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Hölder regularity of three-dimensional minimal cones in Rn

by Tien Duc Luu (Orsay)

Abstract. We show the local Hölder regularity of Almgren minimal cones of dimen-
sion 3 in Rn away from their centers. The proof is almost elementary but we use the
generalized theorem of Reifenberg. In the proof, we give a classification of points away
from the center of a minimal cone of dimension 3 in Rn, into types P, Y and T. We then
treat each case separately and give a local Hölder parameterization of the cone.

1. Introduction. In this paper, we prove Hölder regularity for three-
dimensionalminimal cones inRn.This is a continuationof [D] inwhichG.David
proved the Hölder regularity for two-dimensional almost minimal sets in Rn.
The structure of two-dimensional minimal cones in Rn is quite clear now, as
in [D], G. David has classified them into three types: P,Y andT (see Section 15
of [D] for the definition). For nowwe do not know yet the list of cones of typeT.
For three-dimensional minimal cones, Almgren [Al] has showed that any cone
of dimension 3 in R4, centered at the origin and over a smooth surface of S3,
must be a 3-plane. But for three-dimensional minimal cones in general, the
structure of their singularities is still unclear. This paper is a first step towards
understanding this structure, and we hope it may help to study the structure
of singularities of three-dimensional minimal sets in R4.

Let us first give the definition of Almgren minimal sets of dimension d
in Rn.

Definition 1.1. Let E be a closed set in Rn and d ≤ n−1 be an integer.
An Almgren competitor (Al-competitor) for E is a closed set F ⊂ Rn that
can be written as F = ϕ(E), where ϕ : Rn → Rn is a Lipschitz mapping
such that Wϕ = {x ∈ Rn; ϕ(x) 6= x} is bounded.

An Al-minimal set of dimension d in Rn is a closed set E ⊂ Rn such that
Hd(E ∩B(0, R)) <∞ for every R > 0 and

Hd(E \ F ) ≤ Hd(F \ E)

for every Al-competitor F for E.
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Even if we think that the applications will be essentially in R4, we shall
treat the problem in the general case of Rn. So we need the following de-
scriptions of cones of type P,Y or T of dimension d in Rn [DDT].

We denote by P the collection of d-dimensional affine planes, which we
shall also call cones of type P.

We next define the collection Y of cones of type Y. We take a propeller Y
in a plane, which is the union of three half-lines with the same endpoint 0
and that make 120◦ angles at 0. We obtain a first set of type Y as the product
Y0 = Y ×V , where V is a (d−1)-dimensional vector space that is orthogonal
to the plane that contains Y . We shall call V the spine of Y0. Finally, Y is
the collection of sets Y of the form Y = j(Y0), where j is an isometry of Rn.
The spine of Y is the image under j of the spine of Y0.

We now define the collection T of sets of type T. The set T will be the
collection of sets T = g(T0 × V ), where T0 lies in a set T0 of 2-dimensional
cones in Rn−d+2 and V is the (d−2)-plane orthogonal to Rn−d+2 in Rn, and
g is an isometry of Rn.

Each T0 ∈ T0 will be the cone over a set K ⊂ ∂B(0, 1), with the following
properties. First, K =

⋃
j∈J Cj is a finite union of great circles, or closed

arcs of great circles. Denote by Q the collection of extremities of the arcs Cj ,
j ∈ J ; each point y ∈ Q lies in exactly three Cj , y is an endpoint for each
such Cj , and the three Cj make 120◦ angles at y. The Cj can only meet at
their endpoints (and hence the full arcs of circles are disjoint from the rest
of K). In addition, we choose a small constant η0 > 0, which depends only
on n, such that

(1) H1(Cj) ≥ η0 for j ∈ J,

and if y ∈ Ci and dist(y, Cj) ≤ η0 for some other j, then Ci and Cj have a
common extremity in B(y,dist(y, Cj)). Finally, we exclude the case when T
is a plane or a set of type Y.

For a set T ∈ T as above, denote by Ĉj , j ∈ J , the cone over Cj . Then
we call g(Ĉj×V ), j ∈ J , the d-faces of T . We call the sets g(0y×V ), y ∈ Q,
the (d− 1)-faces of Q. We call g(V ) the spine of T .

Finally, we set Z = P ∪ Y ∪ T .
Note that the cones of type T are not all minimal, but they are good

enough to apply the generalized Reifenberg theorems [DDT, 1.1 and 2.2].
Although we give the descriptions for all dimensions, we need mostly the

cases d = 2 and d = 3. Moreover, in [D, Section 14], G. David classifies the
two-dimensional minimal cones in Rn into types P, Y and T described above,
with a suitable choice of η0 for cones of type T.

We can now give the definition of a Hölder ball for a set E ⊂ Rn.
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Definition 1.2. Let E be a closed set in Rn. Suppose that 0 ∈ E. We
say that B(0, r) is a Hölder ball of type P, Y or T with exponent 1+α if there
exist a homeomorphism f : Rn → Rn and a minimal cone Y of dimension d,
centered at the origin, of type P,Y or T, respectively, such that

(1.2.1) |f(x)− x| ≤ αr for x ∈ B(0, r),

(1.2.2) (1− α)[|x− y|/r]1+α ≤ |f(x)− f(y)|/r
≤ (1 + α)[|x− y|/r]1−α for x, y ∈ B(0, r),

(1.2.3) E ∩B(0, (1− α)r) ⊂ f(Y ∩B(0, r)) ⊂ E ∩B(0, (1 + α)r).

We then also say that E is bi-Hölder equivalent to Y inB(0, r), with exponent
1 + α.

Our main theorem is the following.

Theorem 1. Let E be an Al-minimal cone of dimension 3 in Rn and
x ∈ E∩B(0, 1). Let H be the tangent plane to ∂B(0, 1) at x and E′ = E∩H.
Then for each α > 0, there exists r > 0, which depends on x, such that
B(x, r) is a Hölder ball of type P, Y or T for E′ in H, with exponent 1 + α.

Our strategy is the following: for each y ∈ B(x, r) and each radius t such
that B(y, t) ⊂ B(x, r), we shall find a minimal cone Y of dimension 2 in H
such that dy,t(E′, Y ) ≤ ε (see the beginning of Section 2 for the definition),
where ε > 0 depends on the exponent 1+α. We shall then use the generalized
theorem of Reifenberg [DDT, 1.1 and 2.2] to conclude that E′ is bi-Hölder
equivalent to a two-dimensional minimal cone in H, with exponent 1 + α.

2. Proof of Theorem 1. Let us give a list of notations that we shall
use in this paper.
• Hd is the d-dimensional Hausdorff measure.
• θA(x, r) = Hd(A∩B(x, r))/rd, where A ⊂ Rn is an Hd-measurable set

and x ∈ A.
• θA(x) = limr→0 θA(x, r) is called the density of A at x, if the limit

exists and is finite.
• Local Hausdorff distance dH(E,F ). Let E,F ⊂ Rn be closed sets and

H ⊂ Rn be a compact set. We define

dH(E,F ) = sup{dist(x, F ); x ∈ E ∩H}+ sup{dist(x,E); x ∈ F ∩H},
when E ∩ H and F ∩ H are not empty. We use the convention that
sup{dist(x, F ); x ∈ E ∩H} = 0 when E ∩H is empty.

We also define

dx,r(E,F ) =
1
r sup{dist(z, F ); z ∈ E ∩B(x, r)}
+ sup{dist(z, E); z ∈ F ∩B(x, r)},

where E,F are closed sets which meet B(x, r).
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• Convergence of a sequence of sets. Let U ⊂ Rn be an open set, {Ek}∞k=1
be a sequence of closed sets in U , and E ⊂ U . We say that {Ek} converges
to E in U , and we write limk→∞Ek = E, if for each compact H ⊂ U ,

lim
k→∞

dH(Ek, E) = 0.

• Blow-up limit. Let E ⊂ Rn be a closed set and x ∈ E. A blow-up limit
F of E at x is defined as

F = lim
k→∞

E − x
rk

,

where {rk} is any sequence of positive numbers such that limk→∞ rk = 0
and the limit exists in Rn.

For two points a, b ∈ Rn, we denote by ab the line passing through a
and b, and by ~ab the half-line through a and b with starting point a.

Now we fix an Al-minimal cone E ⊂ Rn of dimension 3, centered at 0,
and x ∈ E ∩ ∂B(0, 1). For each y ∈ E ∩ ∂B(0, 1), we denote by Hy the
tangent plane to ∂B(0, 1) at y and write Ey = E ∩ Hy. For simplicity, we
set Hx = H. Note that since E is minimal, the density θE(y) always exists
for all y ∈ E.

Lemma 2.1. Each blow-up limit of E at x is of the form F = F ′ × 0x,
where F ′ is a two-dimensional Al-minimal cone in H and 0x denotes the line
from 0 through x.

Proof. Let F be a blow-up limit of E at x. Then F = limk→∞(E−x)/rk
with limk→∞ rk = 0. Let y ∈ F . We want to show that y + 0x ⊂ F . Setting
Ek = (E − x)/rk, as {Ek} converges to F , we can find points yk ∈ Ek such
that {yk}∞k=1 converges to y. Set zk = rkyk + x; then zk ∈ E by definition
of Ek, and zk converges to x because rk converges to 0. We fix λ ∈ R and
we set vk = (1+ λrk)zk. Then vk ∈ E as E is a cone centered at 0. We have
wk = r−1k (vk − x) ∈ Ek. On the other hand,

wk = r−1k ((1 + λrk)zk − x) = r−1k ((1 + λrk)(rkyk + x)− x)
= r−1k (rkyk + λr2kyk + λrkx) = yk + λx+ λrkyk,

and we see that limk→∞wk = y + λx. As {Ek} converges to F , we see that
y + λx ∈ F . Now for each y ∈ F and λ ∈ R, we have y + λx ∈ F , which
implies that F = F ′× 0x with F ′ ⊂ F ∩H. Next, as E is a minimal set and
F is a blow-up limit of E at x, by [D, 7.31], F is a minimal cone centered
at 0. But F = F ′ × 0x, so by [D, 8.3], F ′ is a minimal cone in H, centered
at x.

By [D, Section 14], F ′ is of type P, Y or T as above. Note that the
classification of two-dimensional minimal cones in R3 was established earlier
(see [He] and [Tay]). Now, since F = F ′ × R, F is also a cone of type P, Y
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or T of dimension 3 in Rn. If F is of type P, we set θF (0) = dP , which is
the Hausdorff measure of the three-dimensional unit ball. If F is of type Y,
we set θF (0) = dY , which is the density at any point of the spine of a Y of
dimension 3. Otherwise F is of type T, and we deduce from [D, Section 14]
that there exists a constant dT > dY , which depends only on n, such that
θF (0) ≥ dT . Now by [D, 7.31], θE(x) = θF (0), so we call the point x ∈
E ∩ ∂B(0, 1) of type P if θE(x) = dP , of type Y if θE(x) = dY , and finally
of type T if θE(x) = θF (0) ≥ dT .

Lemma 2.2. For each ε > 0, we can find rx > 0 such that if r ≤ rx,
then there is a three-dimensional minimal cone F (x, r) of type P, Y or T,
and whose spine passes through 0 and x, such that

dx,r(E,F (x, r)) ≤ ε.
Proof. Suppose that the lemma fails; then there is a sequence {rk}; con-

verging to 0 and such that for each minimal cone F as above,

(2.2.1) dx,rk(E,F ) > ε.

Set Ek = (E − x)/rk; without loss of generality, we may assume that {Ek}
converges in Rn; set limk→∞Ek =M .

Since M is a blow-up limit of E at x, by Lemma 2.1, M = M ′ × Dx

where M ′ is a two-dimensional minimal cone in H centered at x, and Dx is
the line 0x. So M is a three-dimensional minimal cone of type P, Y or T,
whose spine passes through 0 and x. Since {Ek} converges toM , there exists
k > 0 such that d0,1(Ek,M) ≤ ε. This means that dx,rk(E, x+M) ≤ ε. But
M =M ′×Dx, so M = x+M and hence dx,rk(E,M) ≤ ε, which contradicts
(2.2.1).

Lemma 2.3. For each δ > 0, we can find ε > 0 with the following prop-
erties:

Let R be a radius. Let I ∈ Rn with d(0, I) > 100R and C be a minimal
cone of dimension 3 centered at I with the property that for each y ∈ C ∩
B(I,R) and each y′ ∈ 0y ∩B(I,R), there exists z′ ∈ C such that

(2.3.1) d(y′, z′) < εR.

Then there exists a three-dimensional minimal cone YC , of type P, Y or T,
whose spine contains 0 and I, such that dI,R/2(C, YC) ≤ δ.

Proof. Suppose that the lemma fails. By homogeneity, we can fix I such
that d(0, I) = 1000. Then there exist a sequence εk → 0, radii Rk < 10 and
minimal cones Ck centered at I such that each Ck satisfies the hypothesis
corresponding to εk in the ball B(I,Rk) but does not satisfy the conclusion.
That is, for each minimal cone Y as above, dI,1(Ci, Y ) > δ. Now we can
find a subsequence {Cij}∞j=1 which converges to a set E. Since each Cij is a
minimal cone centered at I, so is E. We shall show that
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Fig. 1. Minimal cone C

(2.3.2) E is a three-dimensional minimal cone of type P, Y or T whose spine
contains 0 and I.

We consider two cases.

Case 1: lim supj→∞Rij > 0. In that case, without loss of generality, we
may assume that Rij = 1 for all j. Now take u ∈ E ∩ B(I, 1/2); as {Cij}
converges to E, there exist uij ∈ Cij , j ≥ 1, such that {uij} converges to u.

If u′ ∈ 0u ∩ B(I, 1/2), we take y′ik ∈ 0uik such that |0y′ik |/|0uik | =
|0u′|/|0u|, where |AB| denotes the length of the segment AB. Then |y′iku

′| =
(|0u′|/|0u|).|uiku|, by Thales’ theorem, and we deduce that limj→∞ y

′
ij
= u′.

But for each j, there exists u′ij ∈ Cij such that d(u′ij , y
′
ij
) < εij , by (2.3.1).

So {u′ij} converges to u
′ and thus u′ ∈ E. Now

(2.3.3) 0u ∩B(I, 1/2) ⊂ E for each u ∈ E ∩B(I, 1/2).

In particular 0I ∩B(I, 1/2) ⊂ E.
In addition, E is a cone centered at I, so ~Iu ⊂ E, where ~Iu denotes the

half-line from I and passing through u. Now if u does not lie on the line 0I,
let u1 ∈ P ∩ B(I, 1/2), where P is the open half-plane with boundary 0I
and containing u. We take u2 ∈ [Iu1], where [AB] denotes the segment with
endpoints A and B, which is close to I so that the half-line ~0u2 intersects
the segment [Iu]. Set u3 = ~0u2∩ [Iu]; then u3 ∈ E since E is a cone centered
at I and u ∈ E. By (2.3.3), u2 ∈ 0u3 ∩ B(I, 1/2) belongs to E too. Finally,
we use the fact that E is a cone centered at I to conclude that u1 ∈ E.

So for each u ∈ E∩B(I, 1/2)\0I, we have P ∩B(I, 1/2) ⊂ E, where P is
the open half-plane with boundary 0I containing u. Since E is closed, we also
have 0I ⊂ E. We deduce that E = E′ × 0I, where E′ is a two-dimensional
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set in the hyperplane orthogonal to 0I and passing through I. Since E is a
minimal cone centered at I, so is E′, by [D, 8.3]. Since E′ is a two-dimensinal
minimal cone, by [D, Section 14], E′ is of type P, Y or T and so is E, as
E = E′ × 0I. We thus have (2.3.2) in this case.

Case 2: lim supj→∞Rij = 0. In this case we want to show that

(2.3.4) for each u ∈ E∩B(I, 1/2)\0I, we have B(u, |Iu|/4)∩ lu ⊂ E, where
lu is the line passing through u and parallel to 0I.

Indeed, we take a sequence {uij ∈ Cij} which converges to u as above. Let
u′ij = 0uij ∩B(I,Rij/2). Then by (2.3.1), for each z ∈ 0u′ij ∩B(u′ij , Rij/4),
there exists w ∈ Cij such that d(z, w) ≤ εijRij . Let luij be the line pass-
ing through uij and parallel to 0u′ij . Since Cij is a cone centered at I, by
homothety for each z′ ∈ luij ∩ B(uij , |Iuij |/2), there exists w′ ∈ Cij such
that

(2.3.5) d(z′, w′) ≤ εij |Iuij | ≤ εij .

Since lim supj→∞Rij = 0, the lines luij converge to the line lu in Rn. Next,
if j is large enough, then B(u, |Iu|/4) ⊂ B(uij , |Iuij |/2), and so for each
v ∈ B(u, |Iu|/4)∩ lu, there exists a sequence vij ∈ Cij which converges to v.
We deduce v ∈ E and we have (2.3.4).

Now for each u ∈ E ∩ B(I, 1/2) \ 0I, by repeating this argument for
the two endpoints of the segment B(u, |Iu|/4) ∩ lu, we can conclude that
lu ∩B(I, 1/2) ⊂ E. We want to show next that

(2.3.6) lu ⊂ E.

For this, take any point v ∈ lu. Let v′ = Iv ∩ B(I, 1/4) and let u′ ∈ Iu be
such that the line u′v′ is parallel to lu. Clearly v′ ∈ lu′ ∩ B(I, 1/2), where
lu′ is defined just as lu, and u′ ∈ E since E is the cone centered at I. So by
(2.3.4), v′ ∈ E and hence v ∈ E, so that (2.3.6) follows.

Since E is closed, we deduce that 0I ⊂ E; together with (2.3.6) we then
see that E is of the form E = E′ × 0I, where E′ is a two-dimensional set
in the hyperplane orthogonal to 0I and passing through I. By the same
arguments as above, we deduce that E is a three-dimensional minimal cone
of type P, Y or T whose spine contains 0I. We also have (2.3.2) in this case.

As limj→∞Cij = E, there exists an integer l > 0 such that dI,1(Cil , E)
< δ/2, which is a contradiction as E is a minimal cone of type P, Y or T
whose spine contains 0I.

We now want to use Lemma 2.3 to control the distance in the ball B(x, r)
between E and a three-dimensional minimal cone C(x, r) of type P, Y or T
whose spine passes through 0 and x.
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Lemma 2.4. For each δ > 0, we can find ε > 0 such that the following
properties hold. Suppose that 0 < r < 1/100 satisfies

(2.4.1) |θE(x, r)− θE(x)| ≤ ε;
then there exists a minimal cone Y of dimension 3, of type P, Y or T and
whose spine contains 0 and x, such that dx,r/8(E, Y ) ≤ δ. In addition, the
type of Y is exactly the type of x.

Proof. By [D, 7.1], for each ε1 > 0 very small, to be chosen later, we can
find ε > 0 such that if (2.4.1) holds then there exists a minimal cone C of
dimension 3 centered at x, such that

(2.4.2) dx,r/2(E,C) ≤ ε1.
We now check the conditions of Lemma 2.3 for the cone C.

Since dx,r/2(E,C) ≤ ε1, whenever z ∈ C ∩ B(x, r/3), there exists y ∈
E∩B(x, r/2) such that d(z, y) ≤ ε1r/2. Because E is a cone centered at 0, the
half-line 0y lies in E. Now if z′ ∈ 0z ∩B(x, r/3), take the point y′ ∈ 0y such
that y′z′ is parallel to yz; then d(y′, z′) ≤ ε1r, and clearly y′ ∈ E∩B(x, r/2).
By (2.4.2), there exists u ∈ C such that d(u, y′) ≤ ε1r. Then d(z′, u) ≤ 2ε1r.
So the cone C satisfies the assumptions of Lemma 2.3 with radius r/3 and
with constant 8ε1; here x stands for I. Lemma 2.3 shows that for each ε2 > 0,
we can find ε1 > 0 such that there exists a three-dimensional minimal cone Y ,
of type P, Y or T, whose spine passes through 0 and x, such that

(2.4.3) dx,r/4(C, Y ) ≤ ε2.
From (2.4.2) and (2.4.3) we have

dx,r/8(E, Y ) ≤ 2(dx,r/4(E,C) + dx,r/4(C, Y )) ≤ 2(2ε1 + ε2)(2.4.4)

= 4ε1 + 2ε2.

For each δ > 0, we can find ε > 0 such that 4ε1 + 2ε2 ≤ δ. So from (2.4.4)
we have dx,r/8(E, Y ) ≤ δ, which we wanted to prove.

Lemma 2.5. Let C and C1 be two cones centered at 0, and ε > 0 be a
small constant. Let r ≤ 1/100 be a small radius, y ∈ C ∩∂B(0, 1) and Hy be
the hyperplane which is tangent to ∂B(0, 1) at y, C ′ = C∩Hy, C ′1 = C1∩Hy.
If z ∈ C ∩B(y, r/2) ∩Hy and t ≤ r are such that dz,t(C,C1) ≤ ε, then

dz,t/2(C
′, C ′1) ≤ 2(1 + r)ε.

Proof. For each w ∈ C ′ ∩ B(z, t/2), there exists w′1 ∈ C1 ∩ B(y, r) such
that d(w,w′1) ≤ εt since dz,t(C,C1) ≤ ε. Now let w1 be the intersection of the
half-line 0w′1 with Hy. Then w1 ∈ C1 ∩Hy. We shall estimate the distance
d(w,w1). By the triangular inequality, we have

d(w,w1) ≤
d(w,w′1)

sin(ŵw1w′1)
=

d(w,w′1)

sin(ŵw10)
;
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here x̂yz ∈ [0, π[, where x, y, x are points in Rn, denotes the angle between
the half-lines yx and yz. Next,

sin(ŵw10) =
dist(0, ww1)

d(0, w1)
≥ 1

1 + r
,

since dist(0, ww1) ≥ dist(0, Hy) = 1 and d(0, w1) ≤ d(0, y)+d(y, w1) ≤ 1+r.
So d(w,w1) ≤ (1 + r)εt for each w ∈ C ′ ∩ B(z, t/2), and it is clear that

w1 ∈ B(z, t). By the same arguments, for each w1 ∈ C ′1 ∩ B(z, t/2), there
exists w ∈ C ′ ∩B(z′, t) such that d(w1, w) ≤ (1 + r)εt.

We shall now prove Theorem 1. We consider three cases: where x is of
type P, Y or T.

Hölder regularity near a point of type P

Theorem 2.6. Suppose that x is a point of type P. Then for each τ > 0,
we can find ε > 0 such that if the radius r > 0 satisfies

(2.6.1) θE(x, 2
8r)− θE(x) ≤ ε,

then B(x, r) is a Hölder ball for Ex, with exponent 1 + τ .

We remark first that for each ε > 0, we can find r > 0 such that (2.6.1)
holds. Our ε does not depend on x, just on τ .

Proof of Theorem 2.6. The main idea is to show that for y ∈ Ex∩B(x, r)
and t ≤ r, we can find a 2-plane P ′(y, t) in H such that dy,t(Ex, P ′(y, t)) ≤ δ,
where δ is a very small constant, to be chosen later. Then we can use [DDT,
Theorem 1.1] to conclude that for each τ > 0, we can find δ > 0 such that
Ex is bi-Hölder equivalent to a 2-plane in B(x, r).

Now we start the proof. By Lemma 2.4, for each δ > 0 very small, to be
chosen later, we can find ε > 0 such that if (x, r) satisfies (2.6.1), then there
exists a 3-plane P which passes through 0 and x, such that

(2.6.2) dx,25r(E,P ) ≤ δ.
Consider a point y ∈ Ex ∩B(x, r). By [D, 16.43], for each δ1 > 0 very small,
we can choose δ > 0 such that if (2.6.2) holds for δ, then

H3(E ∩B(y, 24r)) ≤ H3(P ∩B(y, (1 + δ1)2
4r)) + δ1(2

4r)3(2.6.3)

≤ dP ((1 + δ1)2
4r)3 + δ1(2

4r)3.

We deduce that θE(y, 24r)− dP ≤ δ1 or θE(y, 24r) ≤ dP + δ1. But we know
that θE(y) = dP , dY or dT and by [D, 5.16], θE(y, ·) is a nondecreasing
function. So if δ1 is small enough, we have θE(y) = dP . Since θE(y, ·) is
nondecreasing, dP ≤ θE(y, t) ≤ dP + δ1 for 0 < t ≤ 24r. With θE(y) = dP ,
we have

(2.6.4) θE(y, t)− θE(y) ≤ δ1 for 0 < t ≤ 24r.
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By Lemma 2.4, for each δ2 > 0, we can choose δ1 > 0 such that there exists
a 3-plane P (y, t) which passes through 0 and y, such that

(2.6.5) dy,t(E,P (y, t)) ≤ δ2 for 0 < t ≤ 2r.

Set P ′(y, t) = P (y, t)∩H. Applying Lemma 2.5 for two cones E and P (y, t)
centered at 0, we have

(2.6.6) dy,t/2(Ex, P
′(y, t)) ≤ 6δ2 for 0 < t ≤ 2r.

But now P ′(y, t) is a 2-plane in H, so for each y ∈ Ex ∩ B(x, r) and each
t ≤ r, there exists a 2-plane P1(y, t) in H such that

(2.6.7) dy,t(Ex, Y1(y, t)) ≤ 6δ2.

By [DDT, Theorem 1.1], we conclude that, for each τ > 0, we can choose
δ2 > 0, and then ε > 0, such that if (2.6.7) holds, then Ex is bi-Hölder
equivalent to a 2-plane P in H, with Hölder exponent 1 + τ .

Hölder regularity near a point of type Y
Proposition 2.7. Let y ∈ ∂B(0, 1) and r < 1/2. For each τ > 0 we can

find ε > 0 such that if Y (y, r) is a minimal cone of type Y of dimension 3,
whose spine passes through 0 and y, which satisfies

(2.7.1) dy,r(E, Y (y, r)) ≤ ε,
then there exists a Y-point of Ey in B(y, τr). Here, a Y-point of Ey is a
Y-point of E which belongs to Ey.

Proof. We first take ε > 0 very small, to be chosen later. Suppose that
the proposition fails; then there exist a radius 0 < r < 1/2 and a three-
dimensional minimal cone Y (y, r) of type Y, whose spine passes through 0
and y, such that

dy,r(E, Y (y, r)) ≤ ε,(2.7.2)
for each z ∈ Ey ∩B(y, τr), z is not a Y-point.(2.7.3)

We take a point z ∈ Ey ∩ B(y, τr). Since B(z, r/4) ⊂ B(y, r) and
dy,r(E, Y (y, r)) ≤ ε, we have dz,r/4(E, Y (y, r)) ≤ 4dy,r(E, Y (y, r)) ≤ 4ε.
So by [D, 16.43], for each δ > 0 we can find ε > 0 such that

H3(E ∩B(z, r/4)) ≤ H3(Y (y, r) ∩B(z, (1 + δ)r/4)) + δ(r/4)3(2.7.4)

≤ dY ((1 + δ)r/4)3 + δ(r/4)3.

So if we take δ small enough, we have H3(E ∩ B(z, r/4)) < dT (r/4)
3, thus

θE(z, r/4) < dT . Next, θE(z) ≤ θE(z, r/4) < dT , since E is a minimal cone.
So z cannot be a T-point, and since it is not a Y-point either,
(2.7.5) z is a P-point.
Let L be the spine of Y (y, r). Then L is a 2-plane through 0 and y. Let
F1, F2, F3 be three half-planes of dimension 3 which form Y (y, r). Then



Hölder regularity of minimal cones 237

Y ′ = Y ∩Hy

Ey

Fig. 2. Intersection of E with Hy

F1, F2, F3 have L as common boundary, and the angle between any two
of them is 120◦. Set Y ′(y, r) = Y (y, r)∩Hy and wi = Fi∩∂B(y, τr/2)∩Hy,
i = 1, 2, 3. Then Y ′(y, r) is a two-dimensional minimal cone of type Y in Hy,
centered at y, with spine L′ = L∩Hy. Then dist(wi, L

′) = d(wi, y) = τr/2 for
1 ≤ i ≤ 3. Next, dy,r(E, Y (y, r)) ≤ ε, so by Lemma 2.5, dy,r/2(Ey, Y ′(y, r)) ≤
2(1 + r)ε ≤ 6ε. Thus for each 1 ≤ i ≤ 3, there is zi ∈ Ey such that
d(zi, wi) ≤ 3εr. It is clear that zi ∈ B(y, 5τr/8) if we choose ε small enough.
Now

(2.7.6) dzi,τr/4(E, Y (y, r)) ≤ 4

τ
dy,r(E, Y (y, r)) ≤ 4ε/τ

for 1 ≤ i ≤ 3. By [D, 16.43], for each δ1 > 0, we can choose ε > 0 such that
if (2.7.6) holds for ε, then

H3(E ∩B(zi, τr/8)) ≤ H3(Y (y, r) ∩B(zi, (1+δ1)τr/8))+δ1(τr/8)
3(2.7.7)

= H3(Fi ∩B(zi, (1 + δ1)τr/8)) + δ1(τr/8)
3

≤ dP (τr/8)3 + Cδ1(τr/8)
3,

since dist(wi, L)= τr/4, so dist(zi, L) ≥ dist(wi, L) − d(wi, zi) ≥ τr/4 − εr,
so B(zi, (1+ δ1)τr/8) does not meet L. Then, in B(zi, (1+ δ1)τr/8), Y (y, r)
coincides with Fi, which is a half-plane of dimension 3.

From (2.7.7) we have

(2.7.8) θE(zi, τr/8) ≤ dP + Cδ1,

which implies that zi is a P-point for 1 ≤ i ≤ 3 if we take δ1 small enough.
By Theorem 2.6, for each α > 0, we can choose δ1 > 0 such that if (2.7.8)
holds, then

(2.7.9) for 1 ≤ i ≤ 3, the set Ey is bi-Hölder equivalent to a 2-plane Pi in
B(zi, τr/2

11) ∩Hy, with Hölder exponent 1 + α.

Now as each z ∈ Ey ∩B(y, τr) is a P-point, by the proof of Theorem 2.6,
there is a radius rz ≤ τr/8 such that E is bi-Hölder equivalent to a 3-plane
Pz in the ball B(z, rz), with Hölder exponent 1 + α.
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We see that the set Ey satisfies the following conditions:

(i) The minimal cone Y ′(y, r) of dimension 2 of type Y centered at y,
which is Y (y, r) ∩Hy, satisfies

dy,r/2(Ey, Y
′(y, r)) ≤ 6ε.

(ii) Let L′ be the spine of Y ′(y, r) and F ′i , 1 ≤ i ≤ 3, the three half-
planes of dimension 2 which form Y ′(y, r). Then there are three
points wi, 1 ≤ i ≤ 3, such that for each i, dist(zi, L

′) = τr/4,
wi ∈ F ′i and w1, w2, w3 lie in the same plane of dimension 2 which
is orthogonal to L′. Next, there are three points zi ∈ Ey, 1 ≤ i ≤ 3,
such that d(zi, wi) ≤ 3εr, and in the ball B(zi, τr/2

11), Ey is bi-
Hölder equivalent to a 2-plane Pi in Hy, with Hölder exponent 1+α.

(iii) For each z ∈ Ey, there is a radius rz ≤ τr/211 such that in the ball
B(z, rz), Ey is bi-Hölder equivalent to a 2-plane Pz, with Hölder
exponent 1 + α.

We can adapt the techniques of [D, Section 17]. G. David showed there
that if a two-dimensional almost minimal set F in Rn and a cone Y of type
Y of dimension 2 whose spine passes through a point x satisfy dx,r(F, Y ) ≤ ε,
then there must be a Y-point of F in B(x, r/1000). To prove this, G. David
supposes that in B(x, r/1000), F contains only P-points; then he shows that
the set F1 = F ∩ B(x, r/1000) has the same properties (i)–(iii). He next
shows that it is not possible for a set F1 to have those properties.

We can now use the same techniques for our set Ey, and conclude that
it is not possible for Ey to satisfy (i)–(iii). Proposition 2.7 follows.

Theorem 2.8. Suppose that x is a point of type Y. Then for each α > 0
there exists ε > 0 such that if the radius r > 0 satisfies

θE(x, 2
11r)− θE(x) < ε,(2.8.1)

211r < ε,(2.8.2)

then in the ball B(x, r), Ex is bi-Hölder equivalent to a two-dimensional
minimal cone Y of type Y in Hx and centered at x, with Hölder exponent
1 + α.

The proof uses the fact that for each δ > 0, we can choose ε > 0 such
that if (2.8.1) and (2.8.2) hold, then for each y ∈ Ex ∩ B(x, r) and for each
0 < t ≤ r, there exists a two-dimensional minimal cone Z(y, t) in Hx such
that dy,t(Ex, Z(y, t)) ≤ δ. We remark that for each ε > 0, we can choose
r > 0 such that (2.8.1) and (2.8.2) hold.

Proof of Theorem 2.8. By Lemma 2.4, for each ε1 > 0, we can find ε > 0
such that if the radius r satisfies (2.8.1), then there exists a minimal cone
Y (x, 28r) of dimension 3, of type Y and whose spine passes through 0 and x,
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such that
(2.8.3) dx,28r(E, Y (x, 28r)) ≤ ε1.
We take a point y ∈ Ex ∩B(x, 27r). We have

dy,27r(E, Y (x, 28r)) ≤ 2dx,28r(E, Y (x, 28r)) ≤ 2ε1.

Then by [D, 16.43], for each ε2 > 0, we can choose ε1 > 0 such that
H3(E ∩B(y, 27r)) ≤ H3(Y (x, 28r) ∩B(y, (1 + ε2)2

7r)) + ε2(2
7r)3(2.8.4)

≤ dY (27r)3 + Cε2(2
7r)3,

which implies
(2.8.5) θE(y, 2

7r) ≤ dY + Cε2.

So if ε2 is small enough, we have θE(y) ≤ θE(y, 2
7r) ≤ dY + Cε1 < dT . So

by the classification preceding Lemma 2.2, y can only be of type P or Y. We
consider two cases.

Case 1: y is of type Y. We have θE(y) = dY . By (2.8.5), θE(y, 27r) −
θE(y) ≤ Cε1. Since E is a minimal set, the function θE(y, ·) is nondecreasing,
so 0 ≤ θE(y, t) − θE(y) ≤ Cε1 for 0 ≤ t ≤ 27r. By Lemma 2.4, for each
ε2 > 0, we can choose ε1 > 0 such that for each t ≤ 24r, there exists a three-
dimensional minimal cone Y (y, t), of type Y, whose spine passes through 0
and y, and satisfies
(2.8.6) dy,t(E, Y (y, t)) ≤ ε2.
Set Y1(y, t) = Y (y, t) ∩ Hx; then Y1(y, t) is the union of three half-planes
of dimension 2 with common boundary a line L′. We see that L′ = L ∩Hx

where L is the spine of Y (y, t). Since y ∈ B(x, 27r) and Y (y, t) is a Y of
dimension 3 whose spine passes through y and 0, there is a two-dimensional
minimal cone Y ′(y, t) in Hx with the same spine L′ such that
(2.8.7) dy,1(Y1(y, t), Y

′(y, t)) ≤ Cr ≤ Cε.
Now by Lemma 2.5, dy,t/2(Ex, Y1(y, t)) ≤ 2(1 + t)dy,t(E, Y (y, t)) ≤ 4ε2 for
t ≤ 24r. This fact together with (2.8.7) gives

dy,t/4(Ex, Y
′(y, t)) ≤ 2

(
dy,t/2(Ex, Y1(y, t))+dy,t/2(Y1(y, t), Y

′(y, t))
)

(2.8.8)

≤ C1(ε+ ε2)

for t ≤ 24r. Set ε3 = C1(ε+ ε2); then by (2.8.8), for each t ≤ 24r/4 = 4r and
for each Y-point y ∈ Ex ∩ B(x, r), there is a two-dimensional minimal cone
Y ′(y, t) ∈ Hx of type Y such that
(2.8.9) dy,t(Ex, Y

′(y, t)) ≤ ε3.
This is what we need for Y-points in Ex ∩B(x, 27r). We then note that, for
each Y-point y ∈ B(x, 27r) and t ≤ 24r, Y (y, t) is the minimal cone as in
(2.8.6), and for t ≤ 4r, Y ′(y, t) is the minimal cone as in (2.8.9).
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Case 2: y is of type P. Here we consider only the case y ∈ B(x, r). We
set EY = {z ∈ Ex ∩B(x, 4r) : z is a Y-point}. By the proof of Theorem 2.6,
there is a radius ry > 0 such that in the ball B(y, ry), there are only P-points
of E; as a consequence, we have dist(y,EY ) > 0. Set d = dist(y,EY ); then
d ≤ d(y, x) ≤ r. We take u ∈ EY such that d(y, u) ≤ 11d(y)/10; then it is
clear that u ∈ B(x, 23r).

We take Y (u,2d(y)) as in (2.8.6) and denote by L the spine of Y ′(y,2d(y)).
We want to show that

(2.8.10) dist(y, L) ≥ d(y)/10.
Suppose that (2.8.10) does not hold. Then there is a point w ∈ L′ such that
d(y, w) < d(y)/10. Next, d(w, u) ≤ d(w, y)+d(y, u) ≤ 11d(y)/10+d(y)/10 ≤
3d(y)/2 and so B(w, d(y)/10) ⊂ B(u, 2d(y)). Thus

dw,d(y)/10(E, Y (u, 2d(y))) ≤ 2d(y)

d(y)/10
du,2d(y)(E, Y (u, 2d(y)))(2.8.11)

≤ 20ε2.

Since w belongs to the spine of Y (u, 2d(y)), we can apply Proposition 2.7
for E and w for τ = 1/100. So we can find ε2 > 0 such that if (2.8.11)
holds, then there is a Y-point ξ of E in the ball B(w, d(y)/100) and then
d(ξ, y) ≤ d(ξ, w)+d(w, y) < d(y)/3. Let ξ′ be the intersection of the half-line
0ξ with Ex. Because E is a cone centered at 0 and ξ is a Y-point, it is clear
that ξ′ ∈ EY and d(ξ′, y) ≤ 2d(ξ, y) < 2d(y)/3, which is a contradiction. We
have thus proved (2.8.10).

Next, since du,2d(y)(E, Y (u, 2d(y)))≤δ2 and B(y, d(y)/20) ⊂ B(u, 2d(y)),
by [D, 16.43], for each ε4 > 0 we can find ε2 > 0 such that

θE(y, d(y)/20) = (d(y)/20)−3H3(E ∩B(y, d(y)/20))

(2.8.12)

≤ (d(y)/20)−3[H3(Y (u, 2d(y)) ∩B(y, (1 + ε4)d(y)/20))

+ ε4(d(y)/20)
3]

≤ dP + Cε4 = θE(y) + Cε4.

We explain the last line: since dist(y, L) ≥ 11d(y)/10, it follows that
B(y, (1 + ε4)d(y)/20) does not meet the spine L of Y (u, 2d(y)), so that in
the ball B(y, (1 + ε4)d(y)/20), Y (u, 2d(y)) coincides with a 3-plane P , and
then

H3(Y (u, 2d(y)) ∩B(y, (1 + ε4)d(y)/20)) = H3(P ∩B(y, (1 + ε4)d(y)/20))

≤ dP ((1 + ε4)d(y)/20)
3.

Since θE(y, ·) is nondecreasing, we deduce from (2.8.12) that

(2.8.13) 0 ≤ θE(y, t)− θE(y) ≤ Cε4 for t ≤ d(y)/20.



Hölder regularity of minimal cones 241

By Lemma 2.4, for each ε5 > 0, we can choose ε4 > 0 such that if (2.8.13)
holds, then there is a 3-plane P (y, t) which passes through 0 and y, such
that

(2.8.14) dy,t/8(E,P (y, t)) ≤ ε5 for t ≤ d(y)/20.
If we set P ′(y, t) to be the intersection of P (y, t) with Hx, then P ′(y, t) is a
2-plane, and satisfies, by Lemma 2.5,

(2.8.15) dy,t/16(Ex, P
′(y, t)) ≤ 4ε5 for t ≤ d(y)/20.

Now consider the case when d(y)/320 ≤ t ≤ r. We keep the same point u
as above, that is, u ∈ EY such that d(u, y) ≤ 11d(y)/10. We now have
t+ 2d(y) ≤ 4r, so we can take the cone Y ′(u, t+ 2d(y)) as in (2.8.9), thus

(2.8.16) dy,t(Ex, Y
′(u, t+ 2d(y)))

≤ t+ 2d(y)

t
du,t+2d(y)(Ex, Y

′(u, t+ 2d(y))) ≤ 700ε3.

Now (2.8.9), (2.8.15) and (2.8.16) together show that for each ε6 > 0, we can
choose ε > 0 such that for each y ∈ Ex ∩ B(x, r) and each t ≤ r, there is a
minimal cone P ′(y, t) ⊂ Hx of dimension 2, of type P or Y, such that

(2.8.17) dy,t(Ex, Y
′(y, t)) ≤ ε6.

By [DDT, Theorem 1.1], for each α > 0, we can find ε6 > 0 such that if
(2.8.17) holds, then Ex is bi-Hölder equivalent to a minimal cone of dimen-
sion 2, of type Y, in the ball B(x, r), with Hölder exponent 1 + α.

Hölder regularity near a point of type T

Theorem 2.9. Suppose that x is a point of type T. Then for each α > 0,
we can find ε > 0 such that if the radius r > 0 satisfies

θE(x, 2
14r)− θE(x) ≤ ε,(2.9.1)

214r ≤ ε,(2.9.2)

then in the ball B(x, r), Ex is bi-Hölder equivalent to a minimal cone T ′ of
dimension 2, of type T, in the plane Hx and centered at x.

We note that for each ε > 0, we can always find r > 0 which satisfies
(2.9.1) and (2.9.2). Our strategy will be the same as in Theorem 2.8: we
show that for each δ > 0, we can choose ε > 0 such that if (2.9.1) and (2.9.2)
hold, then for each y ∈ Ex ∩ B(x, r) and for each 0 < t ≤ r, there exists a
two-dimensional minimal cone Z(y, t) in Hx such that dy,t(Ex, Z(y, t)) ≤ δ.

Proof of Theorem 2.9. Since θE(x, ·) is nondecreasing, we have 0 ≤
θE(x, t) − θE(x) ≤ ε for 0 < t ≤ 214r. By Lemma 2.4, for each ε1 > 0, we
can find ε > 0 such that for each t ≤ 211r, there exists a three-dimensional
minimal cone T (x, t) of type T, whose spine passes through 0 and x, such
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that

(2.9.3) dx,t(E, T (x, t)) ≤ ε1.
Consider a point y ∈ Ex ∩B(x, 210r) with y 6= x. Set η = 2−12η0/10, where
η0 is the constant in (1) (before Definition 1.2). Then (1 + 2η)|x− y| ≤ 211r
and so we can take the cone T (x, (1 + 2η)|x − y|) to satisfy (2.9.3). Next,
since B(y, η|x− y|) ⊂ B(x, (1 + 2η)|x− y|), we have

(2.9.4) dy,η|x−y|(E, T (x, (1 + 2η)|x− y|))

≤ (1 + 2η)|x− y|
η|x− y|

dx,(1+2η)|x−y|(E, T (x, (1 + 2η)|x− y|)) ≤ 2η−1ε1.

We want to show that

(2.9.5) T (x, (1 + 2η)|x − y|) coincides with a cone Yy of type Y in the ball
B(y, η0|x− y|/10).

To see this, it suffices to show that

(2.9.6) T ′ = T (x, (1+2η)|x−y|)∩Hx coincides with a two-dimensional cone
of type Y in B(y, η0|x− y|/5) ∩Hx.

But now since the spine of T (x, (1 + 2η)|x− y|) passes through 0 and x, T ′
is a two-dimensional minimal cone of type T in Hx and centered at x. So by
the same arguments as in [D, (16.61)], we have (2.9.6), and hence (2.9.5).

Now (2.9.4) gives us

(2.9.7) dy,η|x−y|(E, Yy) ≤ 2η−1ε1.

By the same arguments as for (2.8.4), for each ε2 > 0 we can find ε1 > 0
such that if (2.9.7) holds, then

(2.9.8) θE(y) ≤ θE(y, η|x− y|/2) ≤ dY + Cε2.

So if we take ε2 small enough, we have, for each y ∈ Ex ∩ B(x, 210r) and
y 6= x, θE(y) ≤ dY + Cε2 < dT , and hence y can only be a point of type P
or Y. Since E is a cone centered at the origin, each z ∈ E ∩ B(x, 29r) with
z 6= x can only be a point of type P or Y. We consider two cases.

Case 1: y is of type Y. By (2.9.7), θE(y, η|x − y|/2) ≤ dY + Cε2 =
θE(y) + Cε2. As θE(y, ·) is nondecreasing, we have θE(y, t) ≤ θE(y) + Cε2
for 0 < t ≤ η|x − y|/2. By Lemma 2.4, for each ε3 > 0, we can find ε2 > 0
such that there exists a three-dimensional minimal cone Y (y, t) of type Y,
whose spine passes through 0 and y, such that

(2.9.9) dy,t(E, Y (y, t)) ≤ ε3 for 0 < t ≤ η|x− y|/16.
Set Y1(y, t) = Y (y, t)∩Hx; then Y1(y, t) is a two-dimensional cone centered at
y in the planeHx. Since E and Y (y, t) are cones centered at 0, by Lemma 2.5,

(2.9.10) dy,t/2(Ex, Y1(y, t)) ≤ 4ε3 for 0 < t ≤ η|x− y|/16.
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Next, since Y (y, t) is a three-dimensional minimal cone of type Y whose spine
passes through 0 and y, and y ∈ B(x, 210r), there exists a two-dimensional
minimal cone Y ′(y, t) ⊂ Hx of type Y centered at y such that

(2.9.11) dy,1(Y1(y, t), Y
′(y, t)) ≤ Cr.

By (2.9.10) and (2.9.11) we have

dy,t/4(Ex, Y
′(y, t)) ≤ 2[dy,t/2(Ex, Y1(y, t))+dy,t/2(Y1(y, t), Y

′(y, t))](2.9.12)

≤ 2(4ε3 + Cr) ≤ C1(ε3 + ε)

for 0 < t ≤ η|x− y|/16.
We consider the case when r ≥ t ≥ η|x − y|/64, and we only consider

y ∈ B(x, r) in this case. By (2.9.3), we can take the cone T (x, 2(t+ |x− y|))
whose spine is 0x and which satisfies dx,2(t+|x−y|)(E, T (x, 2(t+|x−y|))) ≤ ε1.
Set T ′(x, 2(t+ |x− y|)) = Hx∩T (x, 2(t+ |x− y|)). Then T ′(x, 2(t+ |x− y|))
is a two-dimensional minimal cone of type T. By Lemma 2.5,

(2.9.13) dx,t+|x−y|(Ex, T
′(x, 2(t+ |x− y|))) ≤ 4ε1.

Since B(y, t) ⊂ B(x, t+ |x− y|), we have

dy,t(Ex, T
′(x, t+ ρ(y))) ≤ t+ ρ(y)

t
dx,t+ρ(y)(Ex, T

′(x, t+ ρ(y)))(2.9.14)

≤ t+ |x− y|
t

4ε1 ≤
210

η
ε1.

From (2.9.12) and (2.9.14), for y ∈ B(x, r) and 0 < t ≤ r, there exists a
two-dimensional minimal cone Z ′(y, t) ⊂ Hx of type Y or T such that

(2.9.15) dy,t(Ex, Z
′(y, t)) ≤ ε4,

with ε4 = max{C1(ε3 + ε), (210/η)ε1}.

Case 2: y is of type P. Recall that each z ∈ Ex ∩B(x, 210r), z 6= x, can
only be of type P or Y. Let EY be the set of Y-points of E in B(x, 4r), and
d = min{dist(y,EY ), |x− y|}.

We have two subcases:

Subcase 1: d > η|x − y|. Let T2 be the union of the 2-faces of
T (x, 2|x− y|). We want to show that

(2.9.16) dist(y, T2) > d/10.

Otherwise there is a 2-face L of T (x, 2|x−y|) (see the definition of d-face prior
to Definition 1.2) and a point z ∈ L such that d(y, z) = dist(y, L) < d/10.
Next, |z − x| > |x− y| − d/10 > |x− y|/2 and so dist(z, 0x) > dist(y, 0x)−
d/10 > |x−y|/2. By the same argument as for (2.9.5), in the ball B(z, ηd/2),
T (x, 2|x− y|) coincides with a three-dimensional minimal cone Yz of type Y
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and whose spine passes through 0 and z. In addition

(2.9.17) dz,ηd/2(E, Yz) ≤
2|x− y|
ηd/2

dx,2|x−y|(E, T (x, 2|x− y|)) ≤
4

η2
ε1.

By Proposition 2.7, we can choose ε1 small enough such that if (2.9.17)
holds, there exists a Y-point z′ ∈ B(z, ηd/4). We deduce that d(y, z′) ≤
d(y, z) + d(z, z′) < d/5. But z′ ∈ EY , a contradiction. Hence (2.9.16) holds.

Now since dist(y, 0x) ≥ d and dist(y, T2) > d/10, by a simple geometrical
argument, in B(y, ηd), T (x, 2|x−y|) coincides with a 3-plane Py whose spine
passes through 0 and x. In fact, Py is the 3-face of T (x, 2|x − y|) which is
nearest to y. Since B(y, ηd) ⊂ B(x, 2|x− y|), we obtain

(2.9.18) dy,ηd(E,Py) ≤
2|x− y|
ηd

dx,2|x−y|(E, T (x, 2|x− y|)) ≤
2

η2
ε1.

By [D, 16.43], for each ε5 > 0, we can find ε1 > 0 such that if (2.9.18) holds,
then θE(y, ηd/2) ≤ dP + ε5. Since E is a minimal cone, θE(y, t) ≤ dP + ε5
for 0 < t ≤ ηd/2. By Lemma 2.4, for each ε6 > 0, we can find ε5 > 0 such
that there exists a 3-plane P (y, t) which passes through 0 and y, such that

(2.9.19) dy,t/8(E,P (y, t)) ≤ ε6 for 0 < t ≤ ηd/2.
By Lemma 2.5, the 2-plane P ′(y, t) = P (y, t) ∩Hx satisfies

(2.9.20) dy,t/16(Ex, P
′(y, t)) ≤ 4dy,t/8(E,P (y, t)) ≤ 4ε6 for t ≤ ηd/2.

For |x − y|/2 ≥ t > ηd/32, let T ′(x, 2|x − y|) = Hx ∩ T (x, 2|x − y|). Then
T ′(x, 2|x− y|) is a two-dimensional minimal cone of type T in Hx and cen-
tered at x. By Lemma 2.5, we have dx,|x−y|(Ex, T ′(x, 2|x− y|)) ≤ 4ε1. Since
B(y, t) ⊂ B(x, |x− y|), we obtain

dy,t(Ex, T
′(x, 2|x− y|)) ≤ |x− y|

t
dx,|x−y|(Ex, T

′(x, 2|x− y|))(2.9.21)

≤ 128

η2
ε1.

For r ≥ t > |x − y|/2, we set T ′(x, 2t + |x − y|) = T (x, 2t + |x − y|) ∩Hx.
Then T ′(x, 2t + |x − y|) is a two-dimensional minimal cone of type T
in Hx. As above, we have dx,t+|x−y|/2(Ex, T ′(x, 2t + |x − y|)) ≤ 4ε1. Since
B(y, t) ⊂ B(x, t+ |x− y|/2), we obtain

(2.9.22) dy,t(Ex, T
′(x, 2t+ |x− y|))

≤ t+ |x− y|/2
t

dx,t+|x−y|/2(Ex, T
′(x, 2t+ |x− y|)) ≤ 8ε1/η.

Now (2.9.20)–(2.9.22) are all that we need for Subcase 1.

Subcase 2: d ≤ η|x−y|. By definition of EY , there exists a Y-point such
that d(y, z) < 2d. This implies z ∈ B(x, 3|x− y|/2) and d(z, x) > |x− y|/2
and dist(z, 0x) > dist(y, 0x) − 2d > |x − y|/2. By the same arguments as
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for (2.9.5), T (x, 2|x − y|) coincides with a three-dimensional minimal cone
Yz of type Y in B(z, 212η|x − y|). This is clear that the spine of Yz passes
through 0. Since B(z, 212η|x− y|) ⊂ B(x, 2|x− y|), we have

dz,212η|x−y|(E, Yz) = dz,212η|x−y|(E, T (x, 2|x− y|))(2.9.23)

≤ 2|x− y|
212η|x− y|

dx,2|x−y|(E, T (x, 2|x− y|))

≤ 1

211η
ε1.

Since z is a Y-point, by [D, 16.43], for each ε7 > 0, we can find ε1 > 0 such
that if (2.9.23) holds then
(2.9.24) θE(x, 2

11η|x− y|)− θE(z) ≤ ε7.
In addition
(2.9.25) 212η|x− y| ≤ r ≤ ε.
We see that (2.9.24) and (2.9.25) are the hypotheses of Theorem 2.8, with
radius η|x−y| and with constant ε8 = max{ε, ε1}. As in the proof of Theorem
2.8, for each ε9 > 0, we can find ε8 > 0 such that for t ≤ 2η|x− y|, there is
a two-dimensional minimal cone Y ′(y, t) ⊂ Hx of type P or Y such that
(2.9.26) dy,t(Ex, Y

′(y, t)) ≤ ε9.
The case r ≥ t > 2η|x− y| is the same as (2.9.22). We now have all that we
need for Subcase 2.

Now we can conclude that, for each ε10 > 0, we can find ε > 0 such that
for y ∈ Ex ∩ B(x, r) and for t ≤ r, there exists a two-dimensional minimal
cone Y ′(y, t) ⊂ Hx such that dy,t(Ex, Y ′(y, t)) ≤ ε10. By [DDT, 2.2], for each
α > 0, we can find ε > 0 such that if (2.9.1) and (2.9.2) hold, then B(x, r)
is a Hölder ball of type T for Ex, with exponent 1 + α.
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