prime}, C_{1}^{\prime}\right) \leq 2(1+r) \epsilon
$$

Proof. For each $w \in C^{\prime} \cap B(z, t / 2)$, there exists $w_{1}^{\prime} \in C_{1} \cap B(y, r)$ such that $d\left(w, w_{1}^{\prime}\right) \leq \epsilon t$ since $d_{z, t}\left(C, C_{1}\right) \leq \epsilon$. Now let w_{1} be the intersection of the half-line $0 w_{1}^{\prime}$ with H_{y}. Then $w_{1} \in C_{1} \cap H_{y}$. We shall estimate the distance $d\left(w, w_{1}\right)$. By the triangular inequality, we have

$$
d\left(w, w_{1}\right) \leq \frac{d\left(w, w_{1}^{\prime}\right)}{\sin \left(\widehat{w w_{1} w_{1}^{\prime}}\right)}=\frac{d\left(w, w_{1}^{\prime}\right)}{\sin \left(\widehat{w w_{1} 0}\right)}
$$

here $\widehat{x y z} \in\left[0, \pi\left[\right.\right.$, where x, y, x are points in \mathbb{R}^{n}, denotes the angle between the half-lines $y x$ and $y z$. Next,

$$
\sin \left(\widehat{w w_{1} 0}\right)=\frac{\operatorname{dist}\left(0, w w_{1}\right)}{d\left(0, w_{1}\right)} \geq \frac{1}{1+r}
$$

since $\operatorname{dist}\left(0, w w_{1}\right) \geq \operatorname{dist}\left(0, H_{y}\right)=1$ and $d\left(0, w_{1}\right) \leq d(0, y)+d\left(y, w_{1}\right) \leq 1+r$.
So $d\left(w, w_{1}\right) \leq(1+r) \epsilon t$ for each $w \in C^{\prime} \cap B(z, t / 2)$, and it is clear that $w_{1} \in B(z, t)$. By the same arguments, for each $w_{1} \in C_{1}^{\prime} \cap B(z, t / 2)$, there exists $w \in C^{\prime} \cap B\left(z^{\prime}, t\right)$ such that $d\left(w_{1}, w\right) \leq(1+r) \epsilon t$.

We shall now prove Theorem 1. We consider three cases: where x is of type \mathbb{P}, \mathbb{Y} or \mathbb{T}.

Hölder regularity near a point of type \mathbb{P}
Theorem 2.6. Suppose that x is a point of type \mathbb{P}. Then for each $\tau>0$, we can find $\epsilon>0$ such that if the radius $r>0$ satisfies

$$
\begin{equation*}
\theta_{E}\left(x, 2^{8} r\right)-\theta_{E}(x) \leq \epsilon, \tag{2.6.1}
\end{equation*}
$$

then $B(x, r)$ is a Hölder ball for E_{x}, with exponent $1+\tau$.
We remark first that for each $\epsilon>0$, we can find $r>0$ such that (2.6.1) holds. Our ϵ does not depend on x, just on τ.

Proof of Theorem 2.6. The main idea is to show that for $y \in E_{x} \cap B(x, r)$ and $t \leq r$, we can find a 2-plane $P^{\prime}(y, t)$ in H such that $d_{y, t}\left(E_{x}, P^{\prime}(y, t)\right) \leq \delta$, where δ is a very small constant, to be chosen later. Then we can use DDT, Theorem 1.1] to conclude that for each $\tau>0$, we can find $\delta>0$ such that E_{x} is bi-Hölder equivalent to a 2-plane in $B(x, r)$.

Now we start the proof. By Lemma 2.4, for each $\delta>0$ very small, to be chosen later, we can find $\epsilon>0$ such that if (x, r) satisfies (2.6.1), then there exists a 3 -plane P which passes through 0 and x, such that

$$
\begin{equation*}
d_{x, 2^{5} r}(E, P) \leq \delta \tag{2.6.2}
\end{equation*}
$$

Consider a point $y \in E_{x} \cap B(x, r)$. By [D, 16.43], for each $\delta_{1}>0$ very small, we can choose $\delta>0$ such that if (2.6.2) holds for δ, then

$$
\begin{align*}
H^{3}\left(E \cap B\left(y, 2^{4} r\right)\right) & \leq H^{3}\left(P \cap B\left(y,\left(1+\delta_{1}\right) 2^{4} r\right)\right)+\delta_{1}\left(2^{4} r\right)^{3} \tag{2.6.3}\\
& \leq d_{P}\left(\left(1+\delta_{1}\right) 2^{4} r\right)^{3}+\delta_{1}\left(2^{4} r\right)^{3} .
\end{align*}
$$

We deduce that $\theta_{E}\left(y, 2^{4} r\right)-d_{P} \leq \delta_{1}$ or $\theta_{E}\left(y, 2^{4} r\right) \leq d_{P}+\delta_{1}$. But we know that $\theta_{E}(y)=d_{P}, d_{Y}$ or d_{T} and by [D, 5.16], $\theta_{E}(y, \cdot)$ is a nondecreasing function. So if δ_{1} is small enough, we have $\theta_{E}(y)=d_{P}$. Since $\theta_{E}(y, \cdot)$ is nondecreasing, $d_{P} \leq \theta_{E}(y, t) \leq d_{P}+\delta_{1}$ for $0<t \leq 2^{4} r$. With $\theta_{E}(y)=d_{P}$, we have

$$
\begin{equation*}
\theta_{E}(y, t)-\theta_{E}(y) \leq \delta_{1} \quad \text { for } 0<t \leq 2^{4} r \tag{2.6.4}
\end{equation*}
$$

By Lemma 2.4, for each $\delta_{2}>0$, we can choose $\delta_{1}>0$ such that there exists a 3-plane $P(y, t)$ which passes through 0 and y, such that

$$
\begin{equation*}
d_{y, t}(E, P(y, t)) \leq \delta_{2} \quad \text { for } 0<t \leq 2 r \tag{2.6.5}
\end{equation*}
$$

Set $P^{\prime}(y, t)=P(y, t) \cap H$. Applying Lemma 2.5 for two cones E and $P(y, t)$ centered at 0 , we have

$$
\begin{equation*}
d_{y, t / 2}\left(E_{x}, P^{\prime}(y, t)\right) \leq 6 \delta_{2} \quad \text { for } 0<t \leq 2 r \tag{2.6.6}
\end{equation*}
$$

But now $P^{\prime}(y, t)$ is a 2-plane in H, so for each $y \in E_{x} \cap B(x, r)$ and each $t \leq r$, there exists a 2 -plane $P_{1}(y, t)$ in H such that

$$
\begin{equation*}
d_{y, t}\left(E_{x}, Y_{1}(y, t)\right) \leq 6 \delta_{2} \tag{2.6.7}
\end{equation*}
$$

By [DDT, Theorem 1.1], we conclude that, for each $\tau>0$, we can choose $\delta_{2}>0$, and then $\epsilon>0$, such that if (2.6.7) holds, then E_{x} is bi-Hölder equivalent to a 2-plane P in H, with Hölder exponent $1+\tau$. ■

Hölder regularity near a point of type \mathbb{Y}

Proposition 2.7. Let $y \in \partial B(0,1)$ and $r<1 / 2$. For each $\tau>0$ we can find $\epsilon>0$ such that if $Y(y, r)$ is a minimal cone of type \mathbb{Y} of dimension 3 , whose spine passes through 0 and y, which satisfies

$$
\begin{equation*}
d_{y, r}(E, Y(y, r)) \leq \epsilon \tag{2.7.1}
\end{equation*}
$$

then there exists a \mathbb{Y}-point of E_{y} in $B(y, \tau r)$. Here, a \mathbb{Y}-point of E_{y} is a \mathbb{Y}-point of E which belongs to E_{y}.

Proof. We first take $\epsilon>0$ very small, to be chosen later. Suppose that the proposition fails; then there exist a radius $0<r<1 / 2$ and a threedimensional minimal cone $Y(y, r)$ of type \mathbb{Y}, whose spine passes through 0 and y, such that

$$
\begin{equation*}
d_{y, r}(E, Y(y, r)) \leq \epsilon \tag{2.7.2}
\end{equation*}
$$

$$
\begin{equation*}
\text { for each } z \in E_{y} \cap B(y, \tau r), z \text { is not a } \mathbb{Y} \text {-point. } \tag{2.7.3}
\end{equation*}
$$

We take a point $z \in E_{y} \cap B(y, \tau r)$. Since $B(z, r / 4) \subset B(y, r)$ and $d_{y, r}(E, Y(y, r)) \leq \epsilon$, we have $d_{z, r / 4}(E, Y(y, r)) \leq 4 d_{y, r}(E, Y(y, r)) \leq 4 \epsilon$. So by [D, 16.43], for each $\delta>0$ we can find $\epsilon>0$ such that

$$
\begin{align*}
H^{3}(E \cap B(z, r / 4)) & \leq H^{3}(Y(y, r) \cap B(z,(1+\delta) r / 4))+\delta(r / 4)^{3} \tag{2.7.4}\\
& \leq d_{Y}((1+\delta) r / 4)^{3}+\delta(r / 4)^{3}
\end{align*}
$$

So if we take δ small enough, we have $H^{3}(E \cap B(z, r / 4))<d_{T}(r / 4)^{3}$, thus $\theta_{E}(z, r / 4)<d_{T}$. Next, $\theta_{E}(z) \leq \theta_{E}(z, r / 4)<d_{T}$, since E is a minimal cone. So z cannot be a \mathbb{T}-point, and since it is not a \mathbb{Y}-point either,

$$
\begin{equation*}
z \text { is a } \mathbb{P} \text {-point. } \tag{2.7.5}
\end{equation*}
$$

Let L be the spine of $Y(y, r)$. Then L is a 2-plane through 0 and y. Let F_{1}, F_{2}, F_{3} be three half-planes of dimension 3 which form $Y(y, r)$. Then

Fig. 2. Intersection of E with H_{y}
F_{1}, F_{2}, F_{3} have L as common boundary, and the angle between any two of them is 120°. Set $Y^{\prime}(y, r)=Y(y, r) \cap H_{y}$ and $w_{i}=F_{i} \cap \partial B(y, \tau r / 2) \cap H_{y}$, $i=1,2,3$. Then $Y^{\prime}(y, r)$ is a two-dimensional minimal cone of type \mathbb{Y} in H_{y}, centered at y, with spine $L^{\prime}=L \cap H_{y}$. Then $\operatorname{dist}\left(w_{i}, L^{\prime}\right)=d\left(w_{i}, y\right)=\tau r / 2$ for $1 \leq i \leq 3$. Next, $d_{y, r}(E, Y(y, r)) \leq \epsilon$, so by Lemma 2.5, $d_{y, r / 2}\left(E_{y}, Y^{\prime}(y, r)\right) \leq$ $2(1+r) \epsilon \leq 6 \epsilon$. Thus for each $1 \leq i \leq 3$, there is $z_{i} \in E_{y}$ such that $d\left(z_{i}, w_{i}\right) \leq 3 \epsilon r$. It is clear that $z_{i} \in B(y, 5 \tau r / 8)$ if we choose ϵ small enough. Now

$$
\begin{equation*}
d_{z_{i}, \tau r / 4}(E, Y(y, r)) \leq \frac{4}{\tau} d_{y, r}(E, Y(y, r)) \leq 4 \epsilon / \tau \tag{2.7.6}
\end{equation*}
$$

for $1 \leq i \leq 3$. By [D, 16.43], for each $\delta_{1}>0$, we can choose $\epsilon>0$ such that if (2.7.6) holds for ϵ, then

$$
\begin{align*}
H^{3}\left(E \cap B\left(z_{i}, \tau r / 8\right)\right) & \leq H^{3}\left(Y(y, r) \cap B\left(z_{i},\left(1+\delta_{1}\right) \tau r / 8\right)\right)+\delta_{1}(\tau r / 8)^{3} \tag{2.7.7}\\
& =H^{3}\left(F_{i} \cap B\left(z_{i},\left(1+\delta_{1}\right) \tau r / 8\right)\right)+\delta_{1}(\tau r / 8)^{3} \\
& \leq d_{P}(\tau r / 8)^{3}+C \delta_{1}(\tau r / 8)^{3}
\end{align*}
$$

since $\operatorname{dist}\left(w_{i}, L\right)=\tau r / 4$, so $\operatorname{dist}\left(z_{i}, L\right) \geq \operatorname{dist}\left(w_{i}, L\right)-d\left(w_{i}, z_{i}\right) \geq \tau r / 4-\epsilon r$, so $B\left(z_{i},\left(1+\delta_{1}\right) \tau r / 8\right)$ does not meet L. Then, in $B\left(z_{i},\left(1+\delta_{1}\right) \tau r / 8\right), Y(y, r)$ coincides with F_{i}, which is a half-plane of dimension 3 .

From (2.7.7) we have

$$
\begin{equation*}
\theta_{E}\left(z_{i}, \tau r / 8\right) \leq d_{P}+C \delta_{1} \tag{2.7.8}
\end{equation*}
$$

which implies that z_{i} is a \mathbb{P}-point for $1 \leq i \leq 3$ if we take δ_{1} small enough. By Theorem 2.6, for each $\alpha>0$, we can choose $\delta_{1}>0$ such that if (2.7.8) holds, then
(2.7.9) for $1 \leq i \leq 3$, the set E_{y} is bi-Hölder equivalent to a 2-plane P_{i} in $B\left(z_{i}, \tau r / 2^{11}\right) \cap H_{y}$, with Hölder exponent $1+\alpha$.
Now as each $z \in E_{y} \cap B(y, \tau r)$ is a \mathbb{P}-point, by the proof of Theorem 2.6, there is a radius $r_{z} \leq \tau r / 8$ such that E is bi-Hölder equivalent to a 3-plane P_{z} in the ball $B\left(z, r_{z}\right)$, with Hölder exponent $1+\alpha$.

We see that the set E_{y} satisfies the following conditions:
(i) The minimal cone $Y^{\prime}(y, r)$ of dimension 2 of type \mathbb{Y} centered at y, which is $Y(y, r) \cap H_{y}$, satisfies

$$
d_{y, r / 2}\left(E_{y}, Y^{\prime}(y, r)\right) \leq 6 \epsilon
$$

(ii) Let L^{\prime} be the spine of $Y^{\prime}(y, r)$ and $F_{i}^{\prime}, 1 \leq i \leq 3$, the three halfplanes of dimension 2 which form $Y^{\prime}(y, r)$. Then there are three points $w_{i}, 1 \leq i \leq 3$, such that for each i, $\operatorname{dist}\left(z_{i}, L^{\prime}\right)=\tau r / 4$, $w_{i} \in F_{i}^{\prime}$ and w_{1}, w_{2}, w_{3} lie in the same plane of dimension 2 which is orthogonal to L^{\prime}. Next, there are three points $z_{i} \in E_{y}, 1 \leq i \leq 3$, such that $d\left(z_{i}, w_{i}\right) \leq 3 \epsilon r$, and in the ball $B\left(z_{i}, \tau r / 2^{11}\right), E_{y}$ is biHölder equivalent to a 2-plane P_{i} in H_{y}, with Hölder exponent $1+\alpha$.
(iii) For each $z \in E_{y}$, there is a radius $r_{z} \leq \tau r / 2^{11}$ such that in the ball $B\left(z, r_{z}\right), E_{y}$ is bi-Hölder equivalent to a 2-plane P_{z}, with Hölder exponent $1+\alpha$.

We can adapt the techniques of [D, Section 17]. G. David showed there that if a two-dimensional almost minimal set F in \mathbb{R}^{n} and a cone Y of type \mathbb{Y} of dimension 2 whose spine passes through a point x satisfy $d_{x, r}(F, Y) \leq \epsilon$, then there must be a \mathbb{Y}-point of F in $B(x, r / 1000)$. To prove this, G. David supposes that in $B(x, r / 1000), F$ contains only \mathbb{P}-points; then he shows that the set $F_{1}=F \cap B(x, r / 1000)$ has the same properties (i)-(iii). He next shows that it is not possible for a set F_{1} to have those properties.

We can now use the same techniques for our set E_{y}, and conclude that it is not possible for E_{y} to satisfy (i)-(iii). Proposition 2.7 follows.

Theorem 2.8. Suppose that x is a point of type \mathbb{Y}. Then for each $\alpha>0$ there exists $\epsilon>0$ such that if the radius $r>0$ satisfies

$$
\begin{gather*}
\theta_{E}\left(x, 2^{11} r\right)-\theta_{E}(x)<\epsilon, \tag{2.8.1}\\
2^{11} r<\epsilon, \tag{2.8.2}
\end{gather*}
$$

then in the ball $B(x, r), E_{x}$ is bi-Hölder equivalent to a two-dimensional minimal cone Y of type \mathbb{Y} in H_{x} and centered at x, with Hölder exponent $1+\alpha$.

The proof uses the fact that for each $\delta>0$, we can choose $\epsilon>0$ such that if (2.8.1) and (2.8.2) hold, then for each $y \in E_{x} \cap B(x, r)$ and for each $0<t \leq r$, there exists a two-dimensional minimal cone $Z(y, t)$ in H_{x} such that $d_{y, t}\left(E_{x}, Z(y, t)\right) \leq \delta$. We remark that for each $\epsilon>0$, we can choose $r>0$ such that (2.8.1) and (2.8.2) hold.

Proof of Theorem 2.8. By Lemma 2.4, for each $\epsilon_{1}>0$, we can find $\epsilon>0$ such that if the radius r satisfies (2.8.1), then there exists a minimal cone $Y\left(x, 2^{8} r\right)$ of dimension 3 , of type \mathbb{Y} and whose spine passes through 0 and x,
such that

$$
\begin{equation*}
d_{x, 2^{8} r}\left(E, Y\left(x, 2^{8} r\right)\right) \leq \epsilon_{1} \tag{2.8.3}
\end{equation*}
$$

We take a point $y \in E_{x} \cap B\left(x, 2^{7} r\right)$. We have

$$
d_{y, 2^{7} r}\left(E, Y\left(x, 2^{8} r\right)\right) \leq 2 d_{x, 2^{8} r}\left(E, Y\left(x, 2^{8} r\right)\right) \leq 2 \epsilon_{1}
$$

Then by [D, 16.43], for each $\epsilon_{2}>0$, we can choose $\epsilon_{1}>0$ such that

$$
\begin{align*}
H^{3}\left(E \cap B\left(y, 2^{7} r\right)\right) & \leq H^{3}\left(Y\left(x, 2^{8} r\right) \cap B\left(y,\left(1+\epsilon_{2}\right) 2^{7} r\right)\right)+\epsilon_{2}\left(2^{7} r\right)^{3} \tag{2.8.4}\\
& \leq d_{Y}\left(2^{7} r\right)^{3}+C \epsilon_{2}\left(2^{7} r\right)^{3},
\end{align*}
$$

which implies

$$
\begin{equation*}
\theta_{E}\left(y, 2^{7} r\right) \leq d_{Y}+C \epsilon_{2} \tag{2.8.5}
\end{equation*}
$$

So if ϵ_{2} is small enough, we have $\theta_{E}(y) \leq \theta_{E}\left(y, 2^{7} r\right) \leq d_{Y}+C \epsilon_{1}<d_{T}$. So by the classification preceding Lemma $2.2, y$ can only be of type \mathbb{P} or \mathbb{Y}. We consider two cases.

Case 1: y is of type \mathbb{Y}. We have $\theta_{E}(y)=d_{Y}$. By (2.8.5), $\theta_{E}\left(y, 2^{7} r\right)-$ $\theta_{E}(y) \leq C \epsilon_{1}$. Since E is a minimal set, the function $\theta_{E}(y, \cdot)$ is nondecreasing, so $0 \leq \theta_{E}(y, t)-\theta_{E}(y) \leq C \epsilon_{1}$ for $0 \leq t \leq 2^{7} r$. By Lemma 2.4, for each $\epsilon_{2}>0$, we can choose $\epsilon_{1}>0$ such that for each $t \leq 2^{4} r$, there exists a threedimensional minimal cone $Y(y, t)$, of type \mathbb{Y}, whose spine passes through 0 and y, and satisfies

$$
\begin{equation*}
d_{y, t}(E, Y(y, t)) \leq \epsilon_{2} \tag{2.8.6}
\end{equation*}
$$

Set $Y_{1}(y, t)=Y(y, t) \cap H_{x}$; then $Y_{1}(y, t)$ is the union of three half-planes of dimension 2 with common boundary a line L^{\prime}. We see that $L^{\prime}=L \cap H_{x}$ where L is the spine of $Y(y, t)$. Since $y \in B\left(x, 2^{7} r\right)$ and $Y(y, t)$ is a \mathbb{Y} of dimension 3 whose spine passes through y and 0 , there is a two-dimensional minimal cone $Y^{\prime}(y, t)$ in H_{x} with the same spine L^{\prime} such that

$$
\begin{equation*}
d_{y, 1}\left(Y_{1}(y, t), Y^{\prime}(y, t)\right) \leq C r \leq C \epsilon \tag{2.8.7}
\end{equation*}
$$

Now by Lemma $2.5, d_{y, t / 2}\left(E_{x}, Y_{1}(y, t)\right) \leq 2(1+t) d_{y, t}(E, Y(y, t)) \leq 4 \epsilon_{2}$ for $t \leq 2^{4} r$. This fact together with (2.8.7) gives

$$
\begin{align*}
d_{y, t / 4}\left(E_{x}, Y^{\prime}(y, t)\right) & \leq 2\left(d_{y, t / 2}\left(E_{x}, Y_{1}(y, t)\right)+d_{y, t / 2}\left(Y_{1}(y, t), Y^{\prime}(y, t)\right)\right) \tag{2.8.8}\\
& \leq C_{1}\left(\epsilon+\epsilon_{2}\right)
\end{align*}
$$

for $t \leq 2^{4} r$. Set $\epsilon_{3}=C_{1}\left(\epsilon+\epsilon_{2}\right)$; then by (2.8.8), for each $t \leq 2^{4} r / 4=4 r$ and for each \mathbb{Y}-point $y \in E_{x} \cap B(x, r)$, there is a two-dimensional minimal cone $Y^{\prime}(y, t) \in H_{x}$ of type \mathbb{Y} such that

$$
\begin{equation*}
d_{y, t}\left(E_{x}, Y^{\prime}(y, t)\right) \leq \epsilon_{3} \tag{2.8.9}
\end{equation*}
$$

This is what we need for \mathbb{Y}-points in $E_{x} \cap B\left(x, 2^{7} r\right)$. We then note that, for each \mathbb{Y}-point $y \in B\left(x, 2^{7} r\right)$ and $t \leq 2^{4} r, Y(y, t)$ is the minimal cone as in (2.8.6), and for $t \leq 4 r, Y^{\prime}(y, t)$ is the minimal cone as in (2.8.9).

Case 2: y is of type \mathbb{P}. Here we consider only the case $y \in B(x, r)$. We set $E_{Y}=\left\{z \in E_{x} \cap B(x, 4 r): z\right.$ is a \mathbb{Y}-point $\}$. By the proof of Theorem 2.6, there is a radius $r_{y}>0$ such that in the ball $B\left(y, r_{y}\right)$, there are only \mathbb{P}-points of E; as a consequence, we have $\operatorname{dist}\left(y, E_{Y}\right)>0$. Set $d=\operatorname{dist}\left(y, E_{Y}\right)$; then $d \leq d(y, x) \leq r$. We take $u \in E_{Y}$ such that $d(y, u) \leq 11 d(y) / 10$; then it is clear that $u \in B\left(x, 2^{3} r\right)$.

We take $Y(u, 2 d(y))$ as in (2.8.6) and denote by L the spine of $Y^{\prime}(y, 2 d(y))$. We want to show that

$$
\begin{equation*}
\operatorname{dist}(y, L) \geq d(y) / 10 \tag{2.8.10}
\end{equation*}
$$

Suppose that (2.8.10) does not hold. Then there is a point $w \in L^{\prime}$ such that $d(y, w)<d(y) / 10$. Next, $d(w, u) \leq d(w, y)+d(y, u) \leq 11 d(y) / 10+d(y) / 10 \leq$ $3 d(y) / 2$ and so $B(w, d(y) / 10) \subset B(u, 2 d(y))$. Thus

$$
\begin{align*}
d_{w, d(y) / 10}(E, Y(u, 2 d(y))) & \leq \frac{2 d(y)}{d(y) / 10} d_{u, 2 d(y)}(E, Y(u, 2 d(y))) \tag{2.8.11}\\
& \leq 20 \epsilon_{2}
\end{align*}
$$

Since w belongs to the spine of $Y(u, 2 d(y))$, we can apply Proposition 2.7 for E and w for $\tau=1 / 100$. So we can find $\epsilon_{2}>0$ such that if (2.8.11) holds, then there is a \mathbb{Y}-point ξ of E in the ball $B(w, d(y) / 100)$ and then $d(\xi, y) \leq d(\xi, w)+d(w, y)<d(y) / 3$. Let ξ^{\prime} be the intersection of the half-line 0ξ with E_{x}. Because E is a cone centered at 0 and ξ is a \mathbb{Y}-point, it is clear that $\xi^{\prime} \in E_{Y}$ and $d\left(\xi^{\prime}, y\right) \leq 2 d(\xi, y)<2 d(y) / 3$, which is a contradiction. We have thus proved (2.8.10).

Next, since $d_{u, 2 d(y)}(E, Y(u, 2 d(y))) \leq \delta_{2}$ and $B(y, d(y) / 20) \subset B(u, 2 d(y))$, by [D, 16.43], for each $\epsilon_{4}>0$ we can find $\epsilon_{2}>0$ such that

$$
\begin{align*}
\theta_{E}(y, d(y) / 20) & =(d(y) / 20)^{-3} H^{3}(E \cap B(y, d(y) / 20)) \tag{2.8.12}\\
& \leq(d(y) / 20)^{-3}\left[H^{3}\left(Y(u, 2 d(y)) \cap B\left(y,\left(1+\epsilon_{4}\right) d(y) / 20\right)\right)\right. \\
& \left.+\epsilon_{4}(d(y) / 20)^{3}\right] \\
& \leq d_{P}+C \epsilon_{4}=\theta_{E}(y)+C \epsilon_{4} .
\end{align*}
$$

We explain the last line: since $\operatorname{dist}(y, L) \geq 11 d(y) / 10$, it follows that $B\left(y,\left(1+\epsilon_{4}\right) d(y) / 20\right)$ does not meet the spine L of $Y(u, 2 d(y))$, so that in the ball $B\left(y,\left(1+\epsilon_{4}\right) d(y) / 20\right), Y(u, 2 d(y))$ coincides with a 3 -plane P, and then

$$
\begin{aligned}
H^{3}\left(Y(u, 2 d(y)) \cap B\left(y,\left(1+\epsilon_{4}\right) d(y) / 20\right)\right) & =H^{3}\left(P \cap B\left(y,\left(1+\epsilon_{4}\right) d(y) / 20\right)\right) \\
& \leq d_{P}\left(\left(1+\epsilon_{4}\right) d(y) / 20\right)^{3}
\end{aligned}
$$

Since $\theta_{E}(y, \cdot)$ is nondecreasing, we deduce from (2.8.12) that

$$
\begin{equation*}
0 \leq \theta_{E}(y, t)-\theta_{E}(y) \leq C \epsilon_{4} \quad \text { for } t \leq d(y) / 20 \tag{2.8.13}
\end{equation*}
$$

By Lemma 2.4, for each $\epsilon_{5}>0$, we can choose $\epsilon_{4}>0$ such that if (2.8.13) holds, then there is a 3-plane $P(y, t)$ which passes through 0 and y, such that

$$
\begin{equation*}
d_{y, t / 8}(E, P(y, t)) \leq \epsilon_{5} \quad \text { for } t \leq d(y) / 20 \tag{2.8.14}
\end{equation*}
$$

If we set $P^{\prime}(y, t)$ to be the intersection of $P(y, t)$ with H_{x}, then $P^{\prime}(y, t)$ is a 2-plane, and satisfies, by Lemma 2.5,

$$
\begin{equation*}
d_{y, t / 16}\left(E_{x}, P^{\prime}(y, t)\right) \leq 4 \epsilon_{5} \quad \text { for } t \leq d(y) / 20 \tag{2.8.15}
\end{equation*}
$$

Now consider the case when $d(y) / 320 \leq t \leq r$. We keep the same point u as above, that is, $u \in E_{Y}$ such that $d(u, y) \leq 11 d(y) / 10$. We now have $t+2 d(y) \leq 4 r$, so we can take the cone $Y^{\prime}(u, t+2 d(y))$ as in (2.8.9), thus

$$
\begin{align*}
& d_{y, t}\left(E_{x}, Y^{\prime}(u, t+2 d(y))\right) \tag{2.8.16}\\
& \quad \leq \frac{t+2 d(y)}{t} d_{u, t+2 d(y)}\left(E_{x}, Y^{\prime}(u, t+2 d(y))\right) \leq 700 \epsilon_{3}
\end{align*}
$$

Now (2.8.9), (2.8.15) and (2.8.16) together show that for each $\epsilon_{6}>0$, we can choose $\epsilon>0$ such that for each $y \in E_{x} \cap B(x, r)$ and each $t \leq r$, there is a minimal cone $P^{\prime}(y, t) \subset H_{x}$ of dimension 2 , of type \mathbb{P} or \mathbb{Y}, such that

$$
\begin{equation*}
d_{y, t}\left(E_{x}, Y^{\prime}(y, t)\right) \leq \epsilon_{6} \tag{2.8.17}
\end{equation*}
$$

By [DDT, Theorem 1.1], for each $\alpha>0$, we can find $\epsilon_{6}>0$ such that if (2.8.17) holds, then E_{x} is bi-Hölder equivalent to a minimal cone of dimension 2 , of type \mathbb{Y}, in the ball $B(x, r)$, with Hölder exponent $1+\alpha$.

Hölder regularity near a point of type \mathbb{T}

TheOrem 2.9. Suppose that x is a point of type \mathbb{T}. Then for each $\alpha>0$, we can find $\epsilon>0$ such that if the radius $r>0$ satisfies

$$
\begin{gather*}
\theta_{E}\left(x, 2^{14} r\right)-\theta_{E}(x) \leq \epsilon \tag{2.9.1}\\
2^{14} r \leq \epsilon \tag{2.9.2}
\end{gather*}
$$

then in the ball $B(x, r), E_{x}$ is bi-Hölder equivalent to a minimal cone T^{\prime} of dimension 2, of type \mathbb{T}, in the plane H_{x} and centered at x.

We note that for each $\epsilon>0$, we can always find $r>0$ which satisfies (2.9.1) and (2.9.2). Our strategy will be the same as in Theorem 2.8: we show that for each $\delta>0$, we can choose $\epsilon>0$ such that if (2.9.1) and (2.9.2) hold, then for each $y \in E_{x} \cap B(x, r)$ and for each $0<t \leq r$, there exists a two-dimensional minimal cone $Z(y, t)$ in H_{x} such that $d_{y, t}\left(E_{x}, Z(y, t)\right) \leq \delta$.

Proof of Theorem 2.9. Since $\theta_{E}(x, \cdot)$ is nondecreasing, we have $0 \leq$ $\theta_{E}(x, t)-\theta_{E}(x) \leq \epsilon$ for $0<t \leq 2^{14} r$. By Lemma 2.4, for each $\epsilon_{1}>0$, we can find $\epsilon>0$ such that for each $t \leq 2^{11} r$, there exists a three-dimensional minimal cone $T(x, t)$ of type \mathbb{T}, whose spine passes through 0 and x, such
that

$$
\begin{equation*}
d_{x, t}(E, T(x, t)) \leq \epsilon_{1} \tag{2.9.3}
\end{equation*}
$$

Consider a point $y \in E_{x} \cap B\left(x, 2^{10} r\right)$ with $y \neq x$. Set $\eta=2^{-12} \eta_{0} / 10$, where η_{0} is the constant in (1) (before Definition 1.2). Then $(1+2 \eta)|x-y| \leq 2{ }^{11} r$ and so we can take the cone $T(x,(1+2 \eta)|x-y|)$ to satisfy (2.9.3). Next, since $B(y, \eta|x-y|) \subset B(x,(1+2 \eta)|x-y|)$, we have

$$
\begin{align*}
& d_{y, \eta|x-y|}(E, T(x,(1+2 \eta)|x-y|)) \tag{2.9.4}\\
& \leq \frac{(1+2 \eta)|x-y|}{\eta|x-y|} d_{x,(1+2 \eta)|x-y|}(E, T(x,(1+2 \eta)|x-y|)) \leq 2 \eta^{-1} \epsilon_{1}
\end{align*}
$$

We want to show that
(2.9.5) $T(x,(1+2 \eta)|x-y|)$ coincides with a cone Y_{y} of type \mathbb{Y} in the ball $B\left(y, \eta_{0}|x-y| / 10\right)$.

To see this, it suffices to show that
(2.9.6) $T^{\prime}=T(x,(1+2 \eta)|x-y|) \cap H_{x}$ coincides with a two-dimensional cone of type \mathbb{Y} in $B\left(y, \eta_{0}|x-y| / 5\right) \cap H_{x}$.
But now since the spine of $T(x,(1+2 \eta)|x-y|)$ passes through 0 and x, T^{\prime} is a two-dimensional minimal cone of type \mathbb{T} in H_{x} and centered at x. So by the same arguments as in [D, (16.61)], we have (2.9.6), and hence (2.9.5).

Now (2.9.4) gives us

$$
\begin{equation*}
d_{y, \eta|x-y|}\left(E, Y_{y}\right) \leq 2 \eta^{-1} \epsilon_{1} \tag{2.9.7}
\end{equation*}
$$

By the same arguments as for (2.8.4), for each $\epsilon_{2}>0$ we can find $\epsilon_{1}>0$ such that if (2.9.7) holds, then

$$
\begin{equation*}
\theta_{E}(y) \leq \theta_{E}(y, \eta|x-y| / 2) \leq d_{Y}+C \epsilon_{2} \tag{2.9.8}
\end{equation*}
$$

So if we take ϵ_{2} small enough, we have, for each $y \in E_{x} \cap B\left(x, 2^{10} r\right)$ and $y \neq x, \theta_{E}(y) \leq d_{Y}+C \epsilon_{2}<d_{T}$, and hence y can only be a point of type \mathbb{P} or \mathbb{Y}. Since E is a cone centered at the origin, each $z \in E \cap B\left(x, 2^{9} r\right)$ with $z \neq x$ can only be a point of type \mathbb{P} or \mathbb{Y}. We consider two cases.

CASE 1: y is of type \mathbb{Y}. By (2.9.7), $\theta_{E}(y, \eta|x-y| / 2) \leq d_{Y}+C \epsilon_{2}=$ $\theta_{E}(y)+C \epsilon_{2}$. As $\theta_{E}(y, \cdot)$ is nondecreasing, we have $\theta_{E}(y, t) \leq \theta_{E}(y)+C \epsilon_{2}$ for $0<t \leq \eta|x-y| / 2$. By Lemma 2.4, for each $\epsilon_{3}>0$, we can find $\epsilon_{2}>0$ such that there exists a three-dimensional minimal cone $Y(y, t)$ of type \mathbb{Y}, whose spine passes through 0 and y, such that

$$
\begin{equation*}
d_{y, t}(E, Y(y, t)) \leq \epsilon_{3} \quad \text { for } 0<t \leq \eta|x-y| / 16 \tag{2.9.9}
\end{equation*}
$$

Set $Y_{1}(y, t)=Y(y, t) \cap H_{x}$; then $Y_{1}(y, t)$ is a two-dimensional cone centered at y in the plane H_{x}. Since E and $Y(y, t)$ are cones centered at 0 , by Lemma 2.5,

$$
\begin{equation*}
d_{y, t / 2}\left(E_{x}, Y_{1}(y, t)\right) \leq 4 \epsilon_{3} \quad \text { for } 0<t \leq \eta|x-y| / 16 \tag{2.9.10}
\end{equation*}
$$

Next, since $Y(y, t)$ is a three-dimensional minimal cone of type \mathbb{Y} whose spine passes through 0 and y, and $y \in B\left(x, 2^{10} r\right)$, there exists a two-dimensional minimal cone $Y^{\prime}(y, t) \subset H_{x}$ of type \mathbb{Y} centered at y such that

$$
\begin{equation*}
d_{y, 1}\left(Y_{1}(y, t), Y^{\prime}(y, t)\right) \leq C r \tag{2.9.11}
\end{equation*}
$$

By (2.9.10) and (2.9.11) we have

$$
\begin{align*}
d_{y, t / 4}\left(E_{x}, Y^{\prime}(y, t)\right) & \leq 2\left[d_{y, t / 2}\left(E_{x}, Y_{1}(y, t)\right)+d_{y, t / 2}\left(Y_{1}(y, t), Y^{\prime}(y, t)\right)\right] \tag{2.9.12}\\
& \leq 2\left(4 \epsilon_{3}+C r\right) \leq C_{1}\left(\epsilon_{3}+\epsilon\right)
\end{align*}
$$

for $0<t \leq \eta|x-y| / 16$.
We consider the case when $r \geq t \geq \eta|x-y| / 64$, and we only consider $y \in B(x, r)$ in this case. By (2.9.3), we can take the cone $T(x, 2(t+|x-y|))$ whose spine is $0 x$ and which satisfies $d_{x, 2(t+|x-y|)}(E, T(x, 2(t+|x-y|))) \leq \epsilon_{1}$. Set $T^{\prime}(x, 2(t+|x-y|))=H_{x} \cap T(x, 2(t+|x-y|))$. Then $T^{\prime}(x, 2(t+|x-y|))$ is a two-dimensional minimal cone of type \mathbb{T}. By Lemma 2.5,

$$
\begin{equation*}
d_{x, t+|x-y|}\left(E_{x}, T^{\prime}(x, 2(t+|x-y|))\right) \leq 4 \epsilon_{1} . \tag{2.9.13}
\end{equation*}
$$

Since $B(y, t) \subset B(x, t+|x-y|)$, we have

$$
\begin{align*}
d_{y, t}\left(E_{x}, T^{\prime}(x, t+\rho(y))\right) & \leq \frac{t+\rho(y)}{t} d_{x, t+\rho(y)}\left(E_{x}, T^{\prime}(x, t+\rho(y))\right) \tag{2.9.14}\\
& \leq \frac{t+|x-y|}{t} 4 \epsilon_{1} \leq \frac{2^{10}}{\eta} \epsilon_{1}
\end{align*}
$$

From (2.9.12) and (2.9.14), for $y \in B(x, r)$ and $0<t \leq r$, there exists a two-dimensional minimal cone $Z^{\prime}(y, t) \subset H_{x}$ of type \mathbb{Y} or \mathbb{T} such that

$$
\begin{equation*}
d_{y, t}\left(E_{x}, Z^{\prime}(y, t)\right) \leq \epsilon_{4} \tag{2.9.15}
\end{equation*}
$$

with $\epsilon_{4}=\max \left\{C_{1}\left(\epsilon_{3}+\epsilon\right),\left(2^{10} / \eta\right) \epsilon_{1}\right\}$.
CASE 2: y is of type \mathbb{P}. Recall that each $z \in E_{x} \cap B\left(x, 2^{10} r\right), z \neq x$, can only be of type \mathbb{P} or \mathbb{Y}. Let E_{Y} be the set of \mathbb{Y}-points of E in $B(x, 4 r)$, and $d=\min \left\{\operatorname{dist}\left(y, E_{Y}\right),|x-y|\right\}$.

We have two subcases:
Subcase 1: $d>\eta|x-y|$. Let T_{2} be the union of the 2 -faces of $T(x, 2|x-y|)$. We want to show that

$$
\begin{equation*}
\operatorname{dist}\left(y, T_{2}\right)>d / 10 \tag{2.9.16}
\end{equation*}
$$

Otherwise there is a 2-face L of $T(x, 2|x-y|$) (see the definition of d-face prior to Definition 1.2) and a point $z \in L$ such that $d(y, z)=\operatorname{dist}(y, L)<d / 10$. Next, $|z-x|>|x-y|-d / 10>|x-y| / 2$ and so $\operatorname{dist}(z, 0 x)>\operatorname{dist}(y, 0 x)-$ $d / 10>|x-y| / 2$. By the same argument as for (2.9.5), in the ball $B(z, \eta d / 2)$, $T(x, 2|x-y|)$ coincides with a three-dimensional minimal cone Y_{z} of type \mathbb{Y}
and whose spine passes through 0 and z. In addition

$$
\begin{equation*}
d_{z, \eta d / 2}\left(E, Y_{z}\right) \leq \frac{2|x-y|}{\eta d / 2} d_{x, 2|x-y|}(E, T(x, 2|x-y|)) \leq \frac{4}{\eta^{2}} \epsilon_{1} \tag{2.9.17}
\end{equation*}
$$

By Proposition 2.7, we can choose ϵ_{1} small enough such that if (2.9.17) holds, there exists a \mathbb{Y}-point $z^{\prime} \in B(z, \eta d / 4)$. We deduce that $d\left(y, z^{\prime}\right) \leq$ $d(y, z)+d\left(z, z^{\prime}\right)<d / 5$. But $z^{\prime} \in E_{Y}$, a contradiction. Hence (2.9.16) holds.

Now since $\operatorname{dist}(y, 0 x) \geq d$ and $\operatorname{dist}\left(y, T_{2}\right)>d / 10$, by a simple geometrical argument, in $B(y, \eta d), T(x, 2|x-y|)$ coincides with a 3 -plane P_{y} whose spine passes through 0 and x. In fact, P_{y} is the 3 -face of $T(x, 2|x-y|)$ which is nearest to y. Since $B(y, \eta d) \subset B(x, 2|x-y|)$, we obtain

$$
\begin{equation*}
d_{y, \eta d}\left(E, P_{y}\right) \leq \frac{2|x-y|}{\eta d} d_{x, 2|x-y|}(E, T(x, 2|x-y|)) \leq \frac{2}{\eta^{2}} \epsilon_{1} \tag{2.9.18}
\end{equation*}
$$

By [D, 16.43], for each $\epsilon_{5}>0$, we can find $\epsilon_{1}>0$ such that if (2.9.18) holds, then $\theta_{E}(y, \eta d / 2) \leq d_{P}+\epsilon_{5}$. Since E is a minimal cone, $\theta_{E}(y, t) \leq d_{P}+\epsilon_{5}$ for $0<t \leq \eta d / 2$. By Lemma 2.4, for each $\epsilon_{6}>0$, we can find $\epsilon_{5}>0$ such that there exists a 3 -plane $P(y, t)$ which passes through 0 and y, such that

$$
\begin{equation*}
d_{y, t / 8}(E, P(y, t)) \leq \epsilon_{6} \quad \text { for } 0<t \leq \eta d / 2 \tag{2.9.19}
\end{equation*}
$$

By Lemma 2.5, the 2-plane $P^{\prime}(y, t)=P(y, t) \cap H_{x}$ satisfies

$$
\begin{equation*}
d_{y, t / 16}\left(E_{x}, P^{\prime}(y, t)\right) \leq 4 d_{y, t / 8}(E, P(y, t)) \leq 4 \epsilon_{6} \quad \text { for } t \leq \eta d / 2 \tag{2.9.20}
\end{equation*}
$$

For $|x-y| / 2 \geq t>\eta d / 32$, let $T^{\prime}(x, 2|x-y|)=H_{x} \cap T(x, 2|x-y|)$. Then $T^{\prime}(x, 2|x-y|)$ is a two-dimensional minimal cone of type \mathbb{T} in H_{x} and centered at x. By Lemma 2.5, we have $d_{x,|x-y|}\left(E_{x}, T^{\prime}(x, 2|x-y|)\right) \leq 4 \epsilon_{1}$. Since $B(y, t) \subset B(x,|x-y|)$, we obtain

$$
\begin{align*}
d_{y, t}\left(E_{x}, T^{\prime}(x, 2|x-y|)\right) & \leq \frac{|x-y|}{t} d_{x,|x-y|}\left(E_{x}, T^{\prime}(x, 2|x-y|)\right) \tag{2.9.21}\\
& \leq \frac{128}{\eta^{2}} \epsilon_{1}
\end{align*}
$$

For $r \geq t>|x-y| / 2$, we set $T^{\prime}(x, 2 t+|x-y|)=T(x, 2 t+|x-y|) \cap H_{x}$. Then $T^{\prime}(x, 2 t+|x-y|)$ is a two-dimensional minimal cone of type \mathbb{T} in H_{x}. As above, we have $d_{x, t+|x-y| / 2}\left(E_{x}, T^{\prime}(x, 2 t+|x-y|)\right) \leq 4 \epsilon_{1}$. Since $B(y, t) \subset B(x, t+|x-y| / 2)$, we obtain

$$
\begin{align*}
& d_{y, t}\left(E_{x}, T^{\prime}(x, 2 t+|x-y|)\right) \tag{2.9.22}\\
& \quad \leq \frac{t+|x-y| / 2}{t} d_{x, t+|x-y| / 2}\left(E_{x}, T^{\prime}(x, 2 t+|x-y|)\right) \leq 8 \epsilon_{1} / \eta
\end{align*}
$$

Now (2.9.20)-(2.9.22) are all that we need for Subcase 1.
Subcase 2: $d \leq \eta|x-y|$. By definition of E_{Y}, there exists a \mathbb{Y}-point such that $d(y, z)<2 d$. This implies $z \in B(x, 3|x-y| / 2)$ and $d(z, x)>|x-y| / 2$ and $\operatorname{dist}(z, 0 x)>\operatorname{dist}(y, 0 x)-2 d>|x-y| / 2$. By the same arguments as
for (2.9.5), $T(x, 2|x-y|)$ coincides with a three-dimensional minimal cone Y_{z} of type \mathbb{Y} in $B\left(z, 2^{12} \eta|x-y|\right)$. This is clear that the spine of Y_{z} passes through 0. Since $B\left(z, 2^{12} \eta|x-y|\right) \subset B(x, 2|x-y|)$, we have

$$
\begin{align*}
d_{z, 2^{12} \eta|x-y|}\left(E, Y_{z}\right) & =d_{z, 2^{12} \eta|x-y|}(E, T(x, 2|x-y|)) \tag{2.9.23}\\
& \leq \frac{2|x-y|}{2^{12} \eta|x-y|} d_{x, 2|x-y|}(E, T(x, 2|x-y|)) \\
& \leq \frac{1}{2^{11} \eta} \epsilon_{1}
\end{align*}
$$

Since z is a \mathbb{Y}-point, by [D, 16.43], for each $\epsilon_{7}>0$, we can find $\epsilon_{1}>0$ such that if (2.9.23) holds then

$$
\begin{equation*}
\theta_{E}\left(x, 2^{11} \eta|x-y|\right)-\theta_{E}(z) \leq \epsilon_{7} \tag{2.9.24}
\end{equation*}
$$

In addition

$$
\begin{equation*}
2^{12} \eta|x-y| \leq r \leq \epsilon \tag{2.9.25}
\end{equation*}
$$

We see that (2.9.24) and (2.9.25) are the hypotheses of Theorem 2.8, with radius $\eta|x-y|$ and with constant $\epsilon_{8}=\max \left\{\epsilon, \epsilon_{1}\right\}$. As in the proof of Theorem 2.8 , for each $\epsilon_{9}>0$, we can find $\epsilon_{8}>0$ such that for $t \leq 2 \eta|x-y|$, there is a two-dimensional minimal cone $Y^{\prime}(y, t) \subset H_{x}$ of type \mathbb{P} or \mathbb{Y} such that

$$
\begin{equation*}
d_{y, t}\left(E_{x}, Y^{\prime}(y, t)\right) \leq \epsilon_{9} \tag{2.9.26}
\end{equation*}
$$

The case $r \geq t>2 \eta|x-y|$ is the same as (2.9.22). We now have all that we need for Subcase 2.

Now we can conclude that, for each $\epsilon_{10}>0$, we can find $\epsilon>0$ such that for $y \in E_{x} \cap B(x, r)$ and for $t \leq r$, there exists a two-dimensional minimal cone $Y^{\prime}(y, t) \subset H_{x}$ such that $d_{y, t}\left(E_{x}, Y^{\prime}(y, t)\right) \leq \epsilon_{10}$. By DDT, 2.2], for each $\alpha>0$, we can find $\epsilon>0$ such that if (2.9.1) and (2.9.2) hold, then $B(x, r)$ is a Hölder ball of type \mathbb{T} for E_{x}, with exponent $1+\alpha$.

Acknowledgments. I wish to thank Guy David for a number of helpful suggestions on this paper.

References

[Al] F. J. Almgren, Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. (2) 84 (1966), 277-292.
[D] G. David, Hölder regularity of two-dimensional almost-minimal sets in \mathbb{R}^{n}, Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), 65-246.
[DDT] G. David, T. De Pauw, and T. Toro, A generalization of Reifenberg's theorem in \mathbb{R}^{3}, Geom. Funct. Anal. 18 (2008), 1168-1235.
[He] A. Heppes, Isogonale sphärische Netze, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 7 (1964), 41-48.
[Tay] J. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103 (1976), 489-539.

Tien Duc Luu
Département de Mathématiques
Bât. 425
Université Paris-Sud XI
91405 Orsay Cedex, France
E-mail: luutienduc@gmail.com

Received 4.5.2012
and in final form 27.12.2012

[^0]: 2010 Mathematics Subject Classification: Primary 49Q05; Secondary 49Q15. Key words and phrases: minimal sets, Almgren minimal sets, Hausdorff measure.

