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An existence and localization theorem for the solutions of a
Dirichlet problem

by Giovanni Anello and Giuseppe Cordaro (Messina)

Abstract. We establish an existence theorem for a Dirichlet problem with homoge-
neous boundary conditions by using a general variational principle of Ricceri.

1. Introduction and statement of the result. The aim of this paper
is to establish the following result:

Theorem 1. Suppose that Ω is a bounded open set in RN , N ≥ 3, with
sufficiently regular boundary ∂Ω and f : Ω × R → R is a Carathéodory
function. Let s = 2N/(N − 2) and suppose that there exist γ ∈ ]2/s, 1[,
p ∈ ]1, γs− 1[, α ∈ Lγs/(γs−1)(Ω) and β ∈ L1/(1−γ)(Ω) such that

|f(x, t)| ≤ α(x) + β(x)|t|p almost everywhere in Ω × R(1)

and

‖α‖p−1

Lsγ/(sγ−1)(Ω)
‖β‖L1/(1−γ)(Ω) <

(p− 1)p−1

pp c1(γ)p−1c2(γ)p+1
,(2)

where c1(γ) and c2(γ) are the embedding constants of W 1,2(Ω) in Lsγ(Ω)
and L(p+1)/γ(Ω) respectively. Then the problem

{
−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(P)

has a strong solution u such that ‖u‖ ≤ k, where k is the smallest real root
of the equation

c2(γ)p+1‖β‖L1/(1−γ)(Ω)r
p + c1(γ)‖α‖Lsγ/(sγ−1)(Ω) − r = 0.

We recall that a strong solution of problem (P) is a function

u ∈W 1,2
0 (Ω) ∩W 2,2(Ω) such that

−∆u(x) = f(x, u(x)) almost everywhere in Ω,
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while a weak solution of problem (P) is a function u ∈W 1,2
0 (Ω) such that�

Ω

∇u(x)∇v(x) dx−
�
Ω

f(x, u(x))v(x) dx = 0

for all v ∈W 1,2
0 (Ω).

The proof of Theorem 1 is essentially based on the following general
variational principle of B. Ricceri which has already been used in several
works [6, 7, 8].

Theorem A ([5, Theorem 2.5]). Let X a real reflexive Banach space, and
Φ, Ψ : X → R two sequentially weakly lower semicontinuous and Gateaux
differentiable functionals. Moreover , assume that Ψ is (strongly) continuous
and satisfies

lim
‖x‖→∞

Ψ(x) =∞.

For every r > infXΨ , put

ϕ(r) = inf
x∈Ψ−1(]−∞,r[)

Φ(x)− infclw(Ψ−1(]−∞,r[))Φ

r − Ψ(x)

where clw(Ψ−1(]−∞, r[)) is the closure of Ψ−1(]−∞, r[) with respect to the
weak topology. Then, for every r > infXΨ and every λ > ϕ(r), the functional
Φ+ λΨ has at least one critical point in Ψ−1(]−∞, r[).

From Theorem A, we deduce that if there exists r > infXΨ such that

inf
x∈Ψ−1(]−∞,r[)

Φ(x)− infclw(Ψ−1(]−∞,r[))Φ

r − Ψ(x)
<

1

2
,(3)

then the functional Φ+ 1
2Ψ has at least one critical point in Ψ−1(]−∞, r[).

We apply Theorem A to suitable functionals Φ and Ψ satisfying condition
(3) and defined on the Sobolev space W 1,2

0 (Ω) equipped with the norm
‖ · ‖ = ( � Ω |∇(·)|2d x)1/2.

There are many works in which problem (P) is studied. Nevertheless,
because of the type of our assumptions, only a few results can be compared
with ours. Among these, we find interesting Theorem 3.1 of [4]. In that result

the strong solution of problem (P) belongs to W 1,σ
0 (Ω) ∩W 2,σ(Ω) for some

σ > N/2 and the right hand side is a function f : Ω ×R→ R which can be
discontinuous in both variables while, in our case, f must be a Carathéodory
function. In [4], the following condition on f is imposed:

(4) There exist r > 0 and σ > N/2 such that x 7→ sup|t|≤Br |f(x, t)|
belongs to Lσ(Ω), and its norm in this space is not greater than r,
where

B = sup
u∈W 1,σ

0 (Ω)∩W 2,σ(Ω)

ess supx∈Ω |u(x)|
‖u‖Lσ(Ω)

.
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It is easily seen that condition (4) is satisfied if f is a Carathéodory
function and there exist α, β ∈ Lσ(Ω) and p > 1 such that

|f(x, t)| ≤ α(x) + β(x)|t|p almost everywhere in Ω × R(5)

and

‖α‖p−1
Lσ(Ω)‖β‖Lσ(Ω) <

(p− 1)p−1

ppBp
.(6)

Conditions (5) and (6) are similar to (1) and (2) respectively but, in our
case, the summability conditions on α and β are different and this allows
us to treat some problems which are not covered by Theorem 3.1 of [4].
A simple example in which conditions (1) and (2) are fulfilled and condition
(4) is violated, is the following.

Example 1. Let N = 3 and σ = 2. Then

c̃ := c1(γ)p−1c2(γ)p+1 ≤ m(Ω)
p−1−2γp+6γ2

6γ c2p,

where

c = sup
u∈W 1,2

0 (Ω)

‖u‖L6(Ω)

‖u‖ .

The exact value of c2 is 2
3π

3

√
2
π (see [3, p. 115]).

Now, we take two functions α ∈ L4/3(Ω), β ∈ L3(Ω) non-negative almost
everywhere in Ω and such that

‖α‖L4/3(Ω)‖β‖L3(Ω) <
9π2 3
√
π2

m(Ω)1/416 3
√

4
.(7)

Put

f(x, t) = α(x) + β(x)|t|2 for all (x, t) ∈ Ω × R.
Since s = 6, if we choose γ = 2/3 then 1/(1− γ) = 3 and sγ/(sγ − 1) = 4/3.
Further, in this setting, we have

c̃ ≤ m(Ω)1/4c2.

Thus α, β, f satisfy all the assumptions of Theorem 1 with p = 2 and γ =
2/3.

Observe that if α /∈ L3/2(Ω), then condition (4) is violated because
sup|t|≤Br f(·, t) /∈ Lσ(Ω) for all σ > 3/2 and r > 0.

Another result where the growth condition on f is similar to ours is
Theorem 1 of [10]. Nevertheless, if the function f is as in the previous
example with α /∈ L∞(Ω) and β is not identically 0, then f does not satisfy
the assumptions in [10].
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2. Proof of Theorem 1. We put

Ψ(u) = ‖u‖2, Φ(u) =
�
Ω

( u(x)�
0

f(x, t) dt
)
dx

for all u ∈ W 1,2
0 (Ω). Thanks to condition (2) the operator Φ is well de-

fined, Gateaux differentiable and sequentially weakly lower semicontinuous.
So is the operator Ψ , which is strongly continuous as well. Now, the weak
solutions of problem (P) are exactly the critical points of the functional
1
2Ψ + Φ. Moreover, by Theorem 8.2′ of [1], the weak solutions of problem
(P) are strong solutions. Thus, our goal is achieved if we show that con-
dition (1) holds with this choice of Φ and Ψ . In fact, in this case, given a
sequence {rn}n∈N of real numbers with rn > k and rn → k we find a strong
solution un of problem (P) whose norm is smaller than rn, so {un}n∈N ad-
mits a subsequence, still denoted by {un}n∈N, weakly converging to u in

W 1,2
0 (Ω) and, by an embedding theorem, strongly converging to u in Lp(Ω).

Now, given v ∈W 1,2
0 (Ω), taking into account the growth condition on f , we

deduce from well known results that the sequence {f(·, un(·))v(·)}n∈N con-
verges almost everywhere to f(·.u(·))v(·) and it is dominated by an L1(Ω)
function. Hence, � Ω f(x, un(x))v(x) dx → � Ω f(x, u(x))v(x) dx. By the pre-
vious considerations we conclude that u is a solution of problem (P) with
‖u‖ ≤ k.

For all r > 0 put

µ(r) = sup
‖v‖≤r

�
Ω

(v(x)�
0

f(x, t) dt
)
dx.

We observe that, thanks to condition (2) and the fact that W 1,2
0 (Ω) is com-

pactly embedded into Lq(Ω) for all q ∈ ]2, 2N/(N − 2)[, the function µ is
well defined. Obviously, µ is non-decreasing in ]0,∞[.

Now, as is easily seen, condition (1) is equivalent to

inf
r>0

inf
s<r

µ(r)− µ(s)

r2 − s2
<

1

2
.

This, in turn, is equivalent to the existence of r > 0 and s < r such that

µ(s)− 1

2
s2 > µ(r)− 1

2
r2.

This holds if there exists r > 0 such that

lim sup
h→0

µ(r + h)− µ(r)

h
< r.

We show that this is indeed case. In fact, for every r > 0 and every h ∈
]−r,∞[ one has
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1

h
(µ(r + h)− µ(r))

≤ 1

|h|
∣∣∣ sup
‖v‖≤r+h

�
Ω

( v(x)�
0

f(x, t) dt
)
dx− sup

‖v‖≤r

�
Ω

( v(x)�
0

f(x, t) dt
)
dx
∣∣∣

=
1

|h|
∣∣∣ sup
‖v‖≤1

�
Ω

( (r+h)v(x)�
0

f(x, t) dt
)
dx− sup

‖v‖≤1

�
Ω

( rv(x)�
0

f(x, t) dt
)
dx
∣∣∣

≤ 1

|h| sup
‖v‖≤1

�
Ω

∣∣∣
(r+h)v(x)�
rv(x)

|f(x, t)| dt
∣∣∣dx

≤ sup
‖v‖≤1

�
Ω

(
α(x)

∣∣∣∣
r + h− r

h

∣∣∣∣ · |v(x)|+ β(x)

q

∣∣∣∣
(r + h)q − rq

h

∣∣∣∣ · |v(x)|q
)
dx

≤ ‖α‖Lsγ/(sγ−1)(Ω)‖v‖Lsγ(Ω) +
1

q
‖β‖L1/(1−γ)(Ω)‖v‖qLq/γ(Ω)

∣∣∣∣
(r + h)q − rq

h

∣∣∣∣

≤ c1(γ)‖α‖Lsγ/(sγ−1)(Ω) + c2(γ)q
1

q
‖β‖L1/(1−γ)(Ω)

∣∣∣∣
(r + h)q − rq

h

∣∣∣∣,

where q = p+ 1. Consequently, we have

lim sup
h→0

1

h
(µ(r+ h)− µ(r)) ≤ c1(γ)‖α‖Lsγ/(sγ−1)(Ω) + c2(γ)q‖β‖L1/(1−γ)(Ω)r

p.

Thus, if we put

ϕ(r) = c1(γ)‖α‖Lsγ/(sγ−1)(Ω) + c2(γ)q‖β‖L1/(1−γ)(Ω)r
p − r

for all r > 0, we only have to prove that infr>0 ϕ(r) < 0. By using an
elementary differential method, we see that the infimum is attained at

r = (pc2(γ)p+1‖β‖L1/(1−γ)(Ω))
1/(1−p)

and (2) entails that it is negative.
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