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A normality criterion for meromorphic functions having
multiple zeros

by Shanpeng Zeng (Hangzhou) and Indrajit Lahiri (Kalyani)

Abstract. We prove a normality criterion for a family of meromorphic functions
having multiple zeros which involves sharing of a non-zero value by the product of functions
and their linear differential polynomials.

1. Introduction, definitions and results. Let f and g be two mero-
morphic functions in the open complex plane C. If for some a ∈ C ∪ {∞}
the functions f and g have the same set of a-points ignoring multiplicities,
we say that f and g share the value a IM (ignoring multiplicities).

In 1959 W. K. Hayman [6] proposed the following:

Theorem A. If f is a transcendental meromorphic function in C, then
fnf ′ assumes every finite non-zero complex value infinitely often for any
positive integer n.

Hayman [6] himself proved Theorem A for n ≥ 3, and n ≥ 2 if f is
entire. Further it was proved by E. Mues [12] for n ≥ 2 and by J. Clunie [3]
for n ≥ 1 if f is entire; also by W. Bergweiler and A. Eremenko [1] and by
H. H. Chen and M. L. Fang [2] for n = 1. Thus Theorem A is completely
established.

In relation to Theorem A, Hayman [7] proposed the following conjecture
on normal families.

Theorem B (Hayman’s Conjecture). Let F be a family of meromorphic
functions in a domain D ⊂ C, n be a positive integer and a be a non-zero
finite complex number. If fnf ′ 6= a in D for each f ∈ F, then F is normal.

Theorem B was proved by L. Yang and G. Zhang [19, 20] (for n ≥ 5 and
n ≥ 2 for a family of holomorphic functions), by Y. X. Gu [5] (for n = 3, 4),
by I. B. Oshkin [13] (for holomorphic functions and n = 1; see also [9]) and
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by X. C. Pang (for n ≥ 2). It is indicated in [14] that the case n = 1 is a
consequence of the theorem of Chen–Fang [2].

In 2009 Q. Lu and Y. X. Gu [10] considered the general order derivative
in Theorem B for n = 1. Their result can be stated as follows:

Theorem C. Let F be a family of meromorphic functions in a domain
D ⊂ C, k be a positive integer and a be a finite non-zero complex number.
If for each f ∈ F, the zeros of f have multiplicities at least k + 2 and f
satisfies ff (k) 6= a for z ∈ D, then F is normal.

Recently J. Xu and W. Cao [18] improved Theorem C by including mero-
morphic functions having zeros with multiplicities at least 1 + k.

In 2011 D. W. Meng and P. C. Hu [11] improved the result of J. Xu and
W. Cao [18] by including the possibility when ff (k) is allowed to assume
the value a. The following is the result of Meng and Hu [11].

Theorem D ([11]). Let F be a family of meromorphic functions in a
domain D ⊂ C, k be a positive integer and a be a finite non-zero complex
number. If for each f ∈ F, the zeros of f have multiplicities at least 1 + k,
and for each pair of functions f, g ∈ F, ff (k) and gg(k) share the value a IM,
then F is normal.

Let f be a meromorphic function in D ⊂ C and k be a positive integer.
A linear differential polynomial L(f) is defined as

L(f) = a1f
(1) + · · ·+ akf

(k),

where a1, . . . , ak (6= 0) are constants.
In the paper we investigate the situation when in Theorem D, ff (k) and

gg(k) are respectively replaced by fL(f) and gL(g). The following is our
main result.

Theorem 1.1. Let F be a family of meromorphic functions in a domain
D ⊂ C such that L(f) 6≡ 0 for f ∈ F, k be a positive integer and a be
a finite non-zero complex number. If for each f ∈ F, the zeros of f have
multiplicities at least 1 + k, and for each pair of functions f, g ∈ F, fL(f)
and gL(g) share the value a IM, then F is normal.

Since the zeros of fk+1 have multiplicities at least k+ 1, the following is
a simple consequence of Theorem 1.1.

Corollary 1.1. Let F be a family of meromorphic functions in a do-
main D ⊂ C, k be a positive integer and a be a finite non-zero complex value.
If for each pair of functions f, g ∈ F, fk+1(fk+1)(k) and gk+1(gk+1)(k) share
the value a IM, then F is normal.

The following example establishes the necessity of the hypothesis on the
multiplicities of zeros.
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Example 1.1 (cf. [11]). Let D be a domain containing the point 1/2
and

F =

{
fm : fm(z) = mz − m

2
+
a

m
for m = 1, 2, . . .

}
,

where a is a non-zero finite complex value. For distinct positive integers m
and l we have fmf

′
m = m2(z − 1/2) + a and flf

′
l = l2(z − 1/2) + a. Hence

fmf
′
m and flf

′
l share the value a CM. We note that each fm has only simple

zeros. Since

f#m(1/2) =
m3

m2 + |a|2
→∞ as m→∞,

by Marty’s criterion [16, p. 75] the family F is not normal in D.

2. Lemmas. In this section we present some necessary lemmas.

Lemma 2.1 ([16, p. 101], [15]). Let F be a family of meromorphic func-
tions in a domain D ⊂ C. If F is not normal in D, then there exist

(i) a number r with 0 < r < 1,
(ii) points zj satisfying |zj | < r,
(iii) functions fj ∈ F,
(iv) positive numbers ρj → 0 as j →∞

such that fj(zj + ρjζ)→ g(ζ) as j →∞ locally spherically uniformly, where
g is a non-constant meromorphic function in C with g#(ζ) ≤ g#(0) = 1. In
particular, g has order at most 2.

Lemma 2.2. Let R = A/B be a rational function and B be non-constant.

Then (R(k))∞ ≤ (R)∞ − k, where k is a positive integer, (R)∞ = deg(A)−
deg(B) and deg(A) denotes the degree of A.

Proof. By the quotient rule of differentiation we get

R(1) =
A(1)B −AB(1)

B2

and so (R(1))∞ ≤ deg(A)− deg(B)− 1 = (R)∞− 1. Now the lemma follows
by induction.

Lemma 2.3. Let f be a non-constant rational function, k be a positive
integer and a be a non-zero finite complex number. If f has only zeros of
multiplicities at least 1 + k, then fL(f)− a has at least two distinct zeros.

Proof. We consider the following cases.

Case 1. Let fL(f)− a have exactly one zero at z0.

Subcase 1.1. Let f be a non-constant polynomial. Since f has only
zeros of multiplicities at least 1 + k, the degree of f is at least 1 + k (≥ 2).
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So fL(f) is a polynomial of degree at least k+ 2 (≥ 3). Since z0 is the only
zero of fL(f)− a, we can put

(2.1) fL(f)− a = A(z − z0)m,
where A 6= 0, m ≥ k + 2.

We see that a zero of f is a zero of fL(f) with multiplicity at least
k+2 and so it is a zero of (fL(f)− a)′ = (fL(f))′ with multiplicity at least
1 + k. Since (fL(f)− a)′ = Am(z − z0)m−1 has only one zero at z0, and f ,
being non-constant, must have a zero, we see that z0 is a zero of f . This
contradicts (2.1).

Subcase 1.2. Let f be a non-polynomial rational function. We put

(2.2) f(z) = A
(z − α1)

m1 · · · (z − αs)ms

(z − β1)n1 · · · (z − βt)nt
,

where A is a non-zero constant and mi ≥ 1 + k (i = 1, . . . , s) and nj ≥ 1
(j = 1, . . . , t) are integers. We further put M = m1 + · · · + ms and N =
n1 + · · ·+ nt.

From (2.2) we get upon differentiation

(2.3) f (p)(z) =
(z − α1)

m1−p · · · (z − αs)ms−pgp(z)

(z − β1)n1+p · · · (z − βt)nt+p
,

where gp is a polynomial for p = 1, . . . , k. Hence from (2.2) and (2.3) we
obtain

fL(f) =
k∑
p=1

(z − α1)
2m1−p · · · (z − αs)2ms−pgp(z)

(z − β1)2n1+p · · · (z − βt)2nt+p
(2.4)

=
(z − α1)

2m1−k · · · (z − αs)2ms−kg(z)

(z − β1)2n1+k · · · (z − βt)2nt+k
=
P

Q
, say,

where P , Q and g are polynomials. Since fL(f)−a has exactly one zero z0,
from (2.4) we get

(2.5) fL(f) = a+
B(z − z0)l

(z − β1)2n1+k · · · (z − βt)2nt+k
=
P

Q
,

where l is a positive integer and B is a non-zero constant.
From (2.4) and (2.5) we get upon differentiation

(2.6) (fL(f))′ =
(z − α1)

2m1−k−1 · · · (z − αs)2ms−k−1G1(z)

(z − β1)2n1+k+1 · · · (z − βt)2nt+k+1

and

(2.7) (fL(f))′ =
(z − z0)l−1G2(z)

(z − β1)2n1+k+1 · · · (z − βt)2nt+k+1
,

where G1 and G2 are polynomials. From (2.2) and (2.3) we obtain (f)∞ =
M −N and (f (p))∞ = (M −N)− (s+ t)k + deg(gp). So by Lemma 2.2 we
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deduce

(2.8) deg(gp) ≤ p(s+ t− 1),

for p = 1, . . . , k.
From (2.4) and (2.5) again we get

(2.9) (fL(f))∞ = 2(M −N)− k(s+ t) + deg(g)

and

(2.10) (fL(f)− a)∞ = l − 2N − kt.
Formulas (2.6) and (2.7) lead to

(2.11)
(
(fL(f))′

)
∞ = 2(M −N)− (k + 1)(s+ t) + deg(G1)

and

(2.12)
(
(fL(f))′

)
∞ = l − 1− 2N − (k + 1)t+ deg(G2).

Let φp(z) = {(z−α1) · · · (z−αs)}p and ψq(z) = {(z− β1) · · · (z− βs)}q.
Then deg(φp) = sp and deg(ψq) = tq. Also by a simple calculation we see
that g(z) as in (2.4) is

g(z) = φ0ψ0gk(z) + φ1ψ1gk−1(z) + · · ·+ φk−2ψk−2g2(z) + φk−1ψk−1g1(z).

Hence by (2.8) we get

deg(g) ≤ max{deg(gk), deg(gk−1) + s+ t, . . . ,(2.13)

deg(g1) + (k − 1)(s+ t)}
≤ max{(s+ t− 1)k, (s+ t− 1)k + 1, (s+ t− 1)k + 2, . . . ,

(s+ t− 1)k + (k − 1)}
= (s+ t− 1)k + (k − 1).

Using Lemma 2.2 from (2.9)–(2.13) we get

(2.14) deg(G1) ≤ (s+ t− 1)(k + 1) + (k − 1)

and

(2.15) deg(G2) ≤ t.
From (2.4) and (2.5) we see that z0 6∈ {α1, α2, . . . , αs}. So (2.6) and (2.7)

together imply that (z − α1)
2m1−k−1 · · · (z − αs)2ms−k−1 is a factor of G2.

Therefore by (2.15) we get

(2.16) 2M − (k + 1)s ≤ deg(G2) ≤ t.
Since M ≥ (k + 1)s, from (2.16) we deduce

(2.17) s ≤ t

k + 1
.

Suppose that l ≥ 2N + kt. Then from (2.6), (2.7) we see that (z− z0)l−1
is a factor of G1. Hence in view of (2.14) we get

l − 1 ≤ deg(G1) ≤ (k + 1)(s+ t− 1) + (k − 1)
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and so 2N + kt ≤ (k+ 1)(s+ t− 1) + k, which by (2.17) implies 2t ≤ 2N ≤
(k + 1)s+ (t− 1) ≤ 2t− 1, a contradiction. Therefore l < 2N + kt.

From (2.4) and (2.5) again we find that

2M − ks+ deg(g) = deg(P ) = deg(Q) = 2N + kt.

Hence from (2.13) we obtain

2N + kt ≤ 2M − ks+ (s+ t− 1)k + (k − 1) = 2M + kt− 1.

This implies, in view of (2.16),

2M ≤ (k + 1)s+ t ≤M +N ≤M +M − 1

2
= 2M − 1

2
,

a contradiction.

Case 2. Let fL(f) − a have no zero. Then f cannot be a polynomial
because in this case fL(f) becomes a polynomial of degree at least k + 2
(≥ 3). Hence f is a non-polynomial rational function. Now putting l = 0
in (2.5) and proceeding as in Subcase 1.2 we arrive at a contradiction. This
proves Lemma 2.3.

A quasi-differential polynomial P of a meromorphic function f is defined
by

P (z) =
t∑
i=1

φi(z),

where

φi(z) = αi(z)

p∏
j=0

(f (j)(z))Sij , αi(z) 6≡ 0

is a meromorphic function such that m(r, αi) = S(r, f) and Sij ’s are non-
negative integers. The number

γP = max
1≤i≤n

p∑
j=0

Sij

is called the degree of the quasi-differential polynomial P .

Lemma 2.4 ([4], see also [8, p. 39]). Let f be a non-constant meromorphic
function and Q1, Q2 be quasi-differential polynomials in f with Q2 6≡ 0. Let
n be a positive integer and fnQ1 = Q2. If γQ2 ≤ n, then m(r,Q1) = S(r, f),
where γQ2 is the degree of Q2.

Lemma 2.5. Let f be a transcendental meromorphic function having no
zero of multiplicity less than 1+k such that L(f) 6≡ 0. If a is a finite non-zero
complex number, then F = fL(f)− a has infinitely many zeros.

Proof. Without loss of generality we may put a = 1. First we verify that
fL(f) is non-constant. If fL(f) ≡ K, a constant, then we see that f has
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neither any pole nor any zero. So there exists an entire function α such that
f = eα. Hence Q(α′)e2α ≡ K, where Q is a differential polynomial in α′. This
implies, by the first fundamental theorem, T (r, e2α) = T (r,Q(α′)) +O(1) =
S(r, e2α), a contradiction. Therefore fL(f) is non-constant. Since

(2.18) F = fL(f)− 1,

we get

(2.19) T (r, F ) = O(T (r, f)).

Also

(2.20) fh = −F
′

F
,

where

(2.21) h =
f ′

f
L(f) + L′(f)− L(f)

F ′

F
.

As F is non-constant, by (2.20) we see that h 6≡ 0. By Lemma 2.4 applied
to (2.20) we get, in view of (2.19),

(2.22) m(r, h) = S(r, f).

Since a pole of f is a simple pole of F ′/F , it follows from (2.20) that
a pole of f with multiplicity q (≥ 2) is a zero of h with multiplicity q − 1.
Hence

(2.23) N(2(r,∞; f) ≤ 2N(r, 0;h),

where N(2(r,∞; f) denotes the counting function of multiple poles of f .
If possible, we suppose that F has only a finite number of zeros. Hence

(2.24) N(r, 0;F ) = O(log r) = S(r, f).

Also we deduce from (2.20) that a simple pole of f is neither a zero nor a
pole of h.

A zero of f with multiplicity q (≥ 1+k) is a zero of F ′ = f ′L(f)+fL′(f)
with multiplicity at least 2q−(k+1). Hence from (2.20) we see that it is not
a pole of h. Therefore the poles of h are provided by the zeros of F . Hence
by (2.24) we get

(2.25) N(r,∞;h) ≤ N(r, 0;F ) = S(r, f).

So from (2.22) and (2.25) we obtain

(2.26) T (r, h) = S(r, f).

Hence (2.23) and (2.26) imply

(2.27) N(2(r,∞; f) = S(r, f).

By (2.20), (2.26) and the first fundamental theorem we get

(2.28) m(r, f) ≤ m(r, 1/h) +m(r, F ′/F ) = S(r, f).
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Combining (2.27) and (2.28) we obtain

(2.29) T (r, f) = N1)(r,∞; f) + S(r, f),

where N1)(r,∞; f) denotes the counting function of simple poles of f .
Let z0 be a simple pole of f . Then h(z0) 6= 0,∞. Let, in some neighbour-

hood of z0,

f(z) =
c1

z − z0
+ c0 +O(z − z0)(2.30)

h(z) = h(z0) + h′(z0)(z − z0) +O(z − z0)2,(2.31)

where c1 6= 0. Differentiating both sides of (2.30) we get

(2.32) f (j)(z) =
(−1)jc1j!

(z − z0)j+1
+O(1),

for j = 1, 2, . . . . Therefore

L(f) =
k∑
j=1

aj
(−1)jc1j!

(z − z0)j+1
+O(1),(2.33)

L′(f) =

k∑
j=1

aj
(−1)j+1c1(j + 1)!

(z − z0)j+2
+O(1).(2.34)

Also from (2.20) and (2.21) we have

(2.35) fh = f ′L(f) + fL′(f) + f2L(f)h.

Now from (2.30)–(2.35) we obtain{
c1

z − z0
+ c0 +O(z − z0)

}
{h(z0) + h′(z0)(z − z0) +O(z − z0)2}

=

{
−c1

(z − z0)2
+O(1)

}{ k∑
j=1

aj
(−1)jc1j!

(z − z0)j+1
+O(1)

}

+

{
c1

z − z0
+ c0 +O(z − z0)

}{ k∑
j=1

aj
(−1)j+1c1(j + 1)!

(z − z0)j+2
+O(1)

}′
+

{
c1

z − z0
+ c0 +O(z − z0)

}2

{h(z0) + h′(z0)(z − z0) +O(z − z0)2}

×
{ k∑
j=1

aj
(−1)jc1j!

(z − z0)j+1
+O(1)

}
.

Comparing the coefficients of 1/(z − z0)k+3 and 1/(z − z0)k+2 on both sides,
we respectively get

(2.36) c1h(z0) = k + 2
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and

(2.37)
c0
c1

=
(k + 1)ak−1
k(k + 3)ak

− 1

k + 3
− (k + 2)h′(z0)

(k + 3)h(z0)
.

From (2.30) and (2.32) we obtain

(2.38)
f ′

f
=
−1

z − z0
+
c0
c1

+O(z − z0).

Also from (2.20), (2.30) and (2.31) we get

−F
′

F
= fh = {h(z0) + h′(z0)(z − z0)(2.39)

+O(z − z0)2}
{

c1
z − z0

+ c0 +O(z − z0)
}

= c1h(z0)

{
1

z − z0
+
h′(z0)

h(z0)
+
c0
c1

}
+O(z − z0).

Formulas (2.36)–(2.39) lead to

(2.40) (k + 2)(k + 3)
f ′

f
− (k + 3)

F ′

F
+ (k + 1)(k + 2)

h′(z0)

h(z0)

=
2(k + 1)(k + 2)ak−1

kak
− 2(k + 2) +O(z − z0).

Let us put

g = (k + 2)(k + 3)
f ′

f
− (k + 3)

F ′

F
+ (k + 1)(k + 2)

h′

h

and

A =
2(k + 1)(k + 2)ak−1

kak
− 2(k + 2).

If g ≡ A, then upon integration we get

(2.41) f (k+2)(k+3)h(k+1)(k+2) = F k+3eAz+B,

where B is a constant.

Let z1 be a zero of f with multiplicity q (≥ k+ 1). Then from (2.41) we
see that z1 is a pole of h with multiplicity p such that q(k + 2)(k + 3) =
p(k + 1)(k + 2) and so

p =
k + 3

k + 1
q > q.

Therefore z1 is a pole of fh with multiplicity p − q. Since F (z1) = −1, we
arrive at a contradiction by (2.20). So f has no zero. Hence by the first
fundamental theorem we get
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N(r, 1/L(f)) = N(r, 0;L(f)/f) ≤ T (r, L(f)/f) +O(1)

= N(r, L(f)/f) + S(r, f) = kN(r,∞; f) + S(r, f)

= N(r,∞;L(f))−N(r,∞; f) + S(r, f)

and so

(2.42) N(r,∞; f) ≤ N(r,∞;L(f))−N(r, 0;L(f)) + S(r, f).

From (2.21) we have

1

L(f)
=

1

h

(
f ′

f
+
L′(f)

L(f)
− F ′

F

)
and so m(r, 0;L(f)) = S(r, f). By the first fundamental theorem this implies

(2.43) T (r, L(f)) = N(r, 0;L(f)) + S(r, f).

From (2.42) and (2.43) we getN(r,∞; f) = S(r, f), which contradicts (2.29).
Therefore g 6≡ A.

Now by (2.40) we see that g(z0) = A and so by (2.23), (2.24), (2.26) and
the first fundamental theorem we get

N1)(r,∞; f) ≤ N(r,A; g) ≤ T (r, g) +O(1) ≤ N(r, g) + S(r, f)

≤ N(r, 0; f) +N(r, 0;F ) +N(r, 0;h) +N(r,∞;h)

+N(2(r,∞; f) + S(r, f)

≤ 1

k + 1
N(r, 0; f) + S(r, f) ≤ 1

k + 1
T (r, f) + S(r, f),

which contradicts (2.29). This proves Lemma 2.5.

3. Proof of Theorem 1.1. We suppose that F is not normal in D.
Then by Lemma 2.1 there exist

(i) a number r, 0 < r < 1,
(ii) points zj satisfying |zj | < r,
(iii) functions fj ∈ F,
(iv) positive numbers ρj → 0

such that fj(zj + ρjζ) = gj(ζ)→ g(ζ) locally uniformly with respect to the
spherical metric, where g is a non-constant meromorphic function on C such
that g#(ζ) ≤ g#(0) = 1. Also the order of g(ζ) is at most 2.

We note by Hurwitz’s theorem that zeros of g are of multiplicities at
least k + 1. We see that

fj(zj + ρjζ)L(fj(zj + ρjζ))− a = gj(ζ)L(gj(ζ))− a→ g(ζ)L(g(ζ))− a
as j →∞ uniformly in any compact subset of C which does not contain any
pole of g.

We now verify that L(g) 6≡ 0. If possible, let L(g) ≡ 0. Then g is an
entire function. Also
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(3.1) a2
g(2)

g(1)
+ a3

g(3)

g(1)
+ · · ·+ ak

g(k)

g(1)
≡ −a1.

If (a1, . . . , ak−1) = (0, . . . , 0), then from (3.1) we get g(k) ≡ 0 and so g is
a polynomial of degree at most k − 1, which is impossible as g has no zero
of multiplicity less than k + 1. Hence (a1, . . . , ak−1) 6= (0, . . . , 0).

If k = 1, then L(g) ≡ 0 implies g(1) ≡ 0, which is impossible as g is
non-constant. So k ≥ 2 and we see from (3.1) that g has no zero. Hence by
Hurwitz’s theorem gj has no zero and no pole for all large values of j.

We put gj(ζ) = eαj(ζ), where αj(ζ) is an entire function. Now gjL(gj) =
Qj(α

′
j)e

2αj , where Qj(α
′
j) is a differential polynomial in α′j .

As T (r,Qj(α
′
j)) = S(r, e2αj ) and L(gj) 6≡ 0, by the second fundamental

theorem we see that

(3.2) N(r, a; gjL(gj)) = T (r, gjL(gj)) + S(r, gjL(gj)).

Since gjL(gj) − a → gL(g) − a = −a as j → ∞ uniformly in any compact
subset of C, by Hurwitz’s theorem gjL(gj) − a has no zero for all large
values of j, a contradiction to (3.2). Therefore L(g) 6≡ 0. Also following the
reasoning given in the first paragraph of the proof of Lemma 2.5 we can
verify that gL(g) is non-constant.

Now by Lemmas 2.3 and 2.5 we can choose ζ0 and ζ∗0 as two distinct
zeros of gL(g)−a. Since zeros are isolated points, there exist two open discs
D1 and D2 with centres at ζ0, ζ

∗
0 respectively such that D1 ∪ D2 contains

only two zeros ζ0, ζ
∗
0 of gL(g)− a and D1 ∩D2 = ∅.

By Hurwitz’s theorem there exist two sequences {ζj} ⊂ D1, {ζ∗j } ⊂ D2

converging to ζ0, ζ
∗
0 respectively such that for j = 1, 2, . . . ,

gj(ζj)L(gj(ζj)) = gj(ζ
∗
j )L(gj(ζ

∗
j )) = a.

Since f1L(f1) and fjL(fj) share a IM for each j = 1, 2, . . . , it follows that

f1(zj + ρjζj)L(f1(zj + ρjζj)) = f1(zj + ρjζ
∗
j )L(f1(zj + ρjζ

∗
j )) = a

for j = 1, 2, . . . .

By (ii) and (iv), considering a subsequence if necessary, we see that there
exists a point ξ, |ξ| ≤ r, such that zj+ρjζj → ξ and zj+ρjζ

∗
j → ξ as j →∞.

So f1(ξ)L(f1(ξ)) = a and, since a-points are isolated, for sufficiently large
values of j we get zj + ρjζj = ξ = zj + ρjζ

∗
j . Hence ζj = (ξ − zj)/ρj = ζ∗j ,

which is impossible as D1 ∩D2 = ∅. This proves Theorem 1.1.
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