Constructions on second order connections

by J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract. We classify all $\mathcal{FM}_{m,n}$ -natural operators $\mathcal{D}: J^2 \rightsquigarrow J^2 V^A$ transforming second order connections $\Gamma: Y \to J^2 Y$ on a fibred manifold $Y \to M$ into second order connections $\mathcal{D}(\Gamma): V^A Y \to J^2 V^A Y$ on the vertical Weil bundle $V^A Y \to M$ corresponding to a Weil algebra A.

0. Introduction. An *r*th order connection on a fibred manifold $Y \to M$ is a section $\Gamma: Y \to J^r Y$ of the r-jet prolongation $J^r Y \to Y$ of $Y \to M$ (see [5]). In [6], we studied the problem how a first order connection Γ : $Y \to J^1 Y$ on $Y \to M$ induces a first order connection $\mathcal{D}(\Gamma) : V^A Y \to \mathcal{D}(\Gamma)$ $J^1 V^A Y$ on the vertical Weil bundle $V^A Y \to M$ corresponding to a Weil algebra A. In the present paper we study the similar problem of how a second order connection $\Gamma: Y \to J^2 Y$ on a fibred manifold $Y \to M$ can induce a second order connection $\mathcal{D}(\Gamma): V^A Y \to J^2 V^A Y$ on $V^A Y \to M$. This problem corresponds to the classification of $\mathcal{FM}_{m,n}$ -natural operators $\mathcal{D}: J^2 \rightsquigarrow J^2 V^A$ in the sense of [5], where $\mathcal{FM}_{m,n}$ is the category of fibred manifolds with n-dimensional fibres and m-dimensional bases and their fibred local diffeomorphisms. We prove that the set of all $\mathcal{FM}_{m,n}$ -natural operators $\mathcal{D}: J^2 \rightsquigarrow J^2 V^A$ forms a dim_{$\mathbb{R}} A$ -dimensional affine space and we</sub> explicitly describe this affine space. Thus we obtain a quite different result than the one from [6], where it is proved that there is only one $\mathcal{FM}_{m,n}$ natural operator $\mathcal{D}: J^1 \rightsquigarrow J^1 V^A$.

All manifolds and maps are of class C^{∞} .

1. The main result. The general concept of natural operators is described in [5]. In particular, an $\mathcal{FM}_{m,n}$ -natural operator $\mathcal{D}: J^r \rightsquigarrow J^r V^A$ transforming *r*th order general connections Γ on $\mathcal{FM}_{m,n}$ -objects $Y \to M$ to *r*th order connections $\mathcal{D}(\Gamma)$ on the vertical Weil bundle $V^A Y \to M$

²⁰⁰⁰ Mathematics Subject Classification: 58A05, 58A20.

 $Key\ words\ and\ phrases:$ higher order connection, (vertical) Weil bundle, natural operator.

corresponding to a Weil algebra A is a family of $\mathcal{FM}_{m,n}$ -invariant regular operators (functions) $\mathcal{D} : \operatorname{Con}^r(Y \to M) \to \operatorname{Con}^r(V^A Y \to M)$ from the space $\operatorname{Con}^r(Y \to M)$ of all rth order connections on $Y \to M$ into the space $\operatorname{Con}^r(V^A Y \to M)$ of all rth order connections on $V^A Y \to M$ for $\mathcal{FM}_{m,n}$ -objects $Y \to M$. By [6], any $\mathcal{FM}_{m,n}$ -natural operator $\mathcal{D} :$ $J^1 \rightsquigarrow J^1 V^A$ is equal to the well-known A-vertical prolongation operator $\mathcal{V}^A : J^1 \rightsquigarrow J^1 V^A$. We have the following examples of $\mathcal{FM}_{m,n}$ -natural operators $\mathcal{D} : J^2 \rightsquigarrow J^2 V^A$.

EXAMPLE 1. Given a general second order connection $\Gamma: Y \to J^2 Y$ on $Y \to M$ we define a second order general connection $\mathcal{V}^{A,2}\Gamma$ on $V^A Y \to M$ by $\mathcal{V}^{A,2}\Gamma = (\kappa^{A,2})_Y \circ V^A \Gamma : V^A Y \to J^2 V^A Y$, where $(\kappa^{A,2})_Y : V^A J^2 Y \to J^2 V^A Y$ is the canonical exchange isomorphism [5], [1]. The correspondence $\mathcal{V}^{A,2}: J^2 \to J^2 V^A$ is the $\mathcal{FM}_{m,n}$ -natural operator in question.

To give the next such example we need some preparation. Let $\Gamma: Y \to J^2 Y$ be a second order connection on $Y \to M$ with first order underlying connection $\Gamma^0: Y \to J^1 Y$. Let $\Gamma^0 * \Gamma^0 := J^1 \Gamma^0 \circ \Gamma^0: Y \to \overline{J}^2 Y$ be the second order semi-holonomic Ehresmann prolongation of Γ^0 and $C^{(2)}: \overline{J}^2 Y \to J^2 Y$ be the well-known symmetrization of second order semi-holonomic jets [4], [3]. Then $(\Gamma^0)^2 := C^{(2)} \circ (\Gamma^0 * \Gamma^0): Y \to J^2 Y$ is another second order connection on $Y \to M$ with the same underlying first order connection Γ^0 . Since $J^2 Y \to J^1 Y$ is an affine bundle with corresponding vector bundle $S^2 T^* M \otimes V Y$ over $J^1 Y$, we have the difference tensor field $\mathcal{E}(\Gamma) := \Gamma - (\Gamma^0)^2: Y \to S^2 T^* M \otimes V Y$. Using this tensor, we construct the next example.

EXAMPLE 2. For any $a \in A$ we have a tensor field $\mathcal{E}^{a}(\Gamma) : V^{A}Y \to S^{2}T^{*}M \otimes VV^{A}Y$ given by $\mathcal{E}^{a}(\Gamma)(X_{1}, X_{2})) := J_{a} \circ \mathcal{V}^{A}(\mathcal{E}(\Gamma)(X_{1}, X_{2}))$, where $J_{a} : VV^{A}Y \to VV^{A}Y$ is a canonical "affinor" defined fibre-wise from the canonical affinor $J_{a} : TT^{A}N \to TT^{A}N$, and $\mathcal{V}^{A}(\mathcal{E}(\Gamma)(X_{1}, X_{2}))$ is the flow prolongation of the vertical vector field $\mathcal{E}(\Gamma)(X_{1}, X_{2})$ to $V^{A}Y$ for any vector fields X_{1}, X_{2} on M. Since $J^{2}V^{A}Y \to J^{1}V^{A}Y$ is an affine bundle with the corresponding vector bundle $S^{2}T^{*}M \otimes VV^{A}Y$ over $J^{1}V^{A}Y$, we can define a second order connection $\mathcal{D}^{a}(\Gamma) : \mathcal{V}^{A,2}\Gamma + \mathcal{E}^{a}(\Gamma)$ on $V^{A}Y \to M$. The correspondence $\mathcal{D}^{a} : J^{2} \rightsquigarrow J^{2}V^{A}$ is an $\mathcal{F}\mathcal{M}_{m,n}$ -natural operator.

The main result of the paper is the following classification theorem.

THEOREM 1. Every $\mathcal{FM}_{m,n}$ -natural operators $\mathcal{D}: J^2 \rightsquigarrow J^2 V^A$ is $\mathcal{D}^a: J^2 \rightsquigarrow J^2 V^A$ for some $a \in A$.

The proof of Theorem 1 will occupy the rest of the paper. We prove three propositions. In Proposition 1, we show that any $\mathcal{FM}_{m,n}$ -natural operator $\mathcal{D} : J^2 \rightsquigarrow J^2 V^A$ is of finite order. In Proposition 2, we observe that for any $\mathcal{FM}_{m,n}$ -natural operator $\mathcal{D} : J^2 \rightsquigarrow J^2 V^A$ the underlying first order connection $\mathcal{D}(\Gamma)^0$ of $\mathcal{D}(\Gamma)$ on $V^A Y \to M$ is equal to the connection $\mathcal{V}^A \Gamma^0$, where Γ^0 is the underlying first order connection of the second order connection $\Gamma: Y \to J^2 Y$ on $Y \to M$. Thus we have the difference $\mathcal{F}\mathcal{M}_{m,n}$ -natural operator $\mathcal{E}: J^2 \rightsquigarrow S^2 T^* \otimes VV^A$ given by $\mathcal{E}(\Gamma) = \mathcal{D}(\Gamma) - \mathcal{V}^{A,2}\Gamma: V^A Y \to S^2 T^* M \otimes VV^A Y$. In Proposition 3, we prove that the vector space (over \mathbb{R}) of all $\mathcal{F}\mathcal{M}_{m,n}$ -natural operators $\mathcal{E}: J^2 \rightsquigarrow S^2 T^* \otimes VV^A$ is of dimension $\leq \dim_{\mathbb{R}} A$. Then Theorem 1 follows by a dimension argument.

1. Finite order. We start the proof of Theorem 1 from the following proposition.

PROPOSITION 1. Any $\mathcal{FM}_{m,n}$ -natural operator \mathcal{D} transforming second order general connections Γ on $Y \to M$ into second order general connections $\mathcal{D}(\Gamma)$ on $V^A Y \to M$ is of finite order.

Proof. (See also the proof of Proposition 3 in [6].) This follows from the proof of Proposition 23.7 in [5], which can be generalized to our situation in the following way. Let x^i, y^j (i = 1, ..., m, j = 1, ..., n) be the usual fibre coordinates on $\mathbb{R}^{m,n}$, the trivial bundle $\mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$. Let x^i, y^j_{α} for $\alpha \in (\mathbb{N} \cup \{0\})^m$ with $0 \leq |\alpha| \leq 2$ be the induced coordinates on $J^2 \mathbb{R}^{m,n}$. Consider the map $\varphi_{a,b} : \mathbb{R}^{m,n} \to \mathbb{R}^{m,n}, \varphi_{a,b}(x,y) = (ax, by)$. Fix some $r \in \mathbb{N}$ and choose $a = b^{-r}, 0 < b < 1$ arbitrary. Hence for every multiindex $\alpha = \alpha_1 + \alpha_2$, where α_1 includes all the derivatives with respect to the base coordinates while α_2 those with respect to the fibre coordinates, and for every second order general connection Γ on $\mathbb{R}^{m,n}$,

$$|\partial^{\alpha_1 + \alpha_2} (y^j_\beta \circ \varphi^*_{a,b} \Gamma)(0,0)| = b^{r(|\beta| + |\alpha_1|) + 1 - |\alpha_2|} |\partial^{\alpha_1 + \alpha_2} (y^j_\beta \circ \Gamma)(0,0)|$$

for all $|\beta| = 1, 2$, and so for all $|\alpha| \leq r$ we get

 $|\partial^{\alpha}(\varphi_{a,b}^{*}\Gamma)(0,0)| \leq b |\partial^{\alpha}\Gamma(0,0)|,$

where $|\partial^{\alpha}\Gamma(0,0)| = \sum_{j=1}^{n} \sum_{|\beta|=1,2} |\partial^{\alpha}(y_{\beta}^{j} \circ \Gamma)(0,0)|$. On the other hand, there is a compact subset $K \subset (V^{A}\mathbb{R}^{m,n})_{(0,0)} = T_{0}^{A}\mathbb{R}^{n}$ (K is a compact neighbourhood of $z_{0} = j^{A}0$) such that for any $z \in (V^{A}\mathbb{R}^{m,n})_{(0,0)}$ we will have $V^{A}\varphi_{a,b}(z) \in K$ for sufficiently small b. Hence Corollary 23.4 in [5] implies our assertion.

2. An underlying connection. Given a second order general connection $\Gamma: Y \to J^2 Y$ on $Y \to M$ we denote by $\Gamma^0: Y \to J^1 Y$ the underlying first order general connection on $Y \to M$.

PROPOSITION 2. Let \mathcal{D} be an $\mathcal{FM}_{m,n}$ -natural operator transforming second order general connections Γ on $Y \to M$ into second order general connections $\mathcal{D}(\Gamma)$ on $V^A Y \to M$. Then

$$(\mathcal{D}(\Gamma))^0 = (\mathcal{V}^{A,2}\Gamma)^0$$

for any second order general connection Γ on $Y \to M$.

Proof. Let x^i, y^j, y^j_{α} be as in the proof of Proposition 1. Let v^l be a coordinate system on A^n . Then on $J_0^1(\mathbb{R}^m, A^n)$ we have the induced coordinates v^l, v^l_k , where $l = 1, \ldots, \dim A^n$, $k = 1, \ldots, m$. Let Γ be a second order general connection on $\mathbb{R}^{m,n}$. We will study $(\mathcal{D}(\Gamma))^0_w \in (J^1 V^A \mathbb{R}^{m,n})_0 = J_0^1(\mathbb{R}^m, A^n)$ for $w \in (V^A \mathbb{R}^{m,n})_{(0,0)} = (T^A \mathbb{R}^n)_0$.

We fix an arbitrary w as above. By Proposition 1, \mathcal{E} is of finite order q. So, we can assume that $y^j_{\alpha} \circ \Gamma$ is a polynomial of degree q for any j, α as above, i.e. $y^j_{\alpha} \circ \Gamma(x, y) = \sum \Gamma^j_{\alpha, \beta, \varrho} x^\beta y^\varrho$ for $(x, y) \in \mathbb{R}^{m, n}$, where the sum is over all $\beta \in (\mathbb{N} \cup \{0\})^m$ and $\varrho \in (\mathbb{N} \cup \{0\})^n$ with $|\beta| + |\varrho| \leq q$, and $\Gamma^j_{\alpha, \beta, \varrho}$ are real numbers determined by Γ . Moreover, we have $y^j_{(0)} \circ \Gamma(x, y) = y^j$. We identify Γ with $(\Gamma^j_{\alpha, \beta, \varrho})$. Using the invariance of \mathcal{D} with respect to the base homotheties $t \operatorname{id}_{\mathbb{R}^m} \times \operatorname{id}_{\mathbb{R}^n}$ we obtain the homogeneity conditions

$$v^{l} \circ (\mathcal{D}(t^{|\alpha|+|\beta|} \Gamma^{j}_{\alpha,\beta,\varrho}))^{0}_{w} = v^{l} \circ (\mathcal{D}(\Gamma^{j}_{\alpha,\beta,\varrho}))^{0}_{w}$$

and

$$v_k^l \circ (\mathcal{D}(t^{|\alpha|+|\beta|} \Gamma^j_{\alpha,\beta,\varrho}))_w^0 = t v_k^l \circ (\mathcal{D}(\Gamma^j_{\alpha,\beta,\varrho}))_w^0.$$

Then by the homogeneous function theorem, $(\mathcal{D}(\Gamma))^0_w$ is independent of $\Gamma^j_{\alpha,\beta,\varrho}$ for $|\alpha| = 2$. This means that $(\mathcal{D}(\Gamma))^0$ over $(0,0) \in \mathbb{R}^m \times \mathbb{R}^n$ depends on a finite jet of Γ^0 at (0,0) only. Then we have a well-defined $\mathcal{FM}_{m,n}$ -natural operator \mathcal{D}^0 by $\mathcal{D}^0(\widetilde{\Gamma}) = (\mathcal{D}(\Gamma))^0$ for any first order general connection $\widetilde{\Gamma}$ on $Y \to M$, where Γ is a second order general connection on $Y \to M$ with $\Gamma^0 = \widetilde{\Gamma}$. By the above-mentioned result of [6], $\mathcal{D}^0 = \mathcal{V}^A$. This implies the equality in the proposition.

3. The main difficulty. The main difficulty in the proof of Theorem 1 is to establish the following proposition.

PROPOSITION 3. The vector space over \mathbb{R} of all $\mathcal{FM}_{m,n}$ -natural operators sending second order general connections Γ on $Y \to M$ into tensor fields $\mathcal{E}(\Gamma): V^A Y \to S^2 T^* M \otimes V V^A Y$ is of dimension $\leq \dim_{\mathbb{R}} A$.

To prove Proposition 3 we need some lemmas.

Let x^i, y^j, y^j_{α} and v^l be as in the proof of Proposition 2. We can of course assume that the v^l are obtained as follows. We choose a basis a_1, \ldots, a_K of A over \mathbb{R} . Let $(a_1, 0, \ldots, 0), \ldots, (a_K, 0, \ldots, 0), (0, a_{K+1}, 0, \ldots, 0), \ldots, (0, \ldots, 0, a_{nK})$ be the corresponding basis of A^n . Then $v^l, l = 1, \ldots, \dim A^n$, is the basis dual to the last one. Let \mathcal{E} be an $\mathcal{FM}_{m,n}$ -natural operator transforming second order connections Γ on $Y \to M$ into tensor fields $\mathcal{E}(\Gamma) : V^A Y \to S^2 T^* M \otimes V V^A Y$. We denote the order of \mathcal{E} by q (q is finite by Proposition 1).

LEMMA 1. If

$$\langle \mathcal{E}(\Gamma)_w, u \odot u \rangle = 0 \in V_w V^A \mathbb{R}^{m,n} = T_w T^A \mathbb{R}^n = T_w A^n$$

for all $w \in (V^A \mathbb{R}^{m,n})_{(0,0)} = T_0^A \mathbb{R}^n$, all $u \in T_0 \mathbb{R}^m$ and all second order general connections Γ on $\mathbb{R}^{m,n}$, then $\mathcal{E} = 0$.

Proof. This is an immediate consequence of the invariance of \mathcal{E} with respect to charts.

Using the invariance of \mathcal{E} with respect to $\mathcal{FM}_{m,n}$ -maps of the form $\varphi \times \mathrm{id}_{\mathbb{R}^n}$ for linear isomorphisms $\varphi : \mathbb{R}^m \to \mathbb{R}^m$, we have

LEMMA 2. If

$$\langle \mathcal{E}(\Gamma)_w, u_0 \odot u_0 \rangle = 0 \in T_w A^n$$

for all $w \in T_0^A \mathbb{R}^n$ and all second order general connections Γ on $\mathbb{R}^{m,n}$, where $u_0 := \frac{\partial}{\partial x^1}|_0$, then $\mathcal{E} = 0$.

Define

$$\Phi_w^l(\Gamma) := d_w v^l(\langle \mathcal{E}(\Gamma)_w, u_0 \odot u_0 \rangle) \in \mathbb{R}$$

for all $w \in T_0^A \mathbb{R}^n$, all second order connections Γ on $\mathbb{R}^{m,n}$ and $l = 1, \ldots, \dim A^n$.

LEMMA 3. If $\Phi_w^l(\Gamma) = 0$ for all w and Γ as above and $l = 1, \ldots, \dim A$, then $\mathcal{E} = 0$.

Proof. Because of the invariance of \mathcal{E} with respect to permutations of the fibred coordinates, from the assumption of the lemma we deduce that $\Phi_w^l(\Gamma) = 0$ for all w and Γ as above and $l = \dim A^n$. Then $\langle \mathcal{E}(\Gamma)_w, u_0 \odot u_0 \rangle = 0$ for all w and Γ as, and Lemma 2 ends the proof.

Because of the order of ${\mathcal E}$ we can assume that in the above lemmas we have

$$y^{j}_{\alpha} \circ \Gamma(x, y) = \sum \Gamma^{j}_{\alpha, \beta, \varrho} x^{\beta} y^{\varrho}$$

for all $(x, y) \in \mathbb{R}^{m,n}$, where the sum is over all $\beta \in (\mathbb{N} \cup \{0\})^m$ and $\varrho \in (\mathbb{N} \cup \{0\})^n$ with $|\beta| + |\varrho| \leq q$, and $\Gamma^j_{\alpha,\beta,\varrho}$ are real numbers determined by Γ . Moreover, we have $y^j_{(0)} \circ \Gamma(x, y) = y^j$.

We identify Γ with $(\Gamma^{j}_{\alpha,\beta,\varrho})$. Using the invariance of \mathcal{E} with respect to the base homotheties $(t^{1}x^{1},\ldots,t^{m}x^{m},y^{1},\ldots,y^{n})$ for $t^{j} > 0$, we get the homogeneity condition

$$(t^1)^2 \varPhi^l_w(\varGamma^j_{\alpha,\beta,\varrho}) = \varPhi^l_w(t^{\alpha+\beta} \varGamma^j_{\alpha,\beta,\varrho}).$$

Then by the homogeneous function theorem we can write

$$(*) \qquad \Phi^{l}_{w}(\Gamma) = \sum a^{\varrho}_{j} \Gamma^{j}_{(2,0,\dots,0),(0),\varrho} + \sum b^{\varrho}_{j} \Gamma^{j}_{(1,0\dots,0),(1,0,\dots,0),\varrho} + \sum c^{\varrho_{1},\varrho_{2}}_{j_{1},j_{2}} \Gamma^{j_{1}}_{(1,0,\dots,0),(0),\varrho_{1}} \Gamma^{j_{2}}_{(1,0,\dots,0),(0),\varrho_{2}}$$

for some uniquely determined real numbers $a_j^{\varrho} = a_j^{\varrho,l}(w)$, $b_j^{\varrho} = b_j^{\varrho,l}(w)$ and $c_{j_1,j_2}^{\varrho_1,\varrho_2,l} = c_{j_1,j_2}^{\varrho_1,\varrho_2,l}(w)$ (smoothly depending on w), where the first sum is over all $j = 1, \ldots, n$ and all $\varrho \in (\mathbb{N} \cup \{0\})^n$ with $|\varrho| \leq q$, the second sum is over all $j = 1, \ldots, n$ and all $\varrho \in (\mathbb{N} \cup \{0\})^n$ with $|\varrho| \leq q - 1$ and the third sum is over all $(\varrho_1, j_1) \leq (\varrho_2, j_2)$ for $j_1, j_2 = 1, \ldots, n$ and $\varrho_1, \varrho_2 \in (\mathbb{N} \cup \{0\})^n$ with $|\varrho_1| \leq q$ and $|\varrho_2| \leq q$ (here \leq means an ordering). Of course $(2, 0, \ldots, 0), (1, 0, \ldots, 0), (0) \in (\mathbb{N} \cup \{0\})^m$.

LEMMA 4. Assume that all a_j^{ϱ} , all b_j^{ϱ} and all $c_{j_1,j_2}^{\varrho_1,\varrho_2}$ defined by (*) are 0 for all $w \in T_0^A \mathbb{R}^n$ and all $l = 1, \ldots, \dim A$. Then $\mathcal{E} = 0$.

Proof. This is obvious in view of the previous lemma.

LEMMA 5. We have

$$a_j^{\varrho} + b_j^{\varrho} = 0$$

for all j, ρ , w in question and $l = 1, \ldots, \dim A$.

Proof. Fix ρ_0 and j_0 . Choose $\Gamma = (\Gamma^j_{\alpha,\beta,\rho})$ such that $\Gamma^{j_0}_{(1,0,\ldots,0),(0),\rho_0} = 1$, and $\Gamma^j_{\alpha,\beta,\rho} = 0$ for other (j,α,β,ρ) with $|\alpha| \ge 1$. Let $\varphi = (x^1 + \frac{1}{2}(x^1)^2, x^2,\ldots,x^m,y^1,\ldots,y^n)^{-1}$. Using the invariance of \mathcal{E} with respect to φ we have

$$\Phi^l_w(\varphi_*\Gamma) = \Phi^l_w(\Gamma)$$

because φ preserves w, v^l and $u_0 \odot u_0$. Set

$$\Phi^l_w(\Gamma) = a.$$

We have $j_{(0,0)}^q(\varphi_*\Gamma) = (\widetilde{\Gamma}^j_{\alpha,\beta,\varrho})$, where

$$\widetilde{\Gamma}_{(1,0,\dots,0),(0),\varrho_0}^{j_0} = 1, \qquad \widetilde{\Gamma}_{(2,0,\dots,0),(0),\varrho_0}^{j_0} = 1, \qquad \widetilde{\Gamma}_{(1,0,\dots,0),(1,0,\dots,0),\varrho_0}^{j_0} = 1$$

and other $\Gamma^{j}_{\alpha,\beta,\varrho}$ are zero for $|\alpha| = 1, 2$. (Indeed,

$$\Gamma(z,y) = j_z^2(y + y^{\varrho_0}(x^1 - z^1)e_{j_0}) \in J_z^2(\mathbb{R}^{m,n})_y.$$

where $\{e_j\}$ is the canonical basis in \mathbb{R}^n . Then

$$(\varphi_*\Gamma)(z,y) = j_z^2 \left(y + y^{\varrho_0} \left(x^1 + \frac{1}{2} (x^1)^2 - z^1 - \frac{1}{2} (z^1)^2 \right) e_{j_0} \right).$$

This implies the formulas.) Then

$$\Phi^l_w(\varphi_*\Gamma) = a_{j_0}^{\varrho_0} + b_{j_0}^{\varrho_0} + a.$$

Hence $a_{j_0}^{\varrho_0} + b_{j_0}^{\varrho_0} = 0.$

LEMMA 6. Suppose that all a_j^{ϱ} defined by (*) are zero for any w in question and $l = 1, \ldots, \dim A$. Then $\mathcal{E} = 0$.

Proof. By assumption and Lemma 5, all b_j^{ϱ} are zero. Then it is sufficient to show that $c_{j_1,j_2}^{\varrho_1,\varrho_2} = 0$ for all $\varrho_1, \varrho_2, j_1, j_2, w$ and l in question.

Fix $\rho_1, \rho_2, j_1, j_2, l, w$. Let $a, b \in \mathbb{R}$. Let Γ^0 be the trivial second order connection on $\mathbb{R}^{m,n}$ given by

$$\Gamma^0(z,y) = j_z^2(y) \in J_z^2(\mathbb{R}^{m,n})_y.$$

Then by (*) we have

$$\Phi^l_w(\Gamma^0) = 0.$$

Choose an $\mathcal{FM}_{m,n}$ -map $\psi : \mathbb{R}^{m,n} \to \mathbb{R}^{m,n}$ given by

$$\psi(x,y) = (x, y + ax^1 y^{\varrho_1} e_{j_1} + bx^1 y^{\varrho_2} e_{j_2}).$$

Then

$$\Phi^l_w(\psi_*\Gamma^0) = 0$$

because of the invariance of \mathcal{E} , u_0 , w and v^l with respect to ψ . Write $\psi^{-1}(x,y) = (x,\tilde{y})$. Then

$$(\psi_*\Gamma^0)(z,y) = j_z^2(\widetilde{y} + ax^1\widetilde{y}^{\varrho_1}e_{j_1} + bx^1\widetilde{y}^{\varrho_2}e_{j_2}).$$

Then by (*), $\Phi_w^l(\psi_*\Gamma^0)$ is a polynomial in a and b with the coefficient of ab equal to $c_{j_1,j_2}^{\varrho_1,\varrho_2}$ as all b_j^{ϱ} are zero. Therefore $c_{j_1,j_2}^{\varrho_1,\varrho_2} = 0$.

LEMMA 7. Suppose that all $a_j^{(0)}$ defined by (*) are zero for any w in question and $l = 1, \ldots, \dim A$. Then $\mathcal{E} = 0$.

Proof. For any $\varrho \in (\mathbb{N} \cup \{0\})^n$ and $j = 1, \ldots, n$, let $\Gamma^{\varrho, j}$ be the second order connection on $\mathbb{R}^{m,n}$ given by

$$\Gamma^{\varrho,j}(z,y) = j_z^2(y + (x^1 - z^1)^2 y^{\varrho} e_j), \quad (z,y) \in \mathbb{R}^{m,n}.$$

By (*) and the assumption of the lemma we have

$$d_w v^l \circ \langle \mathcal{E}(\Gamma^{(0),j})(w), u_0 \odot u_0 \rangle = \Phi^l_w(\Gamma^{(0),j}) = a_j^{(0),l}(w) = 0$$

for any $w \in (V^A \mathbb{R}^{m,n})_{(0,0)}$, j = 1, ..., n and $l = 1, ..., \dim_{\mathbb{R}} A$. Then by the invariance of \mathcal{E} with respect to the permutations of fibred coordinates we have

$$d_w v^l \circ \langle \mathcal{E}(\Gamma^{(0),j})(w), u_0 \odot u_0 \rangle = 0$$

for any $w \in (V^A \mathbb{R}^{m,n})_{(0,0)}, j = 1, \dots, n \text{ and } l = 1, \dots, \dim_{\mathbb{R}} A^n$. Therefore

$$\langle \mathcal{E}(\Gamma^{(0),j})(w), u_0 \odot u_0 \rangle = 0$$

for any $w \in (V^A \mathbb{R}^{m,n})_{(0,0)}$ and $j = 1, \ldots, n$. Let $\varrho \in (\mathbb{N} \cup \{0\})^n$, $1 \leq |\varrho| \leq q$, $j = 1, \ldots, n$. Let $\tau \in \mathbb{R}$ be sufficiently small. Consider an $\mathcal{FM}_{m,n}$ -map

 $\varphi^{\varrho j \tau}: \mathbb{R}^{m,n} \to \mathbb{R}^{m,n}, \varphi^{\varrho j \tau}(x,y) = (x, y + \tau y^{\varrho + 1_j} e_j)$ (defined near (0,0)). We see that

$$(\varphi_*^{\varrho j \tau} \Gamma^{(0),j})(z,y) = j_z^2 (y + (x^1 - z^1)^2 e_j + \tau(\varrho_j + 1)(x^1 - z^1)^2 y^{\varrho} e_j + \cdots).$$

Then using the invariance of \mathcal{E} with respect to $\varphi^{\varrho j \tau}$ we get

$$\langle \mathcal{E}(\varphi_*^{\varrho j \tau} \Gamma^{(0),j})(w), u_0 \odot u_0 \rangle = 0$$

for all $w \in (V^A \mathbb{R}^{m,n})_{(0,0)}$. The left hand side of the last formula is a polynomial in τ . The coefficient of $\tau = \tau^1$ in this polynomial is $(\varrho_j + 1) \langle \mathcal{E}(\Gamma^{\varrho,j})(w), u_0 \odot u_0 \rangle$. Then $\langle \mathcal{E}(\Gamma^{\varrho,j})(w), u_0 \odot u_0 \rangle = 0$ for any $w \in (V^A \mathbb{R}^{m,n})_{(0,0)}$. Thus $a_j^{\varrho} = 0$ for all l and w in question. Then $\mathcal{E} = 0$ by Lemma 6. \blacksquare

LEMMA 8. Suppose that all $a_j^{(0)}$ defined by (*) are zero for $l = 1, \ldots, \dim A$ and $w = 0 \in T_0^A \mathbb{R}^n$. Then $\mathcal{E} = 0$.

Proof. By (*) we have

$$\Phi_w^l(\Gamma^{(0),j}) = a_j^{(0)} = a_j^{(0),l}(w),$$

where $\Gamma^{(0),j}$ is defined in the proof of Lemma 7. Let $h_t = \mathrm{id}_{\mathbb{R}^m} \times t \mathrm{id}_{\mathbb{R}^n}$ be the fibre homothety. Then $((h_t)_*\Gamma^{(0),j})(z,y) = j_z^2(y+t(x^1-z^1)^2e_j)$, and then by (*) we have

$$\Phi_{tw}^{l}((h_{t})_{*}\Gamma^{(0),j}) = ta_{j}^{(0),l}(tw).$$

Hence by the invariance of \mathcal{E} with respect to the fibre homotheties h_t we get $\Phi_{tw}^l((h_t)_*\Gamma^{(0),j}) = t\Phi_w^l(\Gamma^{(0),j})$, and therefore

$$a_j^{(0),l}(w) = a_j^{(0),l}(tw).$$

Then putting $t \to 0$ and using the assumption of the lemma we see that $a_j^{(0)} = 0$ for any l and w in question. Then Lemma 7 ends the proof.

LEMMA 9. Suppose that $a_1^{(0)} = 0$ for $w = 0 \in T_0^A \mathbb{R}^n$ and $l = 1, \ldots, \dim A$. Then $\mathcal{E} = 0$.

Proof. Let $a_t = (x^1, tx^2, \ldots, tx^m, y^1, \ldots, y^n)$ for $t \neq 0$ be $\mathcal{FM}_{m,n}$ -maps. Clearly, $((a_t)_* \Gamma^{(0),j})(y,z) = j_z^2(y + t(x^1 - z^1)^2 e_j)$ for $j = 2, \ldots, n$. Then by (*) and the invariance of \mathcal{E} with respect to a_t we get

$$a_j^{(0),l}(0) = t a_j^{(0),l}(0)$$

for j = 2, ..., n. Then $a_j^{(0),l}(0) = 0$ for j = 1, ..., n (for j = 1 the equality holds by assumption). Now Lemma 8 ends the proof.

Proof of Proposition 3. This is an immediate consequence of Lemma 9.

Proof of Theorem 1. Let $\Gamma^{(0),1}$ be the second order connection on $\mathbb{R}^{m,n}$ as in the proof of Lemma 7. Let $\mathcal{E}^a : J^2 \rightsquigarrow S^2 T^* \otimes VV^A$ be the operators from Example 2 for $a \in A$. Let (a_{ν}) be a basis of A, and let (v^l) correspond to (a_{ν}) (as at the beginning of Section 3). One can show by a standard argument that the numbers $\Phi_0^l(\Gamma^{(0),1}) = a_1^{(0),l}(0)$ (see (*)) for $\mathcal{E} = \mathcal{E}^{a_{\nu}}$ are proportional (with a non-zero coefficient) to the Kronecker delta δ_{ν}^l . Hence the operators $\mathcal{E}^{a_{\nu}}$ are linearly independent. Theorem 1 is an immediate consequence of Propositions 1–3 by a dimension argument.

References

- A. Cabras and I. Kolář, Prolongations of second order connections to vertical Weil bundles, Arch. Math. (Brno) 37 (2001), 333–347.
- M. Doupovec and I. Kolář, Iteration of fiber product preserving bundle functors, Monatsh. Math. 134 (2001), 39–50.
- [3] M. Doupovec and W. M. Mikulski, Holonomic extension of connections and symmetrization of jets, Rep. Math. Phys., to appear.
- [4] I. Kolář, The contact of spaces with connections, J. Differential Geom. 7 (1972), 563–570.
- [5] I. Kolář, P. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- [6] I. Kolář and W. M. Mikulski, Natural lifting of connections to vertical bundles, Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 97–102.

Institute of Mathematics Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland E-mail: kurek@golem.umcs.lublin.pl Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

Received 4.3.2007 and in final form 6.6.2007

(1767)