An existence and localization theorem for the solutions of a Dirichlet problem

by GIOVANNI ANELLO and GIUSEPPE CORDARO (Messina)

Abstract. We establish an existence theorem for a Dirichlet problem with homogeneous boundary conditions by using a general variational principle of Ricceri.

1. Introduction and statement of the result. The aim of this paper is to establish the following result:

THEOREM 1. Suppose that Ω is a bounded open set in \mathbb{R}^N , $N \geq 3$, with sufficiently regular boundary $\partial \Omega$ and $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function. Let s = 2N/(N-2) and suppose that there exist $\gamma \in]2/s, 1[$, $p \in]1, \gamma s - 1[$, $\alpha \in L^{\gamma s/(\gamma s - 1)}(\Omega)$ and $\beta \in L^{1/(1-\gamma)}(\Omega)$ such that

(1) $|f(x,t)| \le \alpha(x) + \beta(x)|t|^p$ almost everywhere in $\Omega \times \mathbb{R}$

and

(2)
$$\|\alpha\|_{L^{s\gamma/(s\gamma-1)}(\Omega)}^{p-1}\|\beta\|_{L^{1/(1-\gamma)}(\Omega)} < \frac{(p-1)^{p-1}}{p^p c_1(\gamma)^{p-1} c_2(\gamma)^{p+1}},$$

where $c_1(\gamma)$ and $c_2(\gamma)$ are the embedding constants of $W^{1,2}(\Omega)$ in $L^{s\gamma}(\Omega)$ and $L^{(p+1)/\gamma}(\Omega)$ respectively. Then the problem

(P)
$$\begin{cases} -\Delta u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

has a strong solution \overline{u} such that $\|\overline{u}\| \leq k$, where k is the smallest real root of the equation

$$c_2(\gamma)^{p+1} \|\beta\|_{L^{1/(1-\gamma)}(\Omega)} r^p + c_1(\gamma) \|\alpha\|_{L^{s\gamma/(s\gamma-1)}(\Omega)} - r = 0.$$

We recall that a *strong solution* of problem (P) is a function $u \in W_0^{1,2}(\Omega) \cap W^{2,2}(\Omega)$ such that

$$-\Delta u(x) = f(x, u(x))$$
 almost everywhere in Ω ,

²⁰⁰⁰ Mathematics Subject Classification: Primary 35J20.

Key words and phrases: Dirichlet problem, Ricceri variational principle.

while a weak solution of problem (P) is a function $u \in W_0^{1,2}(\Omega)$ such that

$$\int_{\Omega} \nabla u(x) \nabla v(x) \, dx - \int_{\Omega} f(x, u(x)) v(x) \, dx = 0$$

for all $v \in W_0^{1,2}(\Omega)$.

The proof of Theorem 1 is essentially based on the following general variational principle of B. Ricceri which has already been used in several works [6, 7, 8].

THEOREM A ([5, Theorem 2.5]). Let X a real reflexive Banach space, and $\Phi, \Psi : X \to \mathbb{R}$ two sequentially weakly lower semicontinuous and Gateaux differentiable functionals. Moreover, assume that Ψ is (strongly) continuous and satisfies

$$\lim_{\|x\| \to \infty} \Psi(x) = \infty.$$

For every $r > \inf_X \Psi$, put

$$\varphi(r) = \inf_{x \in \Psi^{-1}(]-\infty, r[)} \frac{\Phi(x) - \inf_{\operatorname{cl}_w(\Psi^{-1}(]-\infty, r[))} \Phi(x)}{r - \Psi(x)}$$

where $\operatorname{cl}_w(\Psi^{-1}(]-\infty,r[))$ is the closure of $\Psi^{-1}(]-\infty,r[)$ with respect to the weak topology. Then, for every $r > \inf_X \Psi$ and every $\lambda > \varphi(r)$, the functional $\Phi + \lambda \Psi$ has at least one critical point in $\Psi^{-1}(]-\infty,r[)$.

From Theorem A, we deduce that if there exists $r > \inf_X \Psi$ such that

(3)
$$\inf_{x \in \Psi^{-1}(]-\infty, r[)} \frac{\Phi(x) - \inf_{\mathrm{cl}_w(\Psi^{-1}(]-\infty, r[))} \Phi}{r - \Psi(x)} < \frac{1}{2},$$

then the functional $\Phi + \frac{1}{2}\Psi$ has at least one critical point in $\Psi^{-1}(]-\infty, r[)$.

We apply Theorem A to suitable functionals Φ and Ψ satisfying condition (3) and defined on the Sobolev space $W_0^{1,2}(\Omega)$ equipped with the norm $\|\cdot\| = (\int_{\Omega} |\nabla(\cdot)|^2 dx)^{1/2}.$

There are many works in which problem (P) is studied. Nevertheless, because of the type of our assumptions, only a few results can be compared with ours. Among these, we find interesting Theorem 3.1 of [4]. In that result the strong solution of problem (P) belongs to $W_0^{1,\sigma}(\Omega) \cap W^{2,\sigma}(\Omega)$ for some $\sigma > N/2$ and the right hand side is a function $f : \Omega \times \mathbb{R} \to \mathbb{R}$ which can be discontinuous in both variables while, in our case, f must be a Carathéodory function. In [4], the following condition on f is imposed:

(4) There exist r > 0 and $\sigma > N/2$ such that $x \mapsto \sup_{|t| \le Br} |f(x,t)|$ belongs to $L^{\sigma}(\Omega)$, and its norm in this space is not greater than r, where

$$B = \sup_{u \in W_0^{1,\sigma}(\Omega) \cap W^{2,\sigma}(\Omega)} \frac{\operatorname{ess\,sup}_{x \in \Omega} |u(x)|}{\|u\|_{L^{\sigma}(\Omega)}}$$

108

It is easily seen that condition (4) is satisfied if f is a Carathéodory function and there exist $\alpha, \beta \in L^{\sigma}(\Omega)$ and p > 1 such that

(5)
$$|f(x,t)| \le \alpha(x) + \beta(x)|t|^p$$
 almost everywhere in $\Omega \times \mathbb{R}$

and

(6)
$$\|\alpha\|_{L^{\sigma}(\Omega)}^{p-1}\|\beta\|_{L^{\sigma}(\Omega)} < \frac{(p-1)^{p-1}}{p^{p}B^{p}}.$$

Conditions (5) and (6) are similar to (1) and (2) respectively but, in our case, the summability conditions on α and β are different and this allows us to treat some problems which are not covered by Theorem 3.1 of [4]. A simple example in which conditions (1) and (2) are fulfilled and condition (4) is violated, is the following.

EXAMPLE 1. Let N = 3 and $\sigma = 2$. Then

$$\tilde{c} := c_1(\gamma)^{p-1} c_2(\gamma)^{p+1} \le m(\Omega)^{\frac{p-1-2\gamma p+6\gamma^2}{6\gamma}} c^{2p},$$

where

$$c = \sup_{u \in W_0^{1,2}(\Omega)} \frac{\|u\|_{L^6(\Omega)}}{\|u\|}$$

The exact value of c^2 is $\frac{2}{3\pi}\sqrt[3]{\frac{2}{\pi}}$ (see [3, p. 115]).

Now, we take two functions $\alpha \in L^{4/3}(\Omega)$, $\beta \in L^3(\Omega)$ non-negative almost everywhere in Ω and such that

(7)
$$\|\alpha\|_{L^{4/3}(\Omega)} \|\beta\|_{L^{3}(\Omega)} < \frac{9\pi^{2}\sqrt[3]{\pi^{2}}}{m(\Omega)^{1/4} 16\sqrt[3]{4}}$$

Put

$$f(x,t) = \alpha(x) + \beta(x)|t|^2$$
 for all $(x,t) \in \Omega \times \mathbb{R}$.

Since s = 6, if we choose $\gamma = 2/3$ then $1/(1 - \gamma) = 3$ and $s\gamma/(s\gamma - 1) = 4/3$. Further, in this setting, we have

$$\tilde{c} \le m(\Omega)^{1/4} c^2.$$

Thus α, β, f satisfy all the assumptions of Theorem 1 with p = 2 and $\gamma = 2/3$.

Observe that if $\alpha \notin L^{3/2}(\Omega)$, then condition (4) is violated because $\sup_{|t| \leq Br} f(\cdot, t) \notin L^{\sigma}(\Omega)$ for all $\sigma > 3/2$ and r > 0.

Another result where the growth condition on f is similar to ours is Theorem 1 of [10]. Nevertheless, if the function f is as in the previous example with $\alpha \notin L^{\infty}(\Omega)$ and β is not identically 0, then f does not satisfy the assumptions in [10].

2. Proof of Theorem 1. We put

$$\Psi(u) = \|u\|^2, \quad \Phi(u) = \int_{\Omega} \left(\int_{0}^{u(x)} f(x,t) dt\right) dx$$

for all $u \in W_0^{1,2}(\Omega)$. Thanks to condition (2) the operator Φ is well defined. Gateaux differentiable and sequentially weakly lower semicontinuous. So is the operator Ψ , which is strongly continuous as well. Now, the weak solutions of problem (P) are exactly the critical points of the functional $\frac{1}{2}\Psi + \Phi$. Moreover, by Theorem 8.2' of [1], the weak solutions of problem (P) are strong solutions. Thus, our goal is achieved if we show that condition (1) holds with this choice of Φ and Ψ . In fact, in this case, given a sequence $\{r_n\}_{n\in\mathbb{N}}$ of real numbers with $r_n > k$ and $r_n \to k$ we find a strong solution u_n of problem (P) whose norm is smaller than r_n , so $\{u_n\}_{n\in\mathbb{N}}$ admits a subsequence, still denoted by $\{u_n\}_{n\in\mathbb{N}}$, weakly converging to \overline{u} in $W_0^{1,2}(\Omega)$ and, by an embedding theorem, strongly converging to \overline{u} in $L^p(\Omega)$. Now, given $v \in W_0^{1,2}(\Omega)$, taking into account the growth condition on f, we deduce from well known results that the sequence $\{f(\cdot, u_n(\cdot))v(\cdot)\}_{n\in\mathbb{N}}$ converges almost everywhere to $f(\cdot, \overline{u}(\cdot))v(\cdot)$ and it is dominated by an $L^1(\Omega)$ function. Hence, $\int_{\Omega} f(x, u_n(x))v(x) dx \to \int_{\Omega} f(x, \overline{u}(x))v(x) dx$. By the previous considerations we conclude that \overline{u} is a solution of problem (P) with $\|\overline{u}\| \leq k.$

For all r > 0 put

$$\mu(r) = \sup_{\|v\| \le r} \int_{\Omega} \left(\int_{0}^{v(x)} f(x,t) \, dt \right) dx.$$

We observe that, thanks to condition (2) and the fact that $W_0^{1,2}(\Omega)$ is compactly embedded into $L^q(\Omega)$ for all $q \in [2, 2N/(N-2)]$, the function μ is well defined. Obviously, μ is non-decreasing in $[0, \infty]$.

Now, as is easily seen, condition (1) is equivalent to

$$\inf_{r>0} \inf_{s< r} \frac{\mu(r) - \mu(s)}{r^2 - s^2} < \frac{1}{2}.$$

This, in turn, is equivalent to the existence of r > 0 and s < r such that

$$\mu(s) - \frac{1}{2}s^2 > \mu(r) - \frac{1}{2}r^2.$$

This holds if there exists r > 0 such that

$$\limsup_{h \to 0} \frac{\mu(r+h) - \mu(r)}{h} < r$$

We show that this is indeed case. In fact, for every r > 0 and every $h \in]-r, \infty[$ one has

$$\begin{split} \frac{1}{h} \left(\mu(r+h) - \mu(r) \right) \\ &\leq \frac{1}{|h|} \Big| \sup_{\|v\| \leq r+h} \int_{\Omega} \left(\int_{0}^{v(x)} f(x,t) \, dt \right) dx - \sup_{\|v\| \leq r} \int_{\Omega} \left(\int_{0}^{v(x)} f(x,t) \, dt \right) dx \Big| \\ &= \frac{1}{|h|} \Big| \sup_{\|v\| \leq 1} \int_{\Omega} \left(\int_{0}^{(r+h)v(x)} f(x,t) \, dt \right) dx - \sup_{\|v\| \leq 1} \int_{\Omega} \left(\int_{0}^{rv(x)} f(x,t) \, dt \right) dx \Big| \\ &\leq \frac{1}{|h|} \sup_{\|v\| \leq 1} \int_{\Omega} \Big| \int_{rv(x)}^{(r+h)v(x)} |f(x,t)| \, dt \Big| \, dx \\ &\leq \sup_{\|v\| \leq 1} \int_{\Omega} \left(\alpha(x) \Big| \frac{r+h-r}{h} \Big| \cdot |v(x)| + \frac{\beta(x)}{q} \Big| \frac{(r+h)^q - r^q}{h} \Big| \cdot |v(x)|^q \right) dx \\ &\leq \|\alpha\|_{L^{s\gamma/(s\gamma-1)}(\Omega)} \|v\|_{L^{s\gamma}(\Omega)} + \frac{1}{q} \|\beta\|_{L^{1/(1-\gamma)}(\Omega)} \|v\|_{L^{q/\gamma}(\Omega)}^q \left| \frac{(r+h)^q - r^q}{h} \right|, \\ & \text{where } q = p + 1. \text{ Consequently, we have} \end{split}$$

 $\limsup_{h \to 0} \frac{1}{h} \left(\mu(r+h) - \mu(r) \right) \le c_1(\gamma) \|\alpha\|_{L^{s\gamma/(s\gamma-1)}(\Omega)} + c_2(\gamma)^q \|\beta\|_{L^{1/(1-\gamma)}(\Omega)} r^p.$

Thus, if we put

$$\varphi(r) = c_1(\gamma) \|\alpha\|_{L^{s\gamma/(s\gamma-1)}(\Omega)} + c_2(\gamma)^q \|\beta\|_{L^{1/(1-\gamma)}(\Omega)} r^p - r$$

for all r > 0, we only have to prove that $\inf_{r>0} \varphi(r) < 0$. By using an elementary differential method, we see that the infimum is attained at

$$r = (pc_2(\gamma)^{p+1} \|\beta\|_{L^{1/(1-\gamma)}(\Omega)})^{1/(1-p)}$$

and (2) entails that it is negative.

References

- [1] S. Agmon, The L_p approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa 13 (1959), 405–448.
- [2] V. I. Burenkov and V. A. Gusakov, On precise constants in Sobolev imbedding theorems, Soviet Math. Dokl. 35 (1987), 651–655.
- D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer, Berlin, 1977.
- [4] A. S. Marano, Elliptic boundary value problems with discontinuous nonlinearities, Set-Valued Anal. 3 (1995), 167–180.
- B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401–410.

- [6] B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc. 33 (2001), 331–340.
- [7] —, On a classical existence theorem for nonlinear elliptic equations, in: Experimental, Constructive and Nonlinear Analysis, M. Théra (ed.), CMS Conf. Proc. 27, Canad. Math. Soc., 2000, 275–278.
- [8] —, Existence and location of solutions to the Dirichlet problem for a class of nonlinear elliptic equations, Appl. Math. Lett. 14 (2001), 143–148.
- [9] —, New results on local minima and their applications, in: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, F. Giannessi et al. (eds.), Kluwer, 2001, 255–268.
- [10] C. L. Tang and X. P. Wu, Existence and multiplicity of solutions of semilinear elliptic equations, J. Math. Anal. Appl. 256 (2001), 1–12.

Department of Mathematics University of Messina 98166 Sant'Agata – Messina, Italy E-mail: Anello@dipmat.unime.it

Cordaro@dipmat.unime.it

Reçu par la Rédaction le 29.8.2002 Révisé le 18.11.2002

(1357)