Hölder regularity of three-dimensional minimal cones in \mathbb{R}^n

by TIEN DUC LUU (Orsay)

Abstract. We show the local Hölder regularity of Almgren minimal cones of dimension 3 in \mathbb{R}^n away from their centers. The proof is almost elementary but we use the generalized theorem of Reifenberg. In the proof, we give a classification of points away from the center of a minimal cone of dimension 3 in \mathbb{R}^n , into types \mathbb{P} , \mathbb{Y} and \mathbb{T} . We then treat each case separately and give a local Hölder parameterization of the cone.

1. Introduction. In this paper, we prove Hölder regularity for threedimensional minimal cones in \mathbb{R}^n . This is a continuation of [D] in which G. David proved the Hölder regularity for two-dimensional almost minimal sets in \mathbb{R}^n . The structure of two-dimensional minimal cones in \mathbb{R}^n is quite clear now, as in [D], G. David has classified them into three types: \mathbb{P} , \mathbb{Y} and \mathbb{T} (see Section 15 of [D] for the definition). For now we do not know yet the list of cones of type \mathbb{T} . For three-dimensional minimal cones, Almgren [Al] has showed that any cone of dimension 3 in \mathbb{R}^4 , centered at the origin and over a smooth surface of \mathbb{S}^3 , must be a 3-plane. But for three-dimensional minimal cones in general, the structure of their singularities is still unclear. This paper is a first step towards understanding this structure, and we hope it may help to study the structure of singularities of three-dimensional minimal sets in \mathbb{R}^4 .

Let us first give the definition of Almgren minimal sets of dimension d in \mathbb{R}^n .

DEFINITION 1.1. Let E be a closed set in \mathbb{R}^n and $d \leq n-1$ be an integer. An Almgren competitor (Al-competitor) for E is a closed set $F \subset \mathbb{R}^n$ that can be written as $F = \varphi(E)$, where $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is a Lipschitz mapping such that $W_{\varphi} = \{x \in \mathbb{R}^n; \varphi(x) \neq x\}$ is bounded.

An Al-minimal set of dimension d in \mathbb{R}^n is a closed set $E \subset \mathbb{R}^n$ such that $H^d(E \cap B(0, R)) < \infty$ for every R > 0 and

$$H^d(E \setminus F) \le H^d(F \setminus E)$$

for every Al-competitor F for E.

2010 Mathematics Subject Classification: Primary 49Q05; Secondary 49Q15. Key words and phrases: minimal sets, Almgren minimal sets, Hausdorff measure. Even if we think that the applications will be essentially in \mathbb{R}^4 , we shall treat the problem in the general case of \mathbb{R}^n . So we need the following descriptions of cones of type \mathbb{P}, \mathbb{Y} or \mathbb{T} of dimension d in \mathbb{R}^n [DDT].

We denote by \mathcal{P} the collection of *d*-dimensional affine planes, which we shall also call cones of type \mathbb{P} .

We next define the collection \mathcal{Y} of cones of type \mathbb{Y} . We take a propeller Yin a plane, which is the union of three half-lines with the same endpoint 0 and that make 120° angles at 0. We obtain a first set of type \mathbb{Y} as the product $Y_0 = Y \times V$, where V is a (d-1)-dimensional vector space that is orthogonal to the plane that contains Y. We shall call V the *spine* of \mathbb{Y}_0 . Finally, \mathcal{Y} is the collection of sets \mathbb{Y} of the form $\mathbb{Y} = j(\mathbb{Y}_0)$, where j is an isometry of \mathbb{R}^n . The spine of \mathbb{Y} is the image under j of the spine of \mathbb{Y}_0 .

We now define the collection \mathcal{T} of sets of type \mathbb{T} . The set \mathcal{T} will be the collection of sets $T = g(T_0 \times V)$, where T_0 lies in a set \mathcal{T}_0 of 2-dimensional cones in \mathbb{R}^{n-d+2} and V is the (d-2)-plane orthogonal to \mathbb{R}^{n-d+2} in \mathbb{R}^n , and g is an isometry of \mathbb{R}^n .

Each $T_0 \in \mathcal{T}_0$ will be the cone over a set $K \subset \partial B(0, 1)$, with the following properties. First, $K = \bigcup_{j \in J} C_j$ is a finite union of great circles, or closed arcs of great circles. Denote by Q the collection of extremities of the arcs C_j , $j \in J$; each point $y \in Q$ lies in exactly three C_j , y is an endpoint for each such C_j , and the three C_j make 120° angles at y. The C_j can only meet at their endpoints (and hence the full arcs of circles are disjoint from the rest of K). In addition, we choose a small constant $\eta_0 > 0$, which depends only on n, such that

(1)
$$H^1(C_j) \ge \eta_0 \quad \text{for } j \in J,$$

and if $y \in C_i$ and $\operatorname{dist}(y, C_j) \leq \eta_0$ for some other j, then C_i and C_j have a common extremity in $B(y, \operatorname{dist}(y, C_j))$. Finally, we exclude the case when T is a plane or a set of type \mathbb{Y} .

For a set $T \in \mathcal{T}$ as above, denote by \hat{C}_j , $j \in J$, the cone over C_j . Then we call $g(\hat{C}_j \times V)$, $j \in J$, the *d*-faces of T. We call the sets $g(0y \times V)$, $y \in Q$, the (d-1)-faces of Q. We call g(V) the spine of T.

Finally, we set $\mathcal{Z} = \mathcal{P} \cup \mathcal{Y} \cup \mathcal{T}$.

Note that the cones of type \mathbb{T} are not all minimal, but they are good enough to apply the generalized Reifenberg theorems [DDT, 1.1 and 2.2].

Although we give the descriptions for all dimensions, we need mostly the cases d = 2 and d = 3. Moreover, in [D, Section 14], G. David classifies the two-dimensional minimal cones in \mathbb{R}^n into types \mathbb{P} , \mathbb{Y} and \mathbb{T} described above, with a suitable choice of η_0 for cones of type \mathbb{T} .

We can now give the definition of a Hölder ball for a set $E \subset \mathbb{R}^n$.

DEFINITION 1.2. Let E be a closed set in \mathbb{R}^n . Suppose that $0 \in E$. We say that B(0,r) is a *Hölder ball of type* \mathbb{P} , \mathbb{Y} or \mathbb{T} with exponent $1+\alpha$ if there exist a homeomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ and a minimal cone Y of dimension d, centered at the origin, of type \mathbb{P} , \mathbb{Y} or \mathbb{T} , respectively, such that

(1.2.1)
$$|f(x) - x| \le \alpha r \quad \text{for } x \in B(0, r),$$

(1.2.2)
$$(1-\alpha)[|x-y|/r]^{1+\alpha} \le |f(x)-f(y)|/r \le (1+\alpha)[|x-y|/r]^{1-\alpha}$$
 for $x, y \in B(0,r)$,

$$(1.2.3) \qquad E \cap B(0, (1-\alpha)r) \subset f(Y \cap B(0,r)) \subset E \cap B(0, (1+\alpha)r).$$

We then also say that E is *bi-Hölder equivalent* to Y in B(0, r), with exponent $1 + \alpha$.

Our main theorem is the following.

THEOREM 1. Let E be an Al-minimal cone of dimension 3 in \mathbb{R}^n and $x \in E \cap B(0,1)$. Let H be the tangent plane to $\partial B(0,1)$ at x and $E' = E \cap H$. Then for each $\alpha > 0$, there exists r > 0, which depends on x, such that B(x,r) is a Hölder ball of type \mathbb{P} , \mathbb{Y} or \mathbb{T} for E' in H, with exponent $1 + \alpha$.

Our strategy is the following: for each $y \in B(x, r)$ and each radius t such that $B(y,t) \subset B(x,r)$, we shall find a minimal cone Y of dimension 2 in H such that $d_{y,t}(E',Y) \leq \epsilon$ (see the beginning of Section 2 for the definition), where $\epsilon > 0$ depends on the exponent $1+\alpha$. We shall then use the generalized theorem of Reifenberg [DDT, 1.1 and 2.2] to conclude that E' is bi-Hölder equivalent to a two-dimensional minimal cone in H, with exponent $1 + \alpha$.

2. Proof of Theorem 1. Let us give a list of notations that we shall use in this paper.

• H^d is the *d*-dimensional Hausdorff measure.

• $\theta_A(x,r) = H^d(A \cap B(x,r))/r^d$, where $A \subset \mathbb{R}^n$ is an H^d -measurable set and $x \in A$.

• $\theta_A(x) = \lim_{r \to 0} \theta_A(x, r)$ is called the *density* of A at x, if the limit exists and is finite.

• Local Hausdorff distance $d_H(E, F)$. Let $E, F \subset \mathbb{R}^n$ be closed sets and $H \subset \mathbb{R}^n$ be a compact set. We define

 $d_H(E, F) = \sup\{\operatorname{dist}(x, F); x \in E \cap H\} + \sup\{\operatorname{dist}(x, E); x \in F \cap H\},\$

when $E \cap H$ and $F \cap H$ are not empty. We use the convention that $\sup\{\operatorname{dist}(x,F); x \in E \cap H\} = 0$ when $E \cap H$ is empty.

We also define

$$d_{x,r}(E,F) = \frac{1}{r} \sup\{\operatorname{dist}(z,F); z \in E \cap B(x,r)\} + \sup\{\operatorname{dist}(z,E); z \in F \cap B(x,r)\},\$$

where E, F are closed sets which meet B(x, r).

• Convergence of a sequence of sets. Let $U \subset \mathbb{R}^n$ be an open set, $\{E_k\}_{k=1}^{\infty}$ be a sequence of closed sets in U, and $E \subset U$. We say that $\{E_k\}$ converges to E in U, and we write $\lim_{k\to\infty} E_k = E$, if for each compact $H \subset U$,

$$\lim_{k \to \infty} d_H(E_k, E) = 0$$

• Blow-up limit. Let $E \subset \mathbb{R}^n$ be a closed set and $x \in E$. A blow-up limit F of E at x is defined as

$$F = \lim_{k \to \infty} \frac{E - x}{r_k},$$

where $\{r_k\}$ is any sequence of positive numbers such that $\lim_{k\to\infty} r_k = 0$ and the limit exists in \mathbb{R}^n .

For two points $a, b \in \mathbb{R}^n$, we denote by ab the line passing through a and b, and by \vec{ab} the half-line through a and b with starting point a.

Now we fix an Al-minimal cone $E \subset \mathbb{R}^n$ of dimension 3, centered at 0, and $x \in E \cap \partial B(0, 1)$. For each $y \in E \cap \partial B(0, 1)$, we denote by H_y the tangent plane to $\partial B(0, 1)$ at y and write $E_y = E \cap H_y$. For simplicity, we set $H_x = H$. Note that since E is minimal, the density $\theta_E(y)$ always exists for all $y \in E$.

LEMMA 2.1. Each blow-up limit of E at x is of the form $F = F' \times 0x$, where F' is a two-dimensional Al-minimal cone in H and 0x denotes the line from 0 through x.

Proof. Let F be a blow-up limit of E at x. Then $F = \lim_{k\to\infty} (E-x)/r_k$ with $\lim_{k\to\infty} r_k = 0$. Let $y \in F$. We want to show that $y + 0x \subset F$. Setting $E_k = (E-x)/r_k$, as $\{E_k\}$ converges to F, we can find points $y_k \in E_k$ such that $\{y_k\}_{k=1}^{\infty}$ converges to y. Set $z_k = r_k y_k + x$; then $z_k \in E$ by definition of E_k , and z_k converges to x because r_k converges to 0. We fix $\lambda \in \mathbb{R}$ and we set $v_k = (1 + \lambda r_k) z_k$. Then $v_k \in E$ as E is a cone centered at 0. We have $w_k = r_k^{-1} (v_k - x) \in E_k$. On the other hand,

$$w_k = r_k^{-1}((1+\lambda r_k)z_k - x) = r_k^{-1}((1+\lambda r_k)(r_k y_k + x) - x)$$

= $r_k^{-1}(r_k y_k + \lambda r_k^2 y_k + \lambda r_k x) = y_k + \lambda x + \lambda r_k y_k,$

and we see that $\lim_{k\to\infty} w_k = y + \lambda x$. As $\{E_k\}$ converges to F, we see that $y + \lambda x \in F$. Now for each $y \in F$ and $\lambda \in \mathbb{R}$, we have $y + \lambda x \in F$, which implies that $F = F' \times 0x$ with $F' \subset F \cap H$. Next, as E is a minimal set and F is a blow-up limit of E at x, by [D, 7.31], F is a minimal cone centered at 0. But $F = F' \times 0x$, so by [D, 8.3], F' is a minimal cone in H, centered at x.

By [D, Section 14], F' is of type \mathbb{P} , \mathbb{Y} or \mathbb{T} as above. Note that the classification of two-dimensional minimal cones in \mathbb{R}^3 was established earlier (see [He] and [Tay]). Now, since $F = F' \times \mathbb{R}$, F is also a cone of type \mathbb{P} , \mathbb{Y}

or \mathbb{T} of dimension 3 in \mathbb{R}^n . If F is of type \mathbb{P} , we set $\theta_F(0) = d_P$, which is the Hausdorff measure of the three-dimensional unit ball. If F is of type \mathbb{Y} , we set $\theta_F(0) = d_Y$, which is the density at any point of the spine of a \mathbb{Y} of dimension 3. Otherwise F is of type \mathbb{T} , and we deduce from [D, Section 14] that there exists a constant $d_T > d_Y$, which depends only on n, such that $\theta_F(0) \ge d_T$. Now by [D, 7.31], $\theta_E(x) = \theta_F(0)$, so we call the point $x \in$ $E \cap \partial B(0,1)$ of type \mathbb{P} if $\theta_E(x) = d_P$, of type \mathbb{Y} if $\theta_E(x) = d_Y$, and finally of type \mathbb{T} if $\theta_E(x) = \theta_F(0) \ge d_T$.

LEMMA 2.2. For each $\epsilon > 0$, we can find $r_x > 0$ such that if $r \leq r_x$, then there is a three-dimensional minimal cone F(x,r) of type \mathbb{P} , \mathbb{Y} or \mathbb{T} , and whose spine passes through 0 and x, such that

$$d_{x,r}(E, F(x, r)) \le \epsilon.$$

Proof. Suppose that the lemma fails; then there is a sequence $\{r_k\}$; converging to 0 and such that for each minimal cone F as above,

$$(2.2.1) d_{x,r_k}(E,F) > \epsilon.$$

Set $E_k = (E - x)/r_k$; without loss of generality, we may assume that $\{E_k\}$ converges in \mathbb{R}^n ; set $\lim_{k\to\infty} E_k = M$.

Since M is a blow-up limit of E at x, by Lemma 2.1, $M = M' \times D_x$ where M' is a two-dimensional minimal cone in H centered at x, and D_x is the line 0x. So M is a three-dimensional minimal cone of type \mathbb{P} , \mathbb{Y} or \mathbb{T} , whose spine passes through 0 and x. Since $\{E_k\}$ converges to M, there exists k > 0 such that $d_{0,1}(E_k, M) \leq \epsilon$. This means that $d_{x,r_k}(E, x + M) \leq \epsilon$. But $M = M' \times D_x$, so M = x + M and hence $d_{x,r_k}(E, M) \leq \epsilon$, which contradicts (2.2.1).

LEMMA 2.3. For each $\delta > 0$, we can find $\epsilon > 0$ with the following properties:

Let R be a radius. Let $I \in \mathbb{R}^n$ with d(0, I) > 100R and C be a minimal cone of dimension 3 centered at I with the property that for each $y \in C \cap$ B(I, R) and each $y' \in 0y \cap B(I, R)$, there exists $z' \in C$ such that

$$(2.3.1) d(y',z') < \epsilon R.$$

Then there exists a three-dimensional minimal cone Y_C , of type \mathbb{P} , \mathbb{Y} or \mathbb{T} , whose spine contains 0 and I, such that $d_{I,R/2}(C, Y_C) \leq \delta$.

Proof. Suppose that the lemma fails. By homogeneity, we can fix I such that d(0, I) = 1000. Then there exist a sequence $\epsilon_k \to 0$, radii $R_k < 10$ and minimal cones C_k centered at I such that each C_k satisfies the hypothesis corresponding to ϵ_k in the ball $B(I, R_k)$ but does not satisfy the conclusion. That is, for each minimal cone Y as above, $d_{I,1}(C_i, Y) > \delta$. Now we can find a subsequence $\{C_{i_j}\}_{j=1}^{\infty}$ which converges to a set E. Since each C_{i_j} is a minimal cone centered at I, so is E. We shall show that

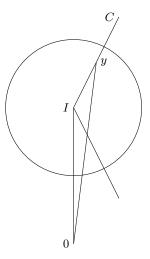


Fig. 1. Minimal cone C

(2.3.2) E is a three-dimensional minimal cone of type \mathbb{P} , \mathbb{Y} or \mathbb{T} whose spine contains 0 and I.

We consider two cases.

CASE 1: $\limsup_{j\to\infty} R_{i_j} > 0$. In that case, without loss of generality, we may assume that $R_{i_j} = 1$ for all j. Now take $u \in E \cap B(I, 1/2)$; as $\{C_{i_j}\}$ converges to E, there exist $u_{i_j} \in C_{i_j}$, $j \ge 1$, such that $\{u_{i_j}\}$ converges to u.

If $u' \in 0u \cap B(I, 1/2)$, we take $y'_{i_k} \in 0u_{i_k}$ such that $|0y'_{i_k}|/|0u_{i_k}| = |0u'|/|0u|$, where |AB| denotes the length of the segment AB. Then $|y'_{i_k}u'| = (|0u'|/|0u|) \cdot |u_{i_k}u|$, by Thales' theorem, and we deduce that $\lim_{j\to\infty} y'_{i_j} = u'$.

But for each j, there exists $u'_{i_j} \in C_{i_j}$ such that $d(u'_{i_j}, y'_{i_j}) < \epsilon_{i_j}$, by (2.3.1). So $\{u'_{i_j}\}$ converges to u' and thus $u' \in E$. Now

 $(2.3.3) 0u \cap B(I, 1/2) \subset E for each u \in E \cap B(I, 1/2).$

In particular $0I \cap B(I, 1/2) \subset E$.

In addition, E is a cone centered at I, so $Iu \subset E$, where Iu denotes the half-line from I and passing through u. Now if u does not lie on the line 0I, let $u_1 \in P \cap B(I, 1/2)$, where P is the open half-plane with boundary 0I and containing u. We take $u_2 \in [Iu_1]$, where [AB] denotes the segment with endpoints A and B, which is close to I so that the half-line $0u_2$ intersects the segment [Iu]. Set $u_3 = 0u_2 \cap [Iu]$; then $u_3 \in E$ since E is a cone centered at I and $u \in E$. By (2.3.3), $u_2 \in 0u_3 \cap B(I, 1/2)$ belongs to E too. Finally, we use the fact that E is a cone centered at I to conclude that $u_1 \in E$.

So for each $u \in E \cap B(I, 1/2) \setminus 0I$, we have $P \cap B(I, 1/2) \subset E$, where P is the open half-plane with boundary 0I containing u. Since E is closed, we also have $0I \subset E$. We deduce that $E = E' \times 0I$, where E' is a two-dimensional set in the hyperplane orthogonal to 0I and passing through I. Since E is a minimal cone centered at I, so is E', by [D, 8.3]. Since E' is a two-dimensinal minimal cone, by [D, Section 14], E' is of type \mathbb{P} , \mathbb{Y} or \mathbb{T} and so is E, as $E = E' \times 0I$. We thus have (2.3.2) in this case.

CASE 2: $\limsup_{i \to \infty} R_{i_i} = 0$. In this case we want to show that

(2.3.4) for each $u \in E \cap B(I, 1/2) \setminus 0I$, we have $B(u, |Iu|/4) \cap l_u \subset E$, where l_u is the line passing through u and parallel to 0I.

Indeed, we take a sequence $\{u_{i_j} \in C_{i_j}\}$ which converges to u as above. Let $u'_{i_j} = 0u_{i_j} \cap B(I, R_{i_j}/2)$. Then by (2.3.1), for each $z \in 0u'_{i_j} \cap B(u'_{i_j}, R_{i_j}/4)$, there exists $w \in C_{i_j}$ such that $d(z, w) \leq \epsilon_{i_j} R_{i_j}$. Let $l_{u_{i_j}}$ be the line passing through u_{i_j} and parallel to $0u'_{i_j}$. Since C_{i_j} is a cone centered at I, by homothety for each $z' \in l_{u_{i_j}} \cap B(u_{i_j}, |Iu_{i_j}|/2)$, there exists $w' \in C_{i_j}$ such that

(2.3.5)
$$d(z', w') \le \epsilon_{i_j} |Iu_{i_j}| \le \epsilon_{i_j}.$$

Since $\limsup_{j\to\infty} R_{i_j} = 0$, the lines $l_{u_{i_j}}$ converge to the line l_u in \mathbb{R}^n . Next, if j is large enough, then $B(u, |Iu|/4) \subset B(u_{i_j}, |Iu_{i_j}|/2)$, and so for each $v \in B(u, |Iu|/4) \cap l_u$, there exists a sequence $v_{i_j} \in C_{i_j}$ which converges to v. We deduce $v \in E$ and we have (2.3.4).

Now for each $u \in E \cap B(I, 1/2) \setminus 0I$, by repeating this argument for the two endpoints of the segment $B(u, |Iu|/4) \cap l_u$, we can conclude that $l_u \cap B(I, 1/2) \subset E$. We want to show next that

$$(2.3.6) l_u \subset E.$$

For this, take any point $v \in l_u$. Let $v' = Iv \cap B(I, 1/4)$ and let $u' \in Iu$ be such that the line u'v' is parallel to l_u . Clearly $v' \in l_{u'} \cap B(I, 1/2)$, where $l_{u'}$ is defined just as l_u , and $u' \in E$ since E is the cone centered at I. So by (2.3.4), $v' \in E$ and hence $v \in E$, so that (2.3.6) follows.

Since E is closed, we deduce that $0I \subset E$; together with (2.3.6) we then see that E is of the form $E = E' \times 0I$, where E' is a two-dimensional set in the hyperplane orthogonal to 0I and passing through I. By the same arguments as above, we deduce that E is a three-dimensional minimal cone of type \mathbb{P} , \mathbb{Y} or \mathbb{T} whose spine contains 0I. We also have (2.3.2) in this case.

As $\lim_{j\to\infty} C_{i_j} = E$, there exists an integer l > 0 such that $d_{I,1}(C_{i_l}, E) < \delta/2$, which is a contradiction as E is a minimal cone of type \mathbb{P} , \mathbb{Y} or \mathbb{T} whose spine contains 0I.

We now want to use Lemma 2.3 to control the distance in the ball B(x, r) between E and a three-dimensional minimal cone C(x, r) of type \mathbb{P} , \mathbb{Y} or \mathbb{T} whose spine passes through 0 and x.

LEMMA 2.4. For each $\delta > 0$, we can find $\epsilon > 0$ such that the following properties hold. Suppose that 0 < r < 1/100 satisfies

(2.4.1)
$$|\theta_E(x,r) - \theta_E(x)| \le \epsilon;$$

then there exists a minimal cone Y of dimension 3, of type \mathbb{P} , \mathbb{Y} or \mathbb{T} and whose spine contains 0 and x, such that $d_{x,r/8}(E,Y) \leq \delta$. In addition, the type of Y is exactly the type of x.

Proof. By [D, 7.1], for each $\epsilon_1 > 0$ very small, to be chosen later, we can find $\epsilon > 0$ such that if (2.4.1) holds then there exists a minimal cone C of dimension 3 centered at x, such that

$$(2.4.2) d_{x,r/2}(E,C) \le \epsilon_1.$$

We now check the conditions of Lemma 2.3 for the cone C.

Since $d_{x,r/2}(E, C) \leq \epsilon_1$, whenever $z \in C \cap B(x, r/3)$, there exists $y \in E \cap B(x, r/2)$ such that $d(z, y) \leq \epsilon_1 r/2$. Because E is a cone centered at 0, the half-line 0y lies in E. Now if $z' \in 0z \cap B(x, r/3)$, take the point $y' \in 0y$ such that y'z' is parallel to yz; then $d(y', z') \leq \epsilon_1 r$, and clearly $y' \in E \cap B(x, r/2)$. By (2.4.2), there exists $u \in C$ such that $d(u, y') \leq \epsilon_1 r$. Then $d(z', u) \leq 2\epsilon_1 r$. So the cone C satisfies the assumptions of Lemma 2.3 with radius r/3 and with constant $8\epsilon_1$; here x stands for I. Lemma 2.3 shows that for each $\epsilon_2 > 0$, we can find $\epsilon_1 > 0$ such that there exists a three-dimensional minimal cone Y, of type \mathbb{P} , \mathbb{Y} or \mathbb{T} , whose spine passes through 0 and x, such that

$$(2.4.3) d_{x,r/4}(C,Y) \le \epsilon_2.$$

From (2.4.2) and (2.4.3) we have

(2.4.4)
$$d_{x,r/8}(E,Y) \le 2(d_{x,r/4}(E,C) + d_{x,r/4}(C,Y)) \le 2(2\epsilon_1 + \epsilon_2)$$

= $4\epsilon_1 + 2\epsilon_2$.

For each $\delta > 0$, we can find $\epsilon > 0$ such that $4\epsilon_1 + 2\epsilon_2 \leq \delta$. So from (2.4.4) we have $d_{x,r/8}(E,Y) \leq \delta$, which we wanted to prove.

LEMMA 2.5. Let C and C_1 be two cones centered at 0, and $\epsilon > 0$ be a small constant. Let $r \leq 1/100$ be a small radius, $y \in C \cap \partial B(0,1)$ and H_y be the hyperplane which is tangent to $\partial B(0,1)$ at $y, C' = C \cap H_y, C'_1 = C_1 \cap H_y$. If $z \in C \cap B(y, r/2) \cap H_y$ and $t \leq r$ are such that $d_{z,t}(C, C_1) \leq \epsilon$, then

$$d_{z,t/2}(C', C_1') \le 2(1+r)\epsilon.$$

Proof. For each $w \in C' \cap B(z, t/2)$, there exists $w'_1 \in C_1 \cap B(y, r)$ such that $d(w, w'_1) \leq \epsilon t$ since $d_{z,t}(C, C_1) \leq \epsilon$. Now let w_1 be the intersection of the half-line $0w'_1$ with H_y . Then $w_1 \in C_1 \cap H_y$. We shall estimate the distance $d(w, w_1)$. By the triangular inequality, we have

$$d(w, w_1) \le \frac{d(w, w'_1)}{\widehat{\sin(ww_1w'_1)}} = \frac{d(w, w'_1)}{\widehat{\sin(ww_10)}};$$

here $\widehat{xyz} \in [0, \pi[$, where x, y, x are points in \mathbb{R}^n , denotes the angle between the half-lines yx and yz. Next,

$$\sin(\widehat{ww_10}) = \frac{\operatorname{dist}(0, ww_1)}{d(0, w_1)} \ge \frac{1}{1+r}$$

since dist $(0, ww_1) \ge dist(0, H_y) = 1$ and $d(0, w_1) \le d(0, y) + d(y, w_1) \le 1 + r$.

So $d(w, w_1) \leq (1+r)\epsilon t$ for each $w \in C' \cap B(z, t/2)$, and it is clear that $w_1 \in B(z, t)$. By the same arguments, for each $w_1 \in C'_1 \cap B(z, t/2)$, there exists $w \in C' \cap B(z', t)$ such that $d(w_1, w) \leq (1+r)\epsilon t$.

We shall now prove Theorem 1. We consider three cases: where x is of type \mathbb{P} , \mathbb{Y} or \mathbb{T} .

Hölder regularity near a point of type \mathbb{P}

THEOREM 2.6. Suppose that x is a point of type \mathbb{P} . Then for each $\tau > 0$, we can find $\epsilon > 0$ such that if the radius r > 0 satisfies

(2.6.1)
$$\theta_E(x, 2^8 r) - \theta_E(x) \le \epsilon,$$

then B(x,r) is a Hölder ball for E_x , with exponent $1 + \tau$.

We remark first that for each $\epsilon > 0$, we can find r > 0 such that (2.6.1) holds. Our ϵ does not depend on x, just on τ .

Proof of Theorem 2.6. The main idea is to show that for $y \in E_x \cap B(x,r)$ and $t \leq r$, we can find a 2-plane P'(y,t) in H such that $d_{y,t}(E_x, P'(y,t)) \leq \delta$, where δ is a very small constant, to be chosen later. Then we can use [DDT, Theorem 1.1] to conclude that for each $\tau > 0$, we can find $\delta > 0$ such that E_x is bi-Hölder equivalent to a 2-plane in B(x,r).

Now we start the proof. By Lemma 2.4, for each $\delta > 0$ very small, to be chosen later, we can find $\epsilon > 0$ such that if (x, r) satisfies (2.6.1), then there exists a 3-plane P which passes through 0 and x, such that

$$(2.6.2) d_{x,2^5r}(E,P) \le \delta.$$

Consider a point $y \in E_x \cap B(x, r)$. By [D, 16.43], for each $\delta_1 > 0$ very small, we can choose $\delta > 0$ such that if (2.6.2) holds for δ , then

(2.6.3)
$$H^{3}(E \cap B(y, 2^{4}r)) \leq H^{3}(P \cap B(y, (1+\delta_{1})2^{4}r)) + \delta_{1}(2^{4}r)^{3} \leq d_{P}((1+\delta_{1})2^{4}r)^{3} + \delta_{1}(2^{4}r)^{3}.$$

We deduce that $\theta_E(y, 2^4r) - d_P \leq \delta_1$ or $\theta_E(y, 2^4r) \leq d_P + \delta_1$. But we know that $\theta_E(y) = d_P$, d_Y or d_T and by [D, 5.16], $\theta_E(y, \cdot)$ is a nondecreasing function. So if δ_1 is small enough, we have $\theta_E(y) = d_P$. Since $\theta_E(y, \cdot)$ is nondecreasing, $d_P \leq \theta_E(y, t) \leq d_P + \delta_1$ for $0 < t \leq 2^4r$. With $\theta_E(y) = d_P$, we have

(2.6.4)
$$\theta_E(y,t) - \theta_E(y) \le \delta_1 \quad \text{for } 0 < t \le 2^4 r.$$

By Lemma 2.4, for each $\delta_2 > 0$, we can choose $\delta_1 > 0$ such that there exists a 3-plane P(y,t) which passes through 0 and y, such that

(2.6.5) $d_{y,t}(E, P(y, t)) \le \delta_2 \text{ for } 0 < t \le 2r.$

Set $P'(y,t) = P(y,t) \cap H$. Applying Lemma 2.5 for two cones E and P(y,t) centered at 0, we have

(2.6.6)
$$d_{y,t/2}(E_x, P'(y,t)) \le 6\delta_2 \quad \text{for } 0 < t \le 2r.$$

But now P'(y,t) is a 2-plane in H, so for each $y \in E_x \cap B(x,r)$ and each $t \leq r$, there exists a 2-plane $P_1(y,t)$ in H such that

(2.6.7)
$$d_{y,t}(E_x, Y_1(y,t)) \le 6\delta_2$$

By [DDT, Theorem 1.1], we conclude that, for each $\tau > 0$, we can choose $\delta_2 > 0$, and then $\epsilon > 0$, such that if (2.6.7) holds, then E_x is bi-Hölder equivalent to a 2-plane P in H, with Hölder exponent $1 + \tau$.

Hölder regularity near a point of type \mathbb{Y}

PROPOSITION 2.7. Let $y \in \partial B(0,1)$ and r < 1/2. For each $\tau > 0$ we can find $\epsilon > 0$ such that if Y(y,r) is a minimal cone of type \mathbb{Y} of dimension 3, whose spine passes through 0 and y, which satisfies

(2.7.1)
$$d_{y,r}(E, Y(y, r)) \le \epsilon,$$

then there exists a \mathbb{Y} -point of E_y in $B(y, \tau r)$. Here, a \mathbb{Y} -point of E_y is a \mathbb{Y} -point of E which belongs to E_y .

Proof. We first take $\epsilon > 0$ very small, to be chosen later. Suppose that the proposition fails; then there exist a radius 0 < r < 1/2 and a three-dimensional minimal cone Y(y,r) of type \mathbb{Y} , whose spine passes through 0 and y, such that

$$(2.7.2) d_{y,r}(E, Y(y,r)) \le \epsilon,$$

(2.7.3) for each $z \in E_y \cap B(y, \tau r)$, z is not a \mathbb{Y} -point.

We take a point $z \in E_y \cap B(y,\tau r)$. Since $B(z,r/4) \subset B(y,r)$ and $d_{y,r}(E,Y(y,r)) \leq \epsilon$, we have $d_{z,r/4}(E,Y(y,r)) \leq 4d_{y,r}(E,Y(y,r)) \leq 4\epsilon$. So by [D, 16.43], for each $\delta > 0$ we can find $\epsilon > 0$ such that

(2.7.4)
$$H^{3}(E \cap B(z, r/4)) \leq H^{3}(Y(y, r) \cap B(z, (1+\delta)r/4)) + \delta(r/4)^{3} \leq d_{Y}((1+\delta)r/4)^{3} + \delta(r/4)^{3}.$$

So if we take δ small enough, we have $H^3(E \cap B(z, r/4)) < d_T(r/4)^3$, thus $\theta_E(z, r/4) < d_T$. Next, $\theta_E(z) \leq \theta_E(z, r/4) < d_T$, since E is a minimal cone. So z cannot be a \mathbb{T} -point, and since it is not a \mathbb{Y} -point either,

(2.7.5)
$$z \text{ is a } \mathbb{P}\text{-point.}$$

Let L be the spine of Y(y,r). Then L is a 2-plane through 0 and y. Let F_1, F_2, F_3 be three half-planes of dimension 3 which form Y(y,r). Then

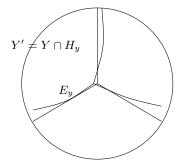


Fig. 2. Intersection of E with H_y

 F_1, F_2, F_3 have L as common boundary, and the angle between any two of them is 120°. Set $Y'(y,r) = Y(y,r) \cap H_y$ and $w_i = F_i \cap \partial B(y, \tau r/2) \cap H_y$, i = 1, 2, 3. Then Y'(y,r) is a two-dimensional minimal cone of type \mathbb{Y} in H_y , centered at y, with spine $L' = L \cap H_y$. Then $\operatorname{dist}(w_i, L') = d(w_i, y) = \tau r/2$ for $1 \leq i \leq 3$. Next, $d_{y,r}(E, Y(y,r)) \leq \epsilon$, so by Lemma 2.5, $d_{y,r/2}(E_y, Y'(y,r)) \leq$ $2(1 + r)\epsilon \leq 6\epsilon$. Thus for each $1 \leq i \leq 3$, there is $z_i \in E_y$ such that $d(z_i, w_i) \leq 3\epsilon r$. It is clear that $z_i \in B(y, 5\tau r/8)$ if we choose ϵ small enough. Now

(2.7.6)
$$d_{z_i,\tau r/4}(E, Y(y, r)) \le \frac{4}{\tau} d_{y,r}(E, Y(y, r)) \le 4\epsilon/\tau$$

for $1 \le i \le 3$. By [D, 16.43], for each $\delta_1 > 0$, we can choose $\epsilon > 0$ such that if (2.7.6) holds for ϵ , then

$$(2.7.7) \quad H^{3}(E \cap B(z_{i}, \tau r/8)) \leq H^{3}(Y(y, r) \cap B(z_{i}, (1+\delta_{1})\tau r/8)) + \delta_{1}(\tau r/8)^{3}$$
$$= H^{3}(F_{i} \cap B(z_{i}, (1+\delta_{1})\tau r/8)) + \delta_{1}(\tau r/8)^{3}$$
$$\leq d_{P}(\tau r/8)^{3} + C\delta_{1}(\tau r/8)^{3},$$

since dist $(w_i, L) = \tau r/4$, so dist $(z_i, L) \ge$ dist $(w_i, L) - d(w_i, z_i) \ge \tau r/4 - \epsilon r$, so $B(z_i, (1+\delta_1)\tau r/8)$ does not meet L. Then, in $B(z_i, (1+\delta_1)\tau r/8), Y(y, r)$ coincides with F_i , which is a half-plane of dimension 3.

From (2.7.7) we have

(2.7.8)
$$\theta_E(z_i, \tau r/8) \le d_P + C\delta_1,$$

which implies that z_i is a \mathbb{P} -point for $1 \leq i \leq 3$ if we take δ_1 small enough. By Theorem 2.6, for each $\alpha > 0$, we can choose $\delta_1 > 0$ such that if (2.7.8) holds, then

(2.7.9) for $1 \leq i \leq 3$, the set E_y is bi-Hölder equivalent to a 2-plane P_i in $B(z_i, \tau r/2^{11}) \cap H_y$, with Hölder exponent $1 + \alpha$.

Now as each $z \in E_y \cap B(y, \tau r)$ is a \mathbb{P} -point, by the proof of Theorem 2.6, there is a radius $r_z \leq \tau r/8$ such that E is bi-Hölder equivalent to a 3-plane P_z in the ball $B(z, r_z)$, with Hölder exponent $1 + \alpha$.

We see that the set E_y satisfies the following conditions:

(i) The minimal cone Y'(y,r) of dimension 2 of type \mathbb{Y} centered at y, which is $Y(y,r) \cap H_y$, satisfies

$$d_{y,r/2}(E_y, Y'(y,r)) \le 6\epsilon.$$

- (ii) Let L' be the spine of Y'(y,r) and F'_i , $1 \le i \le 3$, the three halfplanes of dimension 2 which form Y'(y,r). Then there are three points w_i , $1 \le i \le 3$, such that for each *i*, dist $(z_i, L') = \tau r/4$, $w_i \in F'_i$ and w_1, w_2, w_3 lie in the same plane of dimension 2 which is orthogonal to L'. Next, there are three points $z_i \in E_y$, $1 \le i \le 3$, such that $d(z_i, w_i) \le 3\epsilon r$, and in the ball $B(z_i, \tau r/2^{11})$, E_y is bi-Hölder equivalent to a 2-plane P_i in H_y , with Hölder exponent $1+\alpha$.
- (iii) For each $z \in E_y$, there is a radius $r_z \leq \tau r/2^{11}$ such that in the ball $B(z, r_z)$, E_y is bi-Hölder equivalent to a 2-plane P_z , with Hölder exponent $1 + \alpha$.

We can adapt the techniques of [D, Section 17]. G. David showed there that if a two-dimensional almost minimal set F in \mathbb{R}^n and a cone Y of type \mathbb{Y} of dimension 2 whose spine passes through a point x satisfy $d_{x,r}(F,Y) \leq \epsilon$, then there must be a \mathbb{Y} -point of F in B(x, r/1000). To prove this, G. David supposes that in B(x, r/1000), F contains only \mathbb{P} -points; then he shows that the set $F_1 = F \cap B(x, r/1000)$ has the same properties (i)–(iii). He next shows that it is not possible for a set F_1 to have those properties.

We can now use the same techniques for our set E_y , and conclude that it is not possible for E_y to satisfy (i)–(iii). Proposition 2.7 follows.

THEOREM 2.8. Suppose that x is a point of type \mathbb{Y} . Then for each $\alpha > 0$ there exists $\epsilon > 0$ such that if the radius r > 0 satisfies

(2.8.1)
$$\theta_E(x, 2^{11}r) - \theta_E(x) < \epsilon,$$

$$(2.8.2) 2^{11}r < \epsilon$$

then in the ball B(x,r), E_x is bi-Hölder equivalent to a two-dimensional minimal cone Y of type \mathbb{Y} in H_x and centered at x, with Hölder exponent $1 + \alpha$.

The proof uses the fact that for each $\delta > 0$, we can choose $\epsilon > 0$ such that if (2.8.1) and (2.8.2) hold, then for each $y \in E_x \cap B(x,r)$ and for each $0 < t \leq r$, there exists a two-dimensional minimal cone Z(y,t) in H_x such that $d_{y,t}(E_x, Z(y,t)) \leq \delta$. We remark that for each $\epsilon > 0$, we can choose r > 0 such that (2.8.1) and (2.8.2) hold.

Proof of Theorem 2.8. By Lemma 2.4, for each $\epsilon_1 > 0$, we can find $\epsilon > 0$ such that if the radius r satisfies (2.8.1), then there exists a minimal cone $Y(x, 2^8 r)$ of dimension 3, of type \mathbb{Y} and whose spine passes through 0 and x,

such that

(2.8.3)
$$d_{x,2^8r}(E,Y(x,2^8r)) \le \epsilon_1.$$

We take a point $y \in E_x \cap B(x, 2^7r)$. We have

$$d_{y,2^{7}r}(E, Y(x, 2^{8}r)) \le 2d_{x,2^{8}r}(E, Y(x, 2^{8}r)) \le 2\epsilon_{1}.$$

Then by [D, 16.43], for each
$$\epsilon_2 > 0$$
, we can choose $\epsilon_1 > 0$ such that
(2.8.4) $H^3(E \cap B(y, 2^7 r)) \leq H^3(Y(x, 2^8 r) \cap B(y, (1 + \epsilon_2) 2^7 r)) + \epsilon_2 (2^7 r)^3$
 $\leq d_Y (2^7 r)^3 + C \epsilon_2 (2^7 r)^3,$

which implies

(2.8.5)
$$\theta_E(y, 2^7 r) \le d_Y + C\epsilon_2.$$

So if ϵ_2 is small enough, we have $\theta_E(y) \leq \theta_E(y, 2^7 r) \leq d_Y + C\epsilon_1 < d_T$. So by the classification preceding Lemma 2.2, y can only be of type \mathbb{P} or \mathbb{Y} . We consider two cases.

CASE 1: y is of type \mathbb{Y} . We have $\theta_E(y) = d_Y$. By (2.8.5), $\theta_E(y, 2^7r) - \theta_E(y) \leq C\epsilon_1$. Since E is a minimal set, the function $\theta_E(y, \cdot)$ is nondecreasing, so $0 \leq \theta_E(y,t) - \theta_E(y) \leq C\epsilon_1$ for $0 \leq t \leq 2^7r$. By Lemma 2.4, for each $\epsilon_2 > 0$, we can choose $\epsilon_1 > 0$ such that for each $t \leq 2^4r$, there exists a three-dimensional minimal cone Y(y,t), of type \mathbb{Y} , whose spine passes through 0 and y, and satisfies

$$(2.8.6) d_{y,t}(E, Y(y,t)) \le \epsilon_2.$$

Set $Y_1(y,t) = Y(y,t) \cap H_x$; then $Y_1(y,t)$ is the union of three half-planes of dimension 2 with common boundary a line L'. We see that $L' = L \cap H_x$ where L is the spine of Y(y,t). Since $y \in B(x,2^7r)$ and Y(y,t) is a \mathbb{Y} of dimension 3 whose spine passes through y and 0, there is a two-dimensional minimal cone Y'(y,t) in H_x with the same spine L' such that

(2.8.7)
$$d_{y,1}(Y_1(y,t),Y'(y,t)) \le Cr \le C\epsilon.$$

Now by Lemma 2.5, $d_{y,t/2}(E_x, Y_1(y,t)) \leq 2(1+t)d_{y,t}(E, Y(y,t)) \leq 4\epsilon_2$ for $t \leq 2^4 r$. This fact together with (2.8.7) gives

$$(2.8.8) \quad d_{y,t/4}(E_x, Y'(y,t)) \le 2 \left(d_{y,t/2}(E_x, Y_1(y,t)) + d_{y,t/2}(Y_1(y,t), Y'(y,t)) \right) \\ \le C_1(\epsilon + \epsilon_2)$$

for $t \leq 2^4 r$. Set $\epsilon_3 = C_1(\epsilon + \epsilon_2)$; then by (2.8.8), for each $t \leq 2^4 r/4 = 4r$ and for each \mathbb{Y} -point $y \in E_x \cap B(x, r)$, there is a two-dimensional minimal cone $Y'(y,t) \in H_x$ of type \mathbb{Y} such that

$$(2.8.9) d_{y,t}(E_x, Y'(y,t)) \le \epsilon_3.$$

This is what we need for \mathbb{Y} -points in $E_x \cap B(x, 2^7 r)$. We then note that, for each \mathbb{Y} -point $y \in B(x, 2^7 r)$ and $t \leq 2^4 r$, Y(y, t) is the minimal cone as in (2.8.6), and for $t \leq 4r$, Y'(y, t) is the minimal cone as in (2.8.9). CASE 2: y is of type \mathbb{P} . Here we consider only the case $y \in B(x, r)$. We set $E_Y = \{z \in E_x \cap B(x, 4r) : z \text{ is a } \mathbb{Y}\text{-point}\}$. By the proof of Theorem 2.6, there is a radius $r_y > 0$ such that in the ball $B(y, r_y)$, there are only $\mathbb{P}\text{-points}$ of E; as a consequence, we have $\operatorname{dist}(y, E_Y) > 0$. Set $d = \operatorname{dist}(y, E_Y)$; then $d \leq d(y, x) \leq r$. We take $u \in E_Y$ such that $d(y, u) \leq 11d(y)/10$; then it is clear that $u \in B(x, 2^3r)$.

We take Y(u, 2d(y)) as in (2.8.6) and denote by L the spine of Y'(y, 2d(y)). We want to show that

(2.8.10)
$$\operatorname{dist}(y, L) \ge d(y)/10.$$

Suppose that (2.8.10) does not hold. Then there is a point $w \in L'$ such that d(y,w) < d(y)/10. Next, $d(w,u) \le d(w,y)+d(y,u) \le 11d(y)/10+d(y)/10 \le 3d(y)/2$ and so $B(w,d(y)/10) \subset B(u,2d(y))$. Thus

$$(2.8.11) \qquad d_{w,d(y)/10}(E, Y(u, 2d(y))) \le \frac{2d(y)}{d(y)/10} d_{u,2d(y)}(E, Y(u, 2d(y))) \le 20\epsilon_2.$$

Since w belongs to the spine of Y(u, 2d(y)), we can apply Proposition 2.7 for E and w for $\tau = 1/100$. So we can find $\epsilon_2 > 0$ such that if (2.8.11) holds, then there is a \mathbb{Y} -point ξ of E in the ball B(w, d(y)/100) and then $d(\xi, y) \leq d(\xi, w) + d(w, y) < d(y)/3$. Let ξ' be the intersection of the half-line 0ξ with E_x . Because E is a cone centered at 0 and ξ is a \mathbb{Y} -point, it is clear that $\xi' \in E_Y$ and $d(\xi', y) \leq 2d(\xi, y) < 2d(y)/3$, which is a contradiction. We have thus proved (2.8.10).

Next, since $d_{u,2d(y)}(E, Y(u, 2d(y))) \leq \delta_2$ and $B(y, d(y)/20) \subset B(u, 2d(y))$, by [D, 16.43], for each $\epsilon_4 > 0$ we can find $\epsilon_2 > 0$ such that (2.8.12)

$$\begin{aligned} \theta_E(y, d(y)/20) &= (d(y)/20)^{-3} H^3(E \cap B(y, d(y)/20)) \\ &\leq (d(y)/20)^{-3} [H^3(Y(u, 2d(y)) \cap B(y, (1 + \epsilon_4)d(y)/20)) \\ &+ \epsilon_4(d(y)/20)^3] \end{aligned}$$

$$\leq d_P + C\epsilon_4 = \theta_E(y) + C\epsilon_4.$$

We explain the last line: since $dist(y, L) \geq 11d(y)/10$, it follows that $B(y, (1 + \epsilon_4)d(y)/20)$ does not meet the spine L of Y(u, 2d(y)), so that in the ball $B(y, (1 + \epsilon_4)d(y)/20)$, Y(u, 2d(y)) coincides with a 3-plane P, and then

$$H^{3}(Y(u, 2d(y)) \cap B(y, (1 + \epsilon_{4})d(y)/20)) = H^{3}(P \cap B(y, (1 + \epsilon_{4})d(y)/20))$$

$$\leq d_{P}((1 + \epsilon_{4})d(y)/20)^{3}.$$

Since $\theta_E(y, \cdot)$ is nondecreasing, we deduce from (2.8.12) that (2.8.13) $0 \le \theta_E(y, t) - \theta_E(y) \le C\epsilon_4$ for $t \le d(y)/20$. By Lemma 2.4, for each $\epsilon_5 > 0$, we can choose $\epsilon_4 > 0$ such that if (2.8.13) holds, then there is a 3-plane P(y,t) which passes through 0 and y, such that

(2.8.14)
$$d_{y,t/8}(E, P(y,t)) \le \epsilon_5 \quad \text{for } t \le d(y)/20.$$

If we set P'(y,t) to be the intersection of P(y,t) with H_x , then P'(y,t) is a 2-plane, and satisfies, by Lemma 2.5,

(2.8.15)
$$d_{y,t/16}(E_x, P'(y,t)) \le 4\epsilon_5 \quad \text{for } t \le d(y)/20.$$

Now consider the case when $d(y)/320 \le t \le r$. We keep the same point u as above, that is, $u \in E_Y$ such that $d(u, y) \le 11d(y)/10$. We now have $t + 2d(y) \le 4r$, so we can take the cone Y'(u, t + 2d(y)) as in (2.8.9), thus

$$(2.8.16) \quad d_{y,t}(E_x, Y'(u, t+2d(y))) \\ \leq \frac{t+2d(y)}{t} d_{u,t+2d(y)}(E_x, Y'(u, t+2d(y))) \leq 700\epsilon_3.$$

Now (2.8.9), (2.8.15) and (2.8.16) together show that for each $\epsilon_6 > 0$, we can choose $\epsilon > 0$ such that for each $y \in E_x \cap B(x, r)$ and each $t \leq r$, there is a minimal cone $P'(y, t) \subset H_x$ of dimension 2, of type \mathbb{P} or \mathbb{Y} , such that

$$(2.8.17) d_{y,t}(E_x, Y'(y,t)) \le \epsilon_6.$$

By [DDT, Theorem 1.1], for each $\alpha > 0$, we can find $\epsilon_6 > 0$ such that if (2.8.17) holds, then E_x is bi-Hölder equivalent to a minimal cone of dimension 2, of type \mathbb{Y} , in the ball B(x,r), with Hölder exponent $1 + \alpha$.

Hölder regularity near a point of type \mathbb{T}

THEOREM 2.9. Suppose that x is a point of type \mathbb{T} . Then for each $\alpha > 0$, we can find $\epsilon > 0$ such that if the radius r > 0 satisfies

(2.9.1)
$$\theta_E(x, 2^{14}r) - \theta_E(x) \le \epsilon_1$$

$$(2.9.2) 2^{14}r \le \epsilon,$$

then in the ball B(x,r), E_x is bi-Hölder equivalent to a minimal cone T' of dimension 2, of type \mathbb{T} , in the plane H_x and centered at x.

We note that for each $\epsilon > 0$, we can always find r > 0 which satisfies (2.9.1) and (2.9.2). Our strategy will be the same as in Theorem 2.8: we show that for each $\delta > 0$, we can choose $\epsilon > 0$ such that if (2.9.1) and (2.9.2) hold, then for each $y \in E_x \cap B(x, r)$ and for each $0 < t \leq r$, there exists a two-dimensional minimal cone Z(y, t) in H_x such that $d_{y,t}(E_x, Z(y, t)) \leq \delta$.

Proof of Theorem 2.9. Since $\theta_E(x, \cdot)$ is nondecreasing, we have $0 \leq \theta_E(x,t) - \theta_E(x) \leq \epsilon$ for $0 < t \leq 2^{14}r$. By Lemma 2.4, for each $\epsilon_1 > 0$, we can find $\epsilon > 0$ such that for each $t \leq 2^{11}r$, there exists a three-dimensional minimal cone T(x,t) of type \mathbb{T} , whose spine passes through 0 and x, such

that

$$(2.9.3) d_{x,t}(E,T(x,t)) \le \epsilon_1.$$

Consider a point $y \in E_x \cap B(x, 2^{10}r)$ with $y \neq x$. Set $\eta = 2^{-12}\eta_0/10$, where η_0 is the constant in (1) (before Definition 1.2). Then $(1+2\eta)|x-y| \leq 2^{11}r$ and so we can take the cone $T(x, (1+2\eta)|x-y|)$ to satisfy (2.9.3). Next, since $B(y, \eta |x-y|) \subset B(x, (1+2\eta)|x-y|)$, we have

$$(2.9.4) \quad \begin{array}{l} d_{y,\eta|x-y|}(E,T(x,(1+2\eta)|x-y|)) \\ \leq \frac{(1+2\eta)|x-y|}{\eta|x-y|} d_{x,(1+2\eta)|x-y|}(E,T(x,(1+2\eta)|x-y|)) \leq 2\eta^{-1}\epsilon_1. \end{array}$$

We want to show that

(2.9.5)
$$T(x, (1+2\eta)|x-y|)$$
 coincides with a cone Y_y of type \mathbb{Y} in the ball $B(y, \eta_0|x-y|/10).$

To see this, it suffices to show that

(2.9.6) $T' = T(x, (1+2\eta)|x-y|) \cap H_x$ coincides with a two-dimensional cone of type \mathbb{Y} in $B(y, \eta_0|x-y|/5) \cap H_x$.

But now since the spine of $T(x, (1+2\eta)|x-y|)$ passes through 0 and x, T' is a two-dimensional minimal cone of type \mathbb{T} in H_x and centered at x. So by the same arguments as in [D, (16.61)], we have (2.9.6), and hence (2.9.5).

Now (2.9.4) gives us

(2.9.7)
$$d_{y,\eta|x-y|}(E,Y_y) \le 2\eta^{-1}\epsilon_1.$$

By the same arguments as for (2.8.4), for each $\epsilon_2 > 0$ we can find $\epsilon_1 > 0$ such that if (2.9.7) holds, then

(2.9.8)
$$\theta_E(y) \le \theta_E(y, \eta |x-y|/2) \le d_Y + C\epsilon_2.$$

So if we take ϵ_2 small enough, we have, for each $y \in E_x \cap B(x, 2^{10}r)$ and $y \neq x, \theta_E(y) \leq d_Y + C\epsilon_2 < d_T$, and hence y can only be a point of type \mathbb{P} or \mathbb{Y} . Since E is a cone centered at the origin, each $z \in E \cap B(x, 2^9r)$ with $z \neq x$ can only be a point of type \mathbb{P} or \mathbb{Y} . We consider two cases.

CASE 1: y is of type \mathbb{Y} . By (2.9.7), $\theta_E(y,\eta|x-y|/2) \leq d_Y + C\epsilon_2 = \theta_E(y) + C\epsilon_2$. As $\theta_E(y,\cdot)$ is nondecreasing, we have $\theta_E(y,t) \leq \theta_E(y) + C\epsilon_2$ for $0 < t \leq \eta |x-y|/2$. By Lemma 2.4, for each $\epsilon_3 > 0$, we can find $\epsilon_2 > 0$ such that there exists a three-dimensional minimal cone Y(y,t) of type \mathbb{Y} , whose spine passes through 0 and y, such that

(2.9.9)
$$d_{y,t}(E, Y(y, t)) \le \epsilon_3 \quad \text{for } 0 < t \le \eta |x - y|/16.$$

Set $Y_1(y,t) = Y(y,t) \cap H_x$; then $Y_1(y,t)$ is a two-dimensional cone centered at y in the plane H_x . Since E and Y(y,t) are cones centered at 0, by Lemma 2.5,

(2.9.10)
$$d_{y,t/2}(E_x, Y_1(y,t)) \le 4\epsilon_3 \text{ for } 0 < t \le \eta |x-y|/16.$$

242

Next, since Y(y, t) is a three-dimensional minimal cone of type \mathbb{Y} whose spine passes through 0 and y, and $y \in B(x, 2^{10}r)$, there exists a two-dimensional minimal cone $Y'(y,t) \subset H_x$ of type \mathbb{Y} centered at y such that

(2.9.11)
$$d_{y,1}(Y_1(y,t),Y'(y,t)) \le Cr.$$

By (2.9.10) and (2.9.11) we have

$$(2.9.12) \quad d_{y,t/4}(E_x, Y'(y,t)) \le 2[d_{y,t/2}(E_x, Y_1(y,t)) + d_{y,t/2}(Y_1(y,t), Y'(y,t))] \\ \le 2(4\epsilon_3 + Cr) \le C_1(\epsilon_3 + \epsilon)$$

for $0 < t \le \eta |x - y| / 16$.

We consider the case when $r \ge t \ge \eta |x - y|/64$, and we only consider $y \in B(x,r)$ in this case. By (2.9.3), we can take the cone T(x, 2(t + |x - y|)) whose spine is 0x and which satisfies $d_{x,2(t+|x-y|)}(E, T(x, 2(t+|x-y|))) \le \epsilon_1$. Set $T'(x, 2(t+|x-y|)) = H_x \cap T(x, 2(t+|x-y|))$. Then T'(x, 2(t+|x-y|)) is a two-dimensional minimal cone of type T. By Lemma 2.5,

(2.9.13)
$$d_{x,t+|x-y|}(E_x, T'(x, 2(t+|x-y|))) \le 4\epsilon_1.$$

Since $B(y,t) \subset B(x,t+|x-y|)$, we have

$$(2.9.14) \quad d_{y,t}(E_x, T'(x, t+\rho(y))) \le \frac{t+\rho(y)}{t} d_{x,t+\rho(y)}(E_x, T'(x, t+\rho(y))) \\ \le \frac{t+|x-y|}{t} 4\epsilon_1 \le \frac{2^{10}}{\eta} \epsilon_1.$$

From (2.9.12) and (2.9.14), for $y \in B(x,r)$ and $0 < t \leq r$, there exists a two-dimensional minimal cone $Z'(y,t) \subset H_x$ of type \mathbb{Y} or \mathbb{T} such that

$$(2.9.15) d_{y,t}(E_x, Z'(y,t)) \le \epsilon_4,$$

with $\epsilon_4 = \max\{C_1(\epsilon_3 + \epsilon), (2^{10}/\eta)\epsilon_1\}.$

CASE 2: y is of type \mathbb{P} . Recall that each $z \in E_x \cap B(x, 2^{10}r), z \neq x$, can only be of type \mathbb{P} or \mathbb{Y} . Let E_Y be the set of \mathbb{Y} -points of E in B(x, 4r), and $d = \min\{\operatorname{dist}(y, E_Y), |x - y|\}.$

We have two subcases:

SUBCASE 1: $d > \eta |x - y|$. Let T_2 be the union of the 2-faces of T(x, 2|x - y|). We want to show that

(2.9.16)
$$\operatorname{dist}(y, T_2) > d/10.$$

Otherwise there is a 2-face L of T(x, 2|x-y|) (see the definition of d-face prior to Definition 1.2) and a point $z \in L$ such that $d(y, z) = \operatorname{dist}(y, L) < d/10$. Next, |z-x| > |x-y| - d/10 > |x-y|/2 and so $\operatorname{dist}(z, 0x) > \operatorname{dist}(y, 0x) - d/10 > |x-y|/2$. By the same argument as for (2.9.5), in the ball $B(z, \eta d/2)$, T(x, 2|x-y|) coincides with a three-dimensional minimal cone Y_z of type \mathbb{Y} and whose spine passes through 0 and z. In addition

(2.9.17)
$$d_{z,\eta d/2}(E,Y_z) \le \frac{2|x-y|}{\eta d/2} d_{x,2|x-y|}(E,T(x,2|x-y|)) \le \frac{4}{\eta^2} \epsilon_1.$$

By Proposition 2.7, we can choose ϵ_1 small enough such that if (2.9.17) holds, there exists a \mathbb{Y} -point $z' \in B(z, \eta d/4)$. We deduce that $d(y, z') \leq d(y, z) + d(z, z') < d/5$. But $z' \in E_Y$, a contradiction. Hence (2.9.16) holds.

Now since dist $(y, 0x) \ge d$ and dist $(y, T_2) > d/10$, by a simple geometrical argument, in $B(y, \eta d), T(x, 2|x-y|)$ coincides with a 3-plane P_y whose spine passes through 0 and x. In fact, P_y is the 3-face of T(x, 2|x-y|) which is nearest to y. Since $B(y, \eta d) \subset B(x, 2|x-y|)$, we obtain

(2.9.18)
$$d_{y,\eta d}(E, P_y) \le \frac{2|x-y|}{\eta d} d_{x,2|x-y|}(E, T(x, 2|x-y|)) \le \frac{2}{\eta^2} \epsilon_1.$$

By [D, 16.43], for each $\epsilon_5 > 0$, we can find $\epsilon_1 > 0$ such that if (2.9.18) holds, then $\theta_E(y, \eta d/2) \leq d_P + \epsilon_5$. Since *E* is a minimal cone, $\theta_E(y, t) \leq d_P + \epsilon_5$ for $0 < t \leq \eta d/2$. By Lemma 2.4, for each $\epsilon_6 > 0$, we can find $\epsilon_5 > 0$ such that there exists a 3-plane P(y, t) which passes through 0 and *y*, such that

(2.9.19)
$$d_{y,t/8}(E, P(y,t)) \le \epsilon_6 \text{ for } 0 < t \le \eta d/2.$$

By Lemma 2.5, the 2-plane $P'(y,t) = P(y,t) \cap H_x$ satisfies

$$(2.9.20) \quad d_{y,t/16}(E_x, P'(y,t)) \le 4d_{y,t/8}(E, P(y,t)) \le 4\epsilon_6 \quad \text{for } t \le \eta d/2.$$

For $|x - y|/2 \ge t > \eta d/32$, let $T'(x, 2|x - y|) = H_x \cap T(x, 2|x - y|)$. Then T'(x, 2|x - y|) is a two-dimensional minimal cone of type \mathbb{T} in H_x and centered at x. By Lemma 2.5, we have $d_{x,|x-y|}(E_x, T'(x, 2|x - y|)) \le 4\epsilon_1$. Since $B(y, t) \subset B(x, |x - y|)$, we obtain

$$(2.9.21) \quad d_{y,t}(E_x, T'(x, 2|x-y|)) \le \frac{|x-y|}{t} d_{x,|x-y|}(E_x, T'(x, 2|x-y|)) \\ \le \frac{128}{\eta^2} \epsilon_1.$$

For $r \ge t > |x - y|/2$, we set $T'(x, 2t + |x - y|) = T(x, 2t + |x - y|) \cap H_x$. Then T'(x, 2t + |x - y|) is a two-dimensional minimal cone of type \mathbb{T} in H_x . As above, we have $d_{x,t+|x-y|/2}(E_x, T'(x, 2t + |x - y|)) \le 4\epsilon_1$. Since $B(y,t) \subset B(x,t+|x-y|/2)$, we obtain

(2.9.22)
$$d_{y,t}(E_x, T'(x, 2t + |x - y|))$$

$$\leq \frac{t + |x - y|/2}{t} d_{x,t+|x-y|/2}(E_x, T'(x, 2t + |x - y|)) \leq 8\epsilon_1/\eta.$$

Now (2.9.20)–(2.9.22) are all that we need for Subcase 1.

SUBCASE 2: $d \leq \eta |x-y|$. By definition of E_Y , there exists a \mathbb{Y} -point such that d(y,z) < 2d. This implies $z \in B(x,3|x-y|/2)$ and d(z,x) > |x-y|/2 and $\operatorname{dist}(z,0x) > \operatorname{dist}(y,0x) - 2d > |x-y|/2$. By the same arguments as

for (2.9.5), T(x, 2|x - y|) coincides with a three-dimensional minimal cone Y_z of type \mathbb{Y} in $B(z, 2^{12}\eta|x - y|)$. This is clear that the spine of Y_z passes through 0. Since $B(z, 2^{12}\eta|x - y|) \subset B(x, 2|x - y|)$, we have

$$(2.9.23) d_{z,2^{12}\eta|x-y|}(E,Y_z) = d_{z,2^{12}\eta|x-y|}(E,T(x,2|x-y|)) \leq \frac{2|x-y|}{2^{12}\eta|x-y|} d_{x,2|x-y|}(E,T(x,2|x-y|)) \leq \frac{1}{2^{11}\eta}\epsilon_1.$$

Since z is a \mathbb{Y} -point, by [D, 16.43], for each $\epsilon_7 > 0$, we can find $\epsilon_1 > 0$ such that if (2.9.23) holds then

(2.9.24)
$$\theta_E(x, 2^{11}\eta | x - y|) - \theta_E(z) \le \epsilon_7.$$

In addition

(2.9.25)
$$2^{12}\eta |x-y| \le r \le \epsilon.$$

We see that (2.9.24) and (2.9.25) are the hypotheses of Theorem 2.8, with radius $\eta |x-y|$ and with constant $\epsilon_8 = \max\{\epsilon, \epsilon_1\}$. As in the proof of Theorem 2.8, for each $\epsilon_9 > 0$, we can find $\epsilon_8 > 0$ such that for $t \leq 2\eta |x-y|$, there is a two-dimensional minimal cone $Y'(y,t) \subset H_x$ of type \mathbb{P} or \mathbb{Y} such that

$$(2.9.26) d_{y,t}(E_x, Y'(y,t)) \le \epsilon_9.$$

The case $r \ge t > 2\eta |x - y|$ is the same as (2.9.22). We now have all that we need for Subcase 2.

Now we can conclude that, for each $\epsilon_{10} > 0$, we can find $\epsilon > 0$ such that for $y \in E_x \cap B(x, r)$ and for $t \leq r$, there exists a two-dimensional minimal cone $Y'(y,t) \subset H_x$ such that $d_{y,t}(E_x, Y'(y,t)) \leq \epsilon_{10}$. By [DDT, 2.2], for each $\alpha > 0$, we can find $\epsilon > 0$ such that if (2.9.1) and (2.9.2) hold, then B(x,r)is a Hölder ball of type \mathbb{T} for E_x , with exponent $1 + \alpha$.

Acknowledgments. I wish to thank Guy David for a number of helpful suggestions on this paper.

References

- [Al] F. J. Almgren, Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. (2) 84 (1966), 277–292.
- [D] G. David, Hölder regularity of two-dimensional almost-minimal sets in \mathbb{R}^n , Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), 65–246.
- [DDT] G. David, T. De Pauw, and T. Toro, A generalization of Reifenberg's theorem in ℝ³, Geom. Funct. Anal. 18 (2008), 1168–1235.
- [He] A. Heppes, Isogonale sphärische Netze, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 7 (1964), 41–48.
- [Tay] J. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103 (1976), 489–539.

T. D. Luu

Tien Duc Luu Département de Mathématiques Bât. 425 Université Paris-Sud XI 91405 Orsay Cedex, France E-mail: luutienduc@gmail.com

> Received 4.5.2012 and in final form 27.12.2012

(2787)

246