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Differentiable solutions for a class of functional equations

by V. MURUGAN and P. V. SUBRAHMANYAM (Chennai)

Abstract. We give a set of sufficient conditions for the existence of differentiable
solutions for a functional equation involving a series of iterates, using a method different
from that of Baker and Zhang [Ann. Polon. Math. 73 (2000)].

1. Introduction. Iterative functional equations are functional equations
involving the iterates of unknown functions. Many authors, including Abel,
Babbage, Kuczma and Schréder, have contributed to this topic with a long
history (see [2]). The iterative root problem is the problem of finding a
function f which equals a given function F' after n iterations and it arises
in the theory of dynamical systems. In this context, Zhang [9] solved the
problem of finding a function f such that certain convex combinations of
the iterates of f equal F, i.e.,

(1.1) > Xifi(x) = F(a).
=1

This equation has been studied in a variety of ways and theorems on
the existence and uniqueness of solutions have been established by many
authors (see [3-9]). Baker and Zhang [1] studied (1.1) assuming \;’s are
functions of x and obtained continuous solutions. In this paper, we provide
sufficient conditions for the existence of differentiable solutions in the interval
I = [a,b] C R for the functional equation of the form

(1.2) > Xi(@)Hi(f'(x)) = F(z), ze€l,
=1

where \;(x) is a sequence of nonnegative functions on I such that Y2, \;(x)
=1, H;’s and F being given functions.
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2. Preliminaries. Consider the Banach space C'(I,R) of all contin-
uously differentiable functions from I into R with the norm || - |1, where

[8ll1 = [|oll + [[¢'[| and [[¢]] = supe; [¢(x)]. For M, M" > 0, we define
QN M, M) = {f € CHL,R) : | f"(&)| < M, |f'(z) = f'(y)| < M|z — yl}
and for § > 0,
Fs(M,M') = {f € Q"(M, M") : f(a) = a, f(b) =b, 6 < f'(2)}.
The proofs of the following propositions are easy and hence omitted.

PROPOSITION 2.1 (see [4]). If M <1 ord > 1 then F}(M, M) is empty,
and if M =1 or § =1 then f(sl(M, M) is either empty or contains only the
identity map.

PROPOSITION 2.2. The set Fi(M,M’) is a conver compact subset of
CY(I,R).
In view of Proposition 2.1, one cannot seek solutions of equations such as

(1.2) in F} (M, M') without imposing conditions on M. The following lemma
is essentially due to Zhang [9] and with the assumption that M > 1.

LEMMA 2.3. Let ¢,v € QY(M,M'). Then fori=1,2,...,
(1) [(¢") (2)] < M*,  Vzel,

2) 1(6') (z1) — (1) (w2)| < M’ L.

M—-1
3) Il — v < XL

i—1

(Mi—l)]acl—xQI, V.%'l,.%'QEI,

1

— il < ST o wll o
(4) 16" = (") <iM' Mg =o' ||+ M' M2 [M" —iM + (i~ D))o~ |-
LEMMA 2.4. For § >0, M >0 and M’ >0, if f € F}(M,M'), then f

is a diffeomorphism on I onto I and f~! € .7:11/M(1/(5, M'/83).

Proof. As 0 < 6 < f'(z) < M, and f(a) = a, f(b) = b, f is a strictly
increasing function from I onto itself and hence f is invertible on I and
fYa) =aand f71(b) =b. As (f~V(z) = 1/f'(f~'(x)), for x € I we have
(23) UM < (F) (@) < 1/6.

As f'(z) > 6 > 0and |f'(x) — f(y)| < M'|x —y|, for z,y € I, we have
—1y/ _ (g—1y _ 1 _ 1
@ =W e T rrw)

Lo - 1 p—
< ST @) - U W)

As |f'(x) = f'(y)| < M|z — y|, for z,y € I and by (2.3), we get

/

24) 1Y @)~ Y W) < S 1 ) — ) < el
The result follows from (2.3) and (2.4). =
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LEMMA 2.5 (Zhang [9]). Let ¢1 and ¢2 be two homeomorphisms from I
onto itself with |p;(x1) — ¢i(x2)| < M|xy — x2| for all z1,29 € I, i = 1,2,
for some M > 0. Then

61 — o|| < Mo — ¢3!

LEMMA 2.6. If f,g € F¥(M,M') where 0 < § <1 < M and M’ > 0,
then

(2.5) 1Y~ ) < X 55 Hf 9l + 5 = =4l

Proof. As f'(x) >0, for x € I, we get

1
f(f=H @) g9~ (=)

<SP @) = Fa @)
+|f’( @)~ g (g7 @)}
<5 SRRV el I P S

1

Using Lemma 2.5 for f~! and ¢!, we have

(2.6) 1Y = (7)) < 55 Hf 9H+ Lf =gl

and thus the result follows. m

PROPOSITION 2.7. The function f is a solution for the functional equa-
tion

(2.7) Y M@ Hi(f'(z)) = F(z), Va € [a,b],

i=1
if and only if g(x) = h=1(f(h(x))) is a solution for the functional equation
(2.8) Zui(x)Ri(gi(l“)) =G(z), Vrel01],

where p;(z) = \i(h(z)), Ri(z) = h~Y(H;(h(z))), G(z) = h~Y(F(h(x))) and
h(z) = a+ z(b—a) for z € [0,1] with Y ;2 Xi(z) = 1.

Proof. Let f be a solution for (2.7). Note that h and h~! are affine and
continuous maps and > -, ui(z) =1 for = € [0,1]. Therefore for = € [0, 1],
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;Ni(x)Ri(gz(x))_Jl_{gOZ] e ;u Ri(g'(x))
1m71 " (2)h Y (H; “Lfi(h(x
= s );M o (Hi(h(h ™ [ (h(2)))))
= lim N (H(f (h(
- J%OZZ] G k@)
= i [t Y 0|
= n7 [ lim > (@) Hi(f (h(x))|
=1
= 07D wal@) B (f (h(@)))| = n7 (P (h(@))).
=1
Thus

(29) > (@) Rilg'(2) = Gla).

The converse follows similarly. =

In view of Proposition 2.7, it suffices to prove the existence of solution
for the functional equation (1.2) on I = [0, 1].

3. Existence, uniqueness and stability. We begin with a lemma
concerning infinite series. Its proof is straightforward and hence omitted.

LEMMA 3.1. Let L; > 1, a;, i, A; and L) be nonnegative numbers for
1 € N and M > 1 satisfying

(o9} oo
d Bi<oo, > aLiM* < o, ZA Li + L)M? < cc.
j i=1
Then for any § > 0 and M' > 0, the following series denoted by Ky to Kg
are convergent:
1
K = Z{g o; + AZ'LZ'Mi_l},
i=1
1 2
Ky = Z{ﬁ Bi + 5 a; LM+ Az‘L;MQ(i_l)}
i=1
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s = 53ZO‘1+ZALMZ M 1_1 ’

- § Yo an s
0 i=1 M—1
1 & 1 & M1 1 .-
KSZ&?Z@WZ%LZ'W+5;%@M’

M1
ALIMZ 17
; T

+M’{6—13 iai - iAiL,-M"**”’[M"*l — (= 1M + (i — 2)]},

i=1 i=1
1 o o)
Ko =5 D+ Y MiLi(i— 1M
i=1 i=1
Now we state our main result on the existence of a solution to (1.2).

THEOREM 3.2. In addition to the hypotheses of Lemma 3.1, let \; be
a sequence of nonnegative functions on I such that \i(z) € Q' (ay, B;) and
vi < Xilx) < A; fori = 1,2,..., and > 2 Ni(z) = 1 for x € I. Let
H; € ]:lll (L;, L) where l; are nonnegative numbers for i =1,2,.... Suppose
0<do<1l, M* >0, and

00 4 1 00
KO = Z%liéz_l - g Zai > M2K3.

i=1 i=1

Then for any function F in f}(16(K0M7 M?*), the functional equation

D @) Hi(f'(x)) = F(x)
i=1

has a solution f in Fy (M, M') for every M’ > (M* + M?K,) /(Ko — M?K3).

The following lemmata will lead directly to the proof of Theorem 3.2.
For f € F}(M,M’), we define Ly : I — I by

(3.10) Z)\ Hi(f"Yz)), zel

LEMMA 3.3. In addition to the hypotheses of Theorem 3.2, suppose that
feF{(M,M"). Then Ly € Fi (K1, Ky + M'K3).
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Proof. 1t is clear that L(0)=0and L(1)=1. Because K1 =) o, {6 i
+ AiLiMi_l} < 00, the function Ly is differentiable and

= XS @R )

+ Z/\ NH(F @) (F 7 (@)
and by the hypothesis of Theorem 3.2, we have
(3.11) 0 < Ko < Liy(z) < K.
Thus
(3.12) 1/K1 < (L;1)(x) < 1/Ko.

From the definition of Ly(x) and the triangle inequality, for z,y € I,

L () = L (y)]
<D AN @)UY @ H(F @) + X @) HI @) (7 (2)
=1

=N DT O HT @) = MU @) HI T @) 7 W)
<D AN @Y @H(F @) = XU )G W) H( @)
i=1

+ N @) HF T @) @) =X @) H T @) W)

i=1
By Lemma 2.4, H;(z) < 1 and by the definition of A\;(x) and H;(x), for all ¢,
A <IN @)Y @) Hi(F @) = X ) ) Hi(f 7~ (2)]
NN W H(F @) = XU @) D W) H(F 7 W)l
< @D (@) = XNE ) W)
+ sl B @) — (W)
< INFTH@) = XU ()]
1

NN @) = D @)+ 5 alil 71 @) = £ )]
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In view of Lemmas 2.3 and 2.4, we get

!

1. M 1 .
(3.13) A< < Gilf ) — ()!+ g ailt —yl + s ailiM Y -yl

M 1
{52@ 0414—5041L]\4Z 1}\x—y\

Again for each ¢,

B < IN(fH @) H{( (@) = N ) H (P @)Y (@)
+ N DNE T @D @) = (D W)l
By (1) and (2) of Lemma 2.3 and definitions of \;(z) and H;(z), we get

By < M N(F7H @) Hi(F7 (@) = M(f T W) HI(F7 ()]
+ A Lil (F71 (@) = (F71) ()]
< MUTHIN( @) = M ) HET(F 7 (@)
N DHHE(F @) = Hi (P )}

Mt —1
+ M'A; L M*™ QT

Using the definitions of \;(xz) and H;(z), and Lemmas 2.3 and 2.4, we get
(3.14) B; < i LiM"™![f 7 (@) — fTH )| + ALiMTHF T @) = £ ()l

lz —yl.

M=t —1
+ M'A;Li M~ 2T|a}—y|
1
< SaiLiM" 1!x—y|+/1L’M2(l Dz —y|
. Mz 1 _

+MIAZ‘LZ‘M1 2 7M |IL’ - y\
From (3.13) and (3.14), for x,y € I we get
(3.15) [Ly(x) = Ly (y)| < (K2 + M'K3)|z —y|.

Thus, by (3.11) and (3.15), Ly is in Fj (K1, K2+ M'K3). u

LEMMA 3.4. In addition to the hypotheses of Theorem 3.2, suppose that
frg € FX(M,M"). Then

(1) 1Ly — Lgll < Kallf =gl
_ Ky
) (L7 = Lo < oA —
(ii) [[L g 1< e If — gll,
(iii) 1L} — Lyl < Ks||f — gl + Kell f" = 4l

K. K
() (L7 =(Lg')l < K4 (K2+M'K3)+ Hf gH+ Hf =4Il

0
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Proof. For x € I and f,g € F3(M,M'),

Ly (z !<Z|A Hi(f7H(x)) = Xi(g™ (2)) Hi(g" ™ (2)))]

< Z{Iki(f‘l(l’)) = Xilg ™ @) Hi(f 7 (@)
=1

+ilg™ @) Hi(f7 (@) = Hilg" ™ (2))1}.
From Lemmas 2.3 and 2.5 and the definitions of A\;(x) and H;(x), we get

|1 Ly(z )| < Z{az!f g7 @)+ ALl F = g

M? 1
Z{lal—i—AL =i -l

Therefore,
(3.16) 1Ly = Lgll < Kullf = gll,
proving (i). By (3.12), for f € F}(M, M),

_ _ 1
(3.17) L7 (x) = Ly ()| < g Tl
So, from Lemma 2.5, and (3.16) we get
_ 1 Ky
3.18 L' — LY < — Ly — Lyl < —|If -
(3.18) 1" = Lyl = 7 Iy = Loll < 2 [1f = gll;

proving (ii). Now for x € I,
| L (x) — Ly ()|

< D AN @)UY @H( @) + M @) HI @) (F 7 (2)
i=1
= Xilg (@) (g™ (@) Hilg' ™ (2)) = Xilg™ (@) Hi(g" (2))(g'™) ()]}
< D AN @)UY @ Hi(f N @) = Nl @) (97 (@) Hilg"™ (x)]
i=1

+ N @) HI T @) T (@) = Xilg™ @) Hi (g™ (@) (9" ()]}
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Using Lemmas 2.3 and 2.4, for each ¢ we get

(319) €< N @)U (@)~ Ao ()
HX ™ (@) (oY ) [ w)
< NG )~ Mg~ @) @)

FNT NG @) - (07 (@)

-1
T A YV
L BIF gl + 2 il — gl + il o)

1 M’l—l
= iLz
+saili ————|f gl

Further, for each 1,

Di = N(f~ @) Hi (@) (f71) (@) = Xl (@) Hi(g"™ (@) ("™ ()]
< (@) = Ailg T @D HELF T @)Y ()]

(@)(F 71 (@) = Hi(gH(2))(g") ()]

i~ (@) [HH (7 ()]

() = Hi(g™ (@)} + ALl (71 = (g1l

g~ @) Hi(f~ (2))]
Hi(g"!(x))]

<

+Xilg ™ )| 1= (7
< MTHIN( T @) = N
+Xilg ™ )| | H (T
Applying Lemma 2.3, we get

1 i i—1 pi— i
(3.20) Di < S ailiM HIF =gl + AL M = g

+ALi(i = )M 72| f =4
+MALM 7MY = (i = DM+ (- 2)]||f — gl
< Loz g+ azpri MLy
+ AL = )M f = o
+ M ALM M = (i = )M + (i = 2)]1f — 9]
Using (3.19) and (3.20), we get

(3.21) |L(z) — Ly(@)] < K5 f — gll + Kol £ = gl
Thus (iii) is established.
For f,g € F}(M,M') and z € I,

(L7 (@) = (L)) (2)] = L’f(Lj?l(fL‘)) - (L;(Ll,rl(x)) ‘
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Using (3.11) we have

1

(LY (@) — (LY ()] < K2 L (L7 () — Ly (L ()]

< o LG @) — I (L7 @)
0
+ Ly (L7 () = Ly(Ly ()]}
From (3.15) and (3.21) we have
(L) () = (L)) (2)] < Kig {Ks|If = gll + Ksl| f = 'l
+ (Ko + M'K3)| L7 — L1}

Further using (3.18) to estimate HL;l - Lg_1||, we get

_ _ 1
1LY = (LYl < 5 {EIf = gl + Kolf = |
0
Ky
+ K

Ko (K2 + M'K3)| f — gll},

thus proving (iv) of Lemma 3.4 as well. m

Proof of Theorem 8.2. Define T : F} (M, M') — C'(I,R) by

(3.22) Tf(x) = (L") (F(x)) for f e FH(M, M),

By the definitions of Ly and F' we get T'f(0) = 0 and T f(1) = 1. Now
(3.23) Tf'(«) = (L7 (F(x)F'(x)

and so § = KL1K15 <Tf'(z) < KLOKOM = M. Hence

(3.24) §<Tf(x) <M.

For x,y in I,

ITf' () = Tf'(y)] < (L7 (F(a)F'(x) = (L7 (F(y) F'(y)l
<|(LFY (F(a) = (L7 (F)| [F' ()]
HILFH (FW)F' () = F'(y)]-
Applying Lemma 2.4 for L; € ‘7:11(0 (K1, Ky + M'K3) and using the definition
of F', we get
75/ (a) = 5 (0)] € T KoM IP(@) - P+

_ M2(Kp + M'Ky) + M*
< o

[z — ]

|z —yl.
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As M' > (M* + M?K>5) /(Ko — M?K3), we have
(3.25) ITf' () = Tf(y)] < M|z —y|.

Hence T is a self-map of F} (M, M').
We now prove that 7" is continuous. For f,g € F}(M,M') and = € I,

Tf(x) = Tg(x)| = |L;H(F(x)) = Ly (F())]
1
-1 -1
< ”Lf _Lg | < ?0 HLf — Lg||.
So, by Lemma 3.4, we have

K

(3.26) ITf ~Tgll < 2= If =gl
0

and

Tf'(x) = Tg' ()| = |(L;") (F(2)F'(x) - (Lg
< KoM|(LyY) (F()) = (LgY) (F(2))].

Using Lemma 3.4(iv), we get
Tf'(z) = Tq'(z)]

/
< KOM{ Ky(Ky+ M'K3)

K3

17 ol + 2 2 s - ol + Ko L= H}

Therefore,
(3:27) |Tf =Ty
MK4(K2 + M Kg)
Consequently, from (3.26) and (3.27), we have
ITf—Tglly = ITf —Tgll + |Tf —Tg'|

MK5 MKG

If =gl + 1f =gl + 1 =gl

Ky MK,
< == — Ko+ MK
< If—gll+ —= KZ (K2 + 3)If —gll
MK5 MK6
1f—gll + If =4l
Hence
(3.28) |Tf—Tgll1 < ollf — gl
where K, MK MKy MK
4 / 5 6
= Ko+ MK .
0 max{ o + K2 (K2 + 3) + Ko ' Ko }

This proves that T is continuous. By Proposition 2.2, T is a continu-
ous self-map of the convex, compact subset f(}(M, M') of CY(I,R). So, by
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Schauder’s fixed point theorem, T' has a fixed point, which is a solution of
the functional equation (1.2). =

REMARK 3.5. Clearly, by the hypothesis of Theorem 3.2, y; and [ are
positive.
THEOREM 3.6. In addition to the hypotheses of Theorem 3.2, let
Ky MKy MKs MKg
= Ky + M'K. 1.
0 maX{K0+ KQ (K2 + 3) + Ko KO}<

Then for F € .7:K15(K0M, M*), the functional equation (1.2) has a unique
solution f in ]:51(M, M) and the solution f depends continuously on the
function F.

Proof. As ¢ < 1, the uniqueness of the solution follows from the Banach
contraction principle for T'. Let F,G € .7-}1(1 s(KoM,M*), and let f and g be
the solutions for the functional equations involving F' and G respectively.

Thus L;l(F(:c)) = f(x) and L;l(G’(x)) = g(z) for x € I. So,

|f(z) = g(2)] = |L7 ' (F(2)) - Ly (G(z))]
< L7 (F(2)) = Ly (F(x))| + |Lg  (F(x)) = Ly Y (G(x))]

1
—1 -1
<Ly =Lyl + o I1F =Gl
Using Lemma 3.4, we get
Ky 1
3.29 —gll < —If = — ||F — G|
(3:29) I£ =gl < 2 1f =gl + = I1F ~ |

From (3.12) and the definition of F, for  in I, we have
|f' (@) = ¢ (@)] = [(L; 1) (F (@) F'(z) = (L) (G(2))G' ()]
< LY (F(x) = (Lg) (G@)[|F' ()]
+I(Ly ) (G@)| |F'(2) - G ()]
<K0M{\(L D (F(2) = Ly (F(2)]
(

+1(Lg ) (F(2)) = (Ly )(G(m))!}+Ki0\F’(w)—G’(x)!-

By Lemmas 3.3 and 3.4(iv), we get

_ _ Koy + M'K3
1= < Kode{ ey - oty + EE S -
0

1
—|F -
i 17 =
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Ky , K K, ., ,
< KogM< —(Ky+ MK — g/l +=\lf —gll + = —
=~ 0 {Kg( 2 3)Hf gH KQH gH Kg”f g H

KoM
K3

Thus we have

+— (Ko + M'K3)||F - G| —|— — HF' edl

M Ky + M'K3
(3.30) =4I| £ 7= Ksllf — gl + Kell /' = ¢'| + ——F——IF = G|
K[) KO
K4(K2 + M,KZ%) 1 / !
— — |[F" =G|
e TR | S el
From (3.29) and (3.30) we get
Ky+ MKs MK4(K2—|—M/K3)
I gl < { A 4 AR =
0
MK6 1 M(K2+M,K3)
=4+ {— + F -Gl
Lf =4l e K2 | |
1 M(KQ —+ M/Kg)
SQW—Mh+{EYF I e~
0
Thus
1 1 M<K2 —+ M/Kg)
B30 I -ghs e { e PR o,
0
which proves the stability. =
Now we give an example to illustrate the main theorem.
EXAMPLE 1. Consider the functional equation
> ; 1 T
(3.32) Z Xi(a) Hi(f'(x)) = 5 [1 + x — cos 7] , Yz elo,1],

where

1 7
Ax)=1——(e"—-1—2), Xi(z)= E fori=2,3,...,

1z
k k
with k = 27¢%, F(z) = §[1+x—cos(mz/2)] € .7:11/2((% +2)/4,7%/8), Hy(z) =
z € F1(1,0) and H(x) = 21 € F}(i —1,(i — 1)(i — 2)) for each i > 2.
Here l; =1, L1 =1, L} =0,m=1—-(e—1)/k, A1 =1, 01 = (e — 1) /k,
Bi=e/kand l; =0, L; =i—1, L} = (i — 1)(i — 2), 7; = 0,
11 1 1 1 1
N i § Ty o
for each 7 > 2.
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For M = 3 and § = 1/4 it is easily seen that the series ) .°, f;,
S Ai{Li + LI} M2 and 300, oy L M2 are convergent. Now

[e.e]

1 .
K| = Z{Sa’ —|—A7;LZ'MZ_1}
=1
e—1 <=1 1 ey |
= — 1 _ 1—1
{ k +;k(i—1)!}+ kZ:; i
e—1 e—1 1 & 1
<4 - M=t 41
= { F TR }H;Z;(@—w +
8(e—1)

and hence K760 < 1/2. Moreover,
o0 [e.9] [e.9]
1 1 1 e—1 2(e-1)
K:§ -1-511__2: = __E: =1 _
’ i=1 i 05 tTS i=1 " K ok

1
=1-—[e—-1)2+9)] =1

— 55 lle— D@+ 1/4)] > 2/3

and

1 & 1 & , ,
K= > ai+ > ALMTEMIT - 1)
i=1 =1

M —14
2(e — 1) 1 i — 1 g
<4_3‘ M2’L3
= k +l<:(M—)ZZ:; i
27(e — 1) M 1 wiioy _ 27(e—1) MM
< M2-2) <
ST +k(M—1)ZZ;(z—2)' ST TR
T(e —
_2e-1) 1 3, 1 1 2

079 2P 2° S2.3 18 27

so that M2?Ks < 2/3. This implies that Ko > M2?K3. As KoM > 2 and
K10 < 1/2 we have F € ]:11/2((7T+2)/4,7T2/8) - f}(lé(KoM,M*) where
M* = 72 /8. It is easy to prove that Ky < 1 and Kq— M?K3 > 1/4. Thus by

Theorem 3.2, the functional equation (3.32) has a solution f in F{ o5(3, M)
for every M’ > 4(mw?/8 + 9), since

4 7T2+9 >M*+MzK2
8 Ko — M2K3 '
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We also deduce a corollary which provides a set of sufficient conditions
for the existence of smooth solutions to the functional equation

(3.33) Z Xi(2)H; (fi(2)) = F(x).

COROLLARY 3.7. Let \; € QY (ay, 3;) be nonnegative functions on I for
each i = 1,...,n such that v; < X\(z) < A; where oy, Bi,vi and A; are
nonnegative numbers for i = 1,...,n and Y " Ni(x) = 1 for x € I. Let
H; € .7:1% (L;, L}) where l;, L;, L are nonnegative numbers for i = 1,...,n.
Let 0 <d <1, M >1 and M* > 0. Define

Ko = zn:%'lzﬁi*l - %Zn:au
i=1 i=1
Ky = znj{% o + AiLiMi—l},

=1
n

1 2 . a
Ky = 2{5—2 Bit S i LiM' ™t 4 ALMPC ”},
i=1
I - o M1
i=1 i=1
Suppose that Koy > M?Ks. Then for any F in f}(lé(KoM, M*), the func-
tional equation (3.33) has a solution f in FY(M,M’) for every M’ >
(M* + M?K>5) /(Ko — M?K3).
Proof. This follows directly from Theorem 3.2, upon choosing A;(z) = 0
and Hi(x) =0fori>n. =
EXAMPLE 2. Consider the functional equation
(3.34)  4[(4242 — 2) f(z) + (f%(2)) 2 + 2 (f3(2))°] = 4243(32% + ),z € [0, 1].
In order to apply Corollary 3.7, set Ay = (4242 — x)/4243, Ay = 1/4243,
A3 = x/4243, Hy(z) = z, Ha(x) = 22, H3(z) = 2° and F(z) = (322 + z).
It can be easily seen that
4241 4242 1

M= iy M Ty Ty M0 b bl =0
1
M=o =y me=Hh=0k=0, 2 2
1
73 207 A3 as, /63 :0:l37 L3 :57 Lé = 20.

T 4243
For 6 =1/8, M =2 and M* = 3/2, it is readily seen that
4225 4282 664 1056

0= 4943’ 1™ 4943 27 4943 37 1243
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Hence
4225 1056 1 M* + M2K,
Ko — M?K5 = —4. = d ——— 2 —18041/2.
0 37 4243 1243~ 4243 MY K, = M2K; /
Clearly

1 1 7

Thus F € Fj s(KoM, M*).
By Corollary 3.7, the functional equation (3.34) has a solution f in
.7:11/8(2,M’) for every M’ > 18041/2.

The concluding corollary answers a question on the existence of smooth
solution raised by Baker and Zhang [1].

COROLLARY 3.8. Let \; € QY (a, B;) be nonnegative functions on I for
each i = 1,...,n such that v; < N\(z) < A; where oy, Bi,vi and A; are
nonnegative numbers for i = 1,...,n and Y 1 Ni(x) = 1 for x € I. Let
0<d<1l, M>1and M* > 0. Define

Ko=) 7" = %Zai,
=1 =1
Ky = Z{%ai +Al-MH},

i=1

" (1 2 .
K, ZZ{ﬁﬁH— gaiMZ 1},

=1
1 — - o, M1
K3 = — : AMT2

Suppose further that Ko > M?Ks. Then for any F in .7:11<15(K0M, M*), the

functional equation
n

D i) fi(x) = F(x)
i=1
has a solution f in F} (M, M') for every M'>(M* + M2K5) /(Ko — M?K3).

Proof. This follows directly from Corollary 3.7, upon choosing H;(z) = x
fore=1,...,n. =
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