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Global solutions for a functional second order
abstract Cauchy problem with nonlocal conditions

by Eduardo Hernández M. (São Paulo) and
Hernán R. Henŕıquez (Santiago)

Abstract. By using the theory of strongly continuous cosine families and the prop-
erties of completely continuous maps, we study the existence of mild, strong, classical and
asymptotically almost periodic solutions for a functional second order abstract Cauchy
problem with nonlocal conditions.

1. Introduction. The purpose of this work is to study the existence
of mild, strong and classical solutions of a class of functional second order
differential equations of the form

x′′(t) = Ax(t) + f(t, x(t), x(a(t)), x′(t), x′(b(t))), t ∈ I,(1.1)

x(0) + p(x, x′) = x0,(1.2)

x′(0) + q(x, x′) = x1,(1.3)

where A is the infinitesimal generator of a strongly cosine family (C(t))t∈R
of bounded linear operators on a Banach space X; I denotes a finite interval
[0, T ] or the interval [0,∞) and a(·), b(·) : I → I; and p(·), q(·) : C(I;X) ×
C(I;X)→ X and f : I ×X4 → X are appropriate functions.

In general, the nonlocal conditions can be applied in physics with better
effect than the classical initial conditions x(0) = x0. For the importance of
nonlocal conditions in different fields, we refer to [1–5] and the references
therein.

The study of nonlocal initial value problems was initiated by Byszewski
in [1, 5]. Specifically in [1] Byszewski proves the existence of mild, strong
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and classical solutions of the semilinear nonlocal Cauchy problem

x′(t) = Ax(t) + f(t, x(t)), t ∈ I = [0, T ],

x(0) = x0 + q(t1, . . . , tn, x(·)) ∈ X,(1.4)

where A is the infinitesimal generator of a strongly continuous semigroup
of linear operators on X; 0 < t0 < t1 < · · · < tn ≤ T ; f : [0, T ] ×X → X
and q(·, ·) : In×C(I;X)→ X are appropriate functions, and the expression
q(t1, . . . , tn, x(·)) only involves the values of x at some of the points ti, for
instance q(t1, . . . , tn, x(·)) =

∑n
i=1 αix(ti).

Some second order nonlocal initial value problems have been studied by
Ntouyas & Tsamatos in [14, 15]. They discuss the existence of solutions for
a second order delay integrodifferential equation with nonlocal conditions of
the form

x′′(t) = Ax(t)+f
(
t, x(σ1(t)),

t�

0

k(t−s)h(s, x(σ2(s)), x(σ′3(s))) ds, x(σ4(t))
)
,

x(0) = g(x) + x0, x′(0) = η,

where A is the generator of a strongly continuous cosine family, (C(t))t∈R,
of bounded linear operators on X, x0, η ∈ X and g : C(I;X) → X, f, h :
I ×X3 → X are appropriate functions. In general the results are obtained
under the strong assumption that C(t) is compact for every t > 0, which in
turn implies that dim(X) <∞.

Throughout this paper X will be a Banach space endowed with a norm
‖·‖ and C(t) denotes a strongly continuous cosine operator function defined
on X with infinitesimal generator A. We refer the reader to [9, 16] for the
necessary background about cosine functions. We only mention a few results
and notations needed to establish our results. We denote by S(t) the sine
function associated with C(t) which is defined by

S(t)x :=
t�

0

C(s)x ds, x ∈ X, t ∈ R.(1.5)

For a closed operator B : D(B) ⊂ X → X we denote by [D(B)] the space
D(B) endowed with the graph norm ‖ · ‖B. In particular [D(A)] is the space
D(A) endowed with the norm

‖x‖A = ‖x‖+ ‖Ax‖, x ∈ D(A).

The notation E stands for the space of all vectors x ∈ X for which the
function C(·)x is of class C1. It was proved by Kisyński [12] that E endowed
with the norm

‖x‖1 = ‖x‖+ sup
0≤t≤1

‖AS(t)x‖, x ∈ E,
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is a Banach space. The operator-valued function

G(t) =

[
C(t) S(t)

AS(t) C(t)

]

is a strongly continuous group of linear operators on the space E ×X gen-
erated by the operator A =

[ 0 I
A 0

]
defined on D(A) × E. It follows that

AS(t) : E → X is a bounded linear operator and AS(t)x→ 0 as t→ 0, for
each x ∈ E. Furthermore, if x : [0,∞) → X is a locally integrable function
then

y(t) =
t�

0

S(t− s)x(s) ds

defines an E-valued continuous function. This is an immediate consequence
of the fact that

t�

0

G(t− s)
[

0

x(s)

]
ds =




t�

0

S(t− s)x(s) ds

t�

0

C(t− s)x(s) ds




defines an E ×X-valued continuous function.
The existence of solutions for the second order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), 0 ≤ t ≤ T,(1.6)

x(0) = x0, x′(0) = x1,(1.7)

where h : [0, T ] → X is an integrable function, has been discussed in [17].
Similarly, the existence of solutions of the semilinear second order abstract
Cauchy problem has been treated in [18]. We only mention here that the
function x(·) given by

x(t) = C(t)x0 + S(t)x1 +
t�

0

S(t− s)h(s) ds, 0 ≤ t ≤ T,(1.8)

is called a mild solution of (1.6)–(1.7). If x0 ∈ E then x(·) is continuously
differentiable and

x′(t) = AS(t)x0 + C(t)x1 +
t�

0

C(t− s)h(s) ds.(1.9)

Further terminology and notations are those generally used in functional
analysis. In particular, L(Z;Y ) stands for the Banach space of bounded lin-
ear operators from a Banach space Z into a Banach space Y , and Br(x)
for the closed ball with center at x and radius r in an appropriate space.
Moreover, for bounded functions ξ : I → R and Λ : Y → X we set ξt =
sup{ξ(θ) : θ ≤ t} and NΛ = sup{‖Λ(y)‖ : y ∈ Y }.
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The paper is organized as follows. In Section 2 we establish the existence
of mild, strong and classical solutions of some second order nonlocal initial
value problems in a finite interval, and in Section 3 we consider the exist-
ence of g-bounded solutions and asymptotically almost periodic solutions
on [0,∞). Finally, in Section 4 we present an application to the wave equa-
tion. The results are obtained using the techniques introduced in Henŕıquez
[11], the ideas in Ntouyas & Tsamatos [14, 15] and the following result on
existence of fixed points due to Schaefer (see [7, Corollary 8.1]).

Lemma 1.1. Let D be a convex subset of a Banach space X and assume
that 0 ∈ D. Let F : D → D be a completely continuous map. Then either
the map F has a fixed point in D or the set {x ∈ D : x = λF (x), 0 < λ < 1}
is unbounded.

2. Existence of solutions. In this section we study the existence of
solutions of some nonlocal second order functional abstract Cauchy problem
in the interval I = [0, T ]. We begin by introducing some notations. We
assume that M ≥ 1 and N ≥ 1 are constants such that ‖C(t)‖ ≤ M ,
‖S(t)‖ ≤ N for every t ∈ I. Moreover, we consider the space of continuous
functions C(I;X) endowed with the norm ‖ · ‖∞ of uniform convergence,
and we abbreviate C(I; I) to C(I).

In this section we always assume that the following general assumptions
hold:

Assumption A1.

(a) a : I → I is continuous and a(t) ≤ t for every t ∈ I.
(b) f : I ×X ×X → X satisfies the following Carathéodory conditions:

(i) f(t, ·) : X ×X → X is continuous for a.e. t ∈ I;
(ii) f(·, x, y) : I → X is strongly measurable for each x, y ∈ X.

(c) There exists a continuous function m : I → [0,∞) and a continuous
nondecreasing function W : [0,∞)→ (0,∞) such that

‖f(t, x, y)‖ ≤ m(t)W (‖x‖+ ‖y‖), t ∈ I, x, y ∈ X.
(d) p, q : C(I;X)→ X are continuous.

First we consider the following second order initial value problem:

x′′(t) = Ax(t) + f(t, x(t), x(a(t))), t ∈ I,(2.1)

x(0) + p(x) = x0,(2.2)

x′(0) + q(x) = x1,(2.3)

where x0, x1 ∈ X.
Expression (1.8) motivates the following definition.
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Definition 2.1. We say that a function x(·) : I → X is a mild solution
of the problem (2.1)–(2.3) if x(·) is continuous and satisfies the integral
equation

x(t) = C(t)(x0 − p(x)) + S(t)(x1 − q(x))(2.4)

+
t�

0

S(t− s)f(s, x(s), x(a(s))) ds, t ∈ I.

Theorem 2.1. Assume that the following conditions hold :

(H-1) p(·) and q(·) bounded and both p(·) : C(I;X)→ C(I;X) and x 7→
S(·)q(x) are completely continuous.

(H-2) For each t∈ I, t′≤ t and every constantL≥0 the set {S(t′)f(s, x, y):
0 ≤ s ≤ t, ‖x‖, ‖y‖ ≤ L} is relatively compact.

Let c = M(‖x0‖+Np) +N(‖x1‖+Nq). If

2N
T�

0

m(s) ds <
∞�

2c

1
W (s)

ds,

then there exists a mild solution of (2.1)–(2.3).

Proof. In order to use Lemma 1.1, we obtain an a priori bound for the
solution of the integral equation

xλ(t) = λC(t)(x0 − p(xλ)) + λS(t)(x1 − q(xλ))

+ λ

t�

0

S(t− s)f(s, xλ(s), xλ(a(s))) ds

for t ∈ I. Using the notations introduced in Section 1, for t ∈ I and λ ∈ (0, 1)
we get

‖xλ(t)‖ ≤M(‖x0‖+Np) +N(‖x1‖+Nq)

+N

t�

0

m(s)W (‖xλ(s)‖+ ‖xλ(a(s))‖) ds.

Designating by αλ(t) the right hand side above and using the condition
a(t) ≤ t we obtain

α′λ(t) ≤ Nm(t)W (2αλ(t)).

It follows that
2αλ(t)�

2c

ds

W (s)
≤ 2N

t�

0

m(s) ds <
∞�

2c

ds

W (s)
,

which implies that αλ(·) is bounded uniformly with respect to λ, and con-
sequently the set {xλ : λ ∈ (0, 1)} is bounded in C(I;X).
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Next, we prove that the operator T : C(I;X)→ C(I;X) defined by

T (x)(t) = C(t)(x0 − p(x)) + S(t)(x1 − q(x))

+
t�

0

S(t− s)f(s, x(s), x(a(s))) ds
(2.5)

for t ∈ I is completely continuous. Define T1, T2 : C(I;X)→ C(I;X) by

T1(x) = C(·)(x0 − p(x)) + S(·)(x1 − q(x)),

T2(x)(t) =
t�

0

S(t− s)f(s, x(s), x(a(s))) ds, t ∈ I.

From hypothesis (H-1) it is clear that T1 is completely continuous. Thus, it
remains to prove that T2 is completely continuous. The continuity of T2 is
a consequence of the Lebesgue dominated convergence theorem. To prove
the compactness condition we denote by Br the closed ball in C(I;X) with
center at 0 and radius r. We first establish that the set T2(Br) is equi-
continuous.

We fix t ∈ I and let h be such that t + h ∈ I. For x ∈ Br, from the
definition of T2 it follows that

‖T2(x)(t+ h)− T2(x)(t)‖

=
t�

0

‖(S(t+ h− s)− S(t− s))f(s, x(s), x(a(s)))‖ ds

+
t+h�

t

‖S(t+ h− s)f(s, x(s), x(a(s)))‖ ds

≤Mh

t�

0

m(s)W (‖x(s)‖+ ‖x(a(s))‖) ds

+N

t+h�

t

m(s)W (‖x(s)‖+ ‖x(a(s))‖) ds

≤MW (2r)h
t�

0

m(s) ds+NW (2r)
t+h�

t

m(s) ds,

which shows that

‖T2(x)(t+ h)− T2(x)(t)‖ → 0, h→ 0,

uniformly with respect to x ∈ Br.
Next we prove that T2(Br)(t) = {T2x(t) : x ∈ Br} is relatively compact

in X, for each t ∈ I. We put U = {f(t− s, x(t− s), x(a(t− s))) : 0 ≤ s ≤ t,
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x ∈ Br}. Since
‖y‖ ≤ m(t− s)W (2r) ≤ mTW (2r)

for all y ∈ U, and the map S(·) : [0, T ]→ L(X) is continuous for the operator
norm, we infer that for each ε > 0 there are t1, . . . , tn ∈ I so that for each
0 ≤ s ≤ t and y ∈ U we can select ti for which

‖S(s)y − S(ti)y‖ ≤ ε.
Since by hypothesis (H-2) the set

⋃n
i=1 S(ti)U is relatively compact we de-

duce that the set {S(s)y : 0 ≤ s ≤ t, y ∈ U} is also relatively compact. The
mean value theorem for the Bochner integral ([13]) yields

T2(Br)(t) ⊆ t co{S(s)y : 0 ≤ s ≤ t, y ∈ U},
where co is used to denote the convex hull; this shows the assertion.

Finally, an application of the Ascoli–Arzelà Theorem completes our proof
that T2(Br) is relatively compact and that T2 is completely continuous.

The existence of a mild solution of the abstract second order nonlocal
Cauchy problem (2.1)–(2.3) is now a consequence of Lemma 1.1.

The sine functions that arise in applications are frequently compact. This
fact motivates the following corollary.

Corollary 2.1. Assume that the following conditions hold :

(i) S(t) is compact for all t ≥ 0;
(ii) p and q are bounded and p is completely continuous.

If c, m and W satisfy the assumptions of Theorem 2.1, then there exists a
mild solution of (2.1)–(2.3).

From the properties of the abstract Cauchy problem mentioned in the
preliminaries we know that if x0 − p(x) ∈ E then the mild solution x is
continuously differentiable on I and

x′(t) = AS(t)(x0 − p(x)) + C(t)(x1 − q(x))(2.6)

+
t�

0

C(t− s)f(s, x(s), x(a(s))) ds.

Next we study the differentiability of the function x′. First we consider the
following concept of strong solution.

Definition 2.2. A function x(·) : I → X is a strong solution of (2.1)–
(2.3) if x(·) ∈W 2,1(I;X), equation (2.1) holds for a.e. t ∈ I and conditions
(2.2) and (2.3) are satisfied.

In our results we consider Banach spaces that have the Radon–Nikodým
property (abbreviated RNP). We refer to [8] for this matter.
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Theorem 2.2. Assume that X has the RNP and that the following con-
ditions hold :

(H-3) R(p) ⊆ x0 +D(A) and R(q) ⊆ x1 + E

(H-4) For each bounded set D ⊆ X, the functions C(·)f(t, x, y), t ∈ I,
x, y ∈ D, are uniformly Lipschitz continuous on I.

Then each mild solution of (2.1)–(2.3) is a strong solution.

Proof. Let x(·) be a mild solution of (2.1)–(2.3). From (2.6) and (H-3)
we get

x′(t+ s)− x′(t) = (S(t+ s)− S(t))A(x0 − p(x))

+ (C(t+ s)− C(t))(x1 − q(x))

+
t�

0

(C(t+ s− ξ)− C(t− ξ))f(ξ, x(ξ), x(a(ξ))) dξ

+
t+s�

t

C(t+ s− ξ)f(ξ, x(ξ), x(a(ξ))) dξ,

which, by (H-4), implies that x′(·) is Lipschitz continuous. Since X has the
RNP, it follows that x ∈W 2,1([0, b];X). Now, the assertion is a consequence
of Proposition 3.3 in [11].

Remark. Related with this result, we point out that the results in [12]
imply that condition (H-4) holds when R(f) ⊆ E and f : I ×X ×X → E
takes bounded sets into bounded sets.

In order to discuss the existence of classical solutions we introduce the
following concept.

Definition 2.3. A function x(·) : I → X is a classical solution of prob-
lem (2.1)–(2.3) if x(·) is a function of class C2 that satisfies equation (2.1)
and the initial conditions (2.2) and (2.3).

Theorem 2.3. Assume that X has the RNP and condition (H-3) holds,
together with the following conditions:

(H-5) a is Lipschitz continuous.
(H-6) f : I × D × D → X is Lipschitz continuous for each bounded

D ⊆ X.

Then each mild solution of (2.1)–(2.3) is a classical solution.

Proof. Let x(·) be a mild solution of (2.1)–(2.3). From (H-3) it follows
that x is a function of class C1 and applying (H-5) and (H-6) it is easy to
see that the function h(t) = f(t, x(t), x(a(t))) is Lipschitz continuous. The
assertion is now a consequence of Theorem 3.1 in [11].
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In what follows we consider the initial value problem (1.1)–(1.3). To
study this problem we always assume that the following conditions hold.

Assumption A2.

(a) a, b : I → I are continuous, nondecreasing and for every t ∈ I,
max{a(t), b(t)} ≤ t.

(b) f : I ×X4 → X satisfies the following Carathéodory conditions:

(i) f(t, ·) : X4 → X is continuous for a.e. t ∈ I;
(ii) f(·, u) : I → X is strongly measurable for each u ∈ X4.

(c) There exists a continuous function m : I → [0,∞) and a continuous
nondecreasing function W : [0,∞)→ (0,∞) such that

‖f(t, x1, x2, x3, x4)‖ ≤ m(t)W
( 4∑

i=1

‖xi‖
)
, t ∈ I, xi ∈ X.

(d) p, q : C(I;X)2 → X are continuous.

Definition 2.4. A function x(·) : I → X is a mild solution of problem
(1.1)–(1.3) if: x(·) and x′(·) are continuous, the initial conditions (1.2)–(1.3)
are satisfied and x(·) satisfies the integral equation

x(t) = C(t)(x0 − p(x, x′)) + S(t)(x1 − q(x, x′))

+
t�

0

S(t− s)f(s, x(s), x(a(s)), x′(s), x′(b(s))) ds, t ∈ I.

We observe that if x is a mild solution of (1.1)–(1.3), then x0 − p(x, x′)
∈ E. Furthermore, from the already mentioned results of Kisyński [12] we
deduce that D(A) is continuously included in E and the operator-valued
map AS(·) : I → L(E;X) is continuous. Set N1 = max0≤t≤T ‖AS(t)‖L(E;X).

Theorem 2.4. Assume that the following conditions are satisfied :

(H-7) p, q are completely continuous and bounded.
(H-8) One of the following conditions holds:

(a) x0−p is completely continuous and bounded with values in E.
(b) S(t) is compact for t ≥ 0 and x0−p is continuous and bounded

with values in [D(A)].

(H-9) f(I ×B4) is relatively compact for every bounded B ⊂ X.

Let N1
p = sup{‖x0 − p(x, y)‖1 : x, y ∈ C(I;X)}. If

2(M +N)
T�

0

m(s) ds <
∞�

2c

ds

W (s)
,

where c = M(‖x0‖+Np) +N1N
1
p + (M +N)(‖x1‖+Nq), then there exists

a mild solution of (1.1)–(1.3).
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Proof. Let T : C(I;X)2 → C(I;X)2 be defined by T (x, y) = (T 1(x, y),
T 2(x, y)), where

T 1(x, y)(t) = C(t)(x0 − p(x, y)) + S(t)(x1 − q(x, y))

+
t�

0

S(t− s)f(s, x(s), x(a(s)), y(s), y(b(s))) ds,

T 2(x, y)(t) = AS(t)(x0 − p(x, y)) + C(t)(x1 − q(x, y))

+
t�

0

C(t− s)f(s, x(s), x(a(s)), y(s), y(b(s))) ds,

First, we obtain an a priori bound for the solutions of zλ = λT (zλ), λ ∈
(0, 1). For zλ = (xλ, yλ), λ ∈ (0, 1), and t ∈ I we get

‖xλ(t)‖ ≤M(‖x0‖+Np) +N(‖x1‖+Nq)

+N

t�

0

m(s)W (‖xλ(s)‖+ ‖xλ(a(s))‖+ ‖yλ(s)‖+ ‖yλ(b(s))‖) ds

= uλ(t),

and

‖yλ(t)‖ ≤ N1N
1
p + M(‖x1‖+Nq)

+ M

t�

0

m(s)W (2uλ(s) + ‖yλ(s)‖+ ‖yλ(b(s))‖) ds

= vλ(t).

Hence

u′λ(t) ≤ Nm(t)W (2uλ(t) + 2vλ(t)),(2.7)

v′λ(t) ≤Mm(t)W (2uλ(t) + 2vλ(t)),(2.8)

for t ∈ [0, T ]. Integrating between 0 and t the sum of (2.7) and (2.8) we
obtain

2(uλ+vλ)(t)�

2c

ds

W (s)
≤ 2(M +N)

t�

0

m(s) ds <
∞�

2c

ds

W (s)
,

which implies that the set {(xλ, yλ) : λ ∈ (0, 1)} is bounded in C(I;X)2.
It is easy to prove that T is continuous. Moreover, repeating the argu-

ments employed in the proof of Theorem 2.1 we infer that T 1 is completely
continuous. Further, if (a) or (b) holds, then AS(·)(x0 − p) is completely
continuous, which together with (H-7) and (H-9) permits us to conclude
that T 2 is completely continuous.

The existence of a mild solution for (1.1)–(1.3) is now a consequence of
Lemma 1.1. The proof is complete.
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We conclude this section with some regularity results for the mild so-
lutions of the initial value problem (1.1)–(1.3). First we introduce some
definitions.

Definition 2.5. A function x(·) : I → X is a strong solution of (1.1)–
(1.3) if x(·) ∈ W 2,1(I;X), equation (1.1) is satisfied for a.e. t ∈ I and
conditions (1.2) and (1.3) are satisfied.

Definition 2.6. A function x(·) : I → X is a classical solution of
(1.1)–(1.3) if x(·) is a function of class C2 that satisfies equation (1.1) and
the initial conditions (1.2) and (1.3).

To prove Theorems 2.5 and 2.6 that follow we argue as in the proofs of
Theorems 2.2 and 2.3, respectively. For this reason we omit the details.

Theorem 2.5. Assume that X has the RNP , (H-3) holds, and moreover

(H-4)′ For each bounded set D ⊆ X, the functions C(·)f(t, x1, x2, x3, x4),
t ∈ I, xi ∈ D, are uniformly Lipschitz continuous on I.

Then each mild solution of (1.1)–(1.3) is a strong solution.

Theorem 2.6. Assume that X has the RNP , (H-3) is fulfilled , and the
following conditions hold :

(H-10) a, b are Lipschitz continuous.
(H-11) f : I×D4 → X is Lipschitz continuous for each bounded D ⊆ X.

Then each mild solution of (1.1)–(1.3) is a classical solution.

3. Existence of global solutions. In this section we study the problem
(2.1)–(2.3) on the interval I = [0,∞). We suppose that Assumption A1 of
Section 2 is satisfied on I and that M and N are positive constants such
that ‖C(t)‖ ≤M and ‖S(t)‖ ≤ N for all t ≥ 0. To generalize the arguments
employed in the previous section to include continuous functions defined on
[0,∞) we need an appropriate version of the Ascoli–Arzelà theorem. For this
reason we consider two cases. First, we study the existence of solutions in the
space of continuous functions with weight; next, we establish the existence
of asymptotically almost periodic solutions.

Let g : [0,∞)→ (0,∞) be a continuous function such that g(t)→∞ as
t→∞. For simplicity we also assume that g is increasing and g(0) = 1. Next,
C0
g (X) stands for the Banach space formed by the continuous functions

x : [0,∞)→ X such that x(t)/g(t)→ 0 as t→∞, endowed with the norm

‖x‖g = sup
t≥0

‖x(t)‖
g(t)

.

We also denote by C0(X) the Banach space formed by the continuous func-
tions x : [0,∞) → X that vanish at infinity. It is well known that each
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function in C0(X) is uniformly continuous. We will frequently use the fact
that 1/g is uniformly continuous. We recall the following result on compact-
ness in C0(X).

Lemma 3.1. A set B ⊆ C0(X) is relatively compact if , and only if , the
following conditions are fulfilled :

(a) B is equicontinuous.
(b) x(t)→ 0 as t→∞, uniformly for x ∈ B.
(c) The orbits B(t) are relatively compact in X for all t ≥ 0.

Next, without any danger of confusion, we abbreviate our notations by
writing u(t) = (x(t), x(a(t))), for a specified function x.

Theorem 3.1. Assume that the following conditions are satisfied :

(a) p, q : C0
g (X)→ X are continuous, bounded and p is completely con-

tinuous.
(b) S(t)q : C0

g (X)→ X is completely continuous for each t ≥ 0.
(c) For each t ∈ I, t′ ≤ t and a constant L ≥ 0 the set {S(t′)f(s, x, y) :

0 ≤ s ≤ t, ‖x‖, ‖y‖ ≤ L} is relatively compact.
(d) For every constant L≥0, (1/g(t)) � t0m(s)W (Lg(s)) ds→0 as t→∞.
(e) 2N � ∞0 m(s) ds< � ∞2c(1/W (s)) ds, where c=M(‖x0‖ + Np) + N(‖x1‖

+Nq).

Then there exists a mild solution x ∈ C0
g (X) of (2.1)–(2.3).

Proof. For each x ∈ C0
g (X) we define T (x)(t) by means of (2.5). Hence,

‖T (x)(t)‖ ≤M(‖x0‖+Np) +N(‖x1‖+Nq)

+N

t�

0

m(s)W (‖x(s)‖+ ‖x(a(s))‖) ds.

Since ‖x(s)‖ ≤ ‖x‖gg(s), applying condition (d) it follows that

‖T (x)(t)‖
g(t)

≤ M

g(t)
(‖x0‖+Np)

+
N

g(t)
(‖x1‖+Nq) +

N

g(t)

t�

0

m(s)W (2‖x‖gg(s)) ds

converges to zero as t→ ∞. This shows that T is a well defined map from
C0
g (X) into C0

g (X). To prove the continuity of T , we take a sequence (xn)n
which converges to x in C0

g (X). It is clear that f(s, un(s))→ f(s, u(s)) a.e.
and n→∞,

‖f(s, un(s))‖ ≤ m(s)W (Lg(s)),

for some constant L ≥ 0. Since the right hand side is integrable on [0, t]
we conclude that T (xn)(t) → T (x)(t) as n → ∞. It is also clear that the
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convergence is uniform for t in bounded intervals. Furthermore, given ε > 0,
applying (a) and (d) we can choose t0 so that

1
g(t)
‖T (xn)(t)− T (x)(t)‖ ≤ M

g(t)
‖p(xn)− p(x)‖+

N

g(t)
‖q(xn)− q(x)‖

+
2N
g(t)

t�

0

m(s)W (Lg(s)) ds ≤ ε

for t ≥ t0. This implies that T (xn)→ T (x) as n→∞ in the space C0
g (X).

Consequently, T is a continuous map.
Now, for 0 < λ < 1 let xλ ∈ C0

g (X) be such that λT (xλ) = xλ. Proceed-
ing as above we can estimate

‖xλ(t)‖ ≤M(‖x0‖+Np) +N(‖x1‖+Nq)

+N

t�

0

m(s)W (‖xλ(s)‖+ ‖xλ(s))‖) ds.

If αλ(t) denotes the right hand side, repeating the argument used in the
proof of Theorem 2.1 we conclude that the set {αλ(t) : 0 < λ < 1, t ≥ 0}
is bounded, which in turn implies that {‖xλ(t)‖ : 0 < λ < 1, t ≥ 0} and
{‖xλ‖g : 0 < λ < 1} are bounded.

Finally, we show that T is completely continuous. Since we have already
established that T is continuous, it only remains to prove that T (B) is rela-
tively compact in C0

g (X) for every bounded set B. Thus, we need to verify
that the functions (1/g)T (x), x ∈ B, satisfy the conditions of Lemma 3.1.
To prove that (1/g)T (x), x ∈ B, are equicontinuous, we observe first that
the set of functions {(1/g)[C(·)(x0 − p(x)) + S(·)(x1 − q(x))] : x ∈ B} is
equicontinuous, because p is completely continuous, q is bounded and 1/g
is uniformly continuous. Moreover, for x ∈ B and h ≥ 0, there is a constant
L ≥ 0 for which

∥∥∥
t+h�

0

S(t+ h− s)f(s, u(s)) ds−
t�

0

S(t− s)f(s, u(s)) ds
∥∥∥

≤
∥∥∥
t�

0

[S(t+ h− s)− S(t− s)]f(s, u(s)) ds
∥∥∥

+
∥∥∥
t+h�

t

S(t+ h− s)f(s, u(s)) ds
∥∥∥

≤Mh

t�

0

m(s)W (Lg(s)) ds+N

t+h�

t

m(s)W (Lg(s)) ds.
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This shows that
1

g(t+ h)
T (x)(t+ h)− 1

g(t)
T (x)(t)→ 0 as h→ 0,

independently of x ∈ B. The same argument and condition (d) also permit
us to state that (1/g(t))T (x)(t) → 0 as t → ∞, uniformly with respect to
x ∈ B.

Finally, applying our hypotheses (a), (b), (c) and proceeding as in the
proof of Theorem 2.1 we derive that the set {T (x)(t) : x ∈ B} is relatively
compact in X, for each t ≥ 0. Consequently, {T (x)/g : x ∈ B} is relatively
compact in C0(X) and T (B) is relatively compact in C0

g (X).

We now study the existence of asymptotically almost periodic solutions
of (2.1)–(2.3). For the basic information about almost periodic and asymp-
totically almost periodic functions we refer to [20].

In particular, we denote by AP(X) (resp. AAP(X)) the space formed by
the functions x : [0,∞)→ X which are almost periodic (resp. asymptotically
almost periodic), endowed with the norm of uniform convergence. We will
also utilize the properties of almost periodic cosine functions and almost
periodic sine functions. We refer to [6] for the characterization of almost
periodic cosine functions and to [10] for similar properties of almost periodic
sine functions. The following lemma ([20]) is a result of Ascoli–Arzelà type
for AAP(X).

Lemma 3.2. Let B ⊆ AAP(X) have the following properties:

(a) B is equicontinuous uniformly on [0,∞).
(b) B is equi-asymptotically almost periodic, that is, for every ε > 0

there are Tε ≥ 0 and a relatively dense set Pε in [0,∞) such that

‖x(t+ τ)− x(t)‖ ≤ ε, x ∈ B, t ≥ Tε, τ ∈ Pε.
(c) For each t ≥ 0, B(t) is relatively compact in X.

Then B is relatively compact in AAP(X).

To establish our result we need the following property of compactness of
integrable functions.

Lemma 3.3. Let B ⊆ L1([0,∞);X) satisfy :

(a) B is equiintegrable at ∞, that is, � ∞L ‖x(s)‖ ds→ 0 as L→ ∞, uni-
formly for x ∈ B.

(b) For each t ≥ 0, the set {x(s) : x ∈ B, 0 ≤ s ≤ t} is relatively
compact in X.

If F : [0,∞) → L(X) is a strongly continuous and uniformly bounded
operator-valued function, then there is a compact set U ⊆ X such that

� t0 F (s)x(s) ds ∈ U for all x ∈ B and 0 ≤ t ≤ ∞.
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Proof. For each ε > 0 we can select L ≥ 0 such that ‖ � ∞L F (s)x(s) ds‖
≤ ε for all x ∈ B. By (b) there is a compact set U0 ⊆ X such that x(s) ∈ U0
for all 0 ≤ s ≤ L and x ∈ B. Since the map [0, L]×U0 → X, (s, x) 7→ F (s)x,
is continuous we infer that {F (s)x(s) : 0 ≤ s ≤ L, x ∈ B} is relatively com-
pact, and the mean value theorem for the Bochner integral ([13]) shows that
the set { � L0 F (s)x(s) ds : x ∈ B} has the same property. The decomposition

t�

0

F (s)x(s) ds =
L�

0

F (s)x(s) ds+
t�

L

F (s)x(s) ds

completes the proof.

Now we combine these results to establish the following property of mild
solutions of the abstract Cauchy problem. In this statement we denote by
yx : [0,∞)→ X the function defined by

yx(t) =
t�

0

S(t− s)x(s) ds, t ≥ 0.

Proposition 3.1. Assume that the sine function S(·) is almost periodic.
Let B ⊆ L1([0,∞);X) satisfy conditions (a), (b) of Lemma 3.3 and the
following condition of equiintegrability : for each t ≥ 0, � t+ht ‖x(s)‖ ds→ 0 as
h→ 0, uniformly for x ∈ B. Then the set {yx : x ∈ B} is relatively compact
in AAP(X).

Proof. We can write

yx(t) = S(t)
t�

0

C(s)x(s) ds − C(t)
t�

0

S(s)x(s) ds

= S(t)
∞�

0

C(s)x(s) ds − S(t)
∞�

t

C(s)x(s) ds

− C(t)
∞�

0

S(s)x(s) ds+ C(t)
∞�

t

S(s)x(s) ds.

From the properties of almost periodic sine functions ([10]) we deduce that
the first and third terms on the right hand side define almost periodic func-
tions, while the second and fourth terms are functions that vanish at ∞.
We infer that yx ∈ AAP(X). Furthermore, Lemma 3.3 shows that the
integrals � ∞0 C(s)x(s) ds and � ∞0 S(s)x(s) ds, x ∈ B, lie in a compact set.
This implies that the set formed by the functions S(·) � ∞0 C(s)x(s) ds −
C(·) � ∞0 S(s)x(s) ds, x ∈ B, is relatively compact in AP(X). Moreover, em-
ploying the properties of B and Lemma 3.3 it is not difficult to see that
the set formed by the functions S(t) � ∞t C(s)x(s) ds − C(t) � ∞t S(s)x(s) ds,
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x ∈ B, satisfies the conditions of Lemma 3.1, so it is relatively compact in
C0(X). Collecting these results yields the assertion.

Now we are in a position to establish the main result.

Theorem 3.2. Assume that S(·) is almost periodic and that the follow-
ing conditions hold :

(a) p, q : AAP(X)→ X are completely continuous and bounded.
(b) For each t>0 and each constant L≥0 the set {f(s, x, y) : 0 ≤ s ≤ t,
‖x‖, ‖y‖ ≤ L} is relatively compact.

(c) 2N � ∞0 m(s) ds < � ∞2c(1/W (s)) ds, where c = M(‖x0‖ + Np) +
N(‖x1‖+Nq).

Then there exists a mild solution x ∈ AAP(X) of (2.1)–(2.3).

Proof. For each x ∈ AAP(X) we define T (x)(t) by means of (2.5). From
our hypotheses and proceeding as in the proof of Proposition 3.1 we deduce
easily that T (x) ∈ AAP(X) for each x ∈ AAP(X). To prove the continuity
of T : AAP(X) → AAP(X) we take a sequence (xn)n in AAP(X) that
converges to x. Clearly S(t− s)f(s, un(s))→ S(t − s)f(s, u(s)) as n→∞,
for a.e. s ∈ [0, t]. Since

‖S(t− s)f(s, un(s))− S(t− s)f(s, u(s))‖ ≤ 2Nm(s)W (L)

for some constant L ≥ 0, and the right hand side is integrable on [0,∞), we
conclude that T (xn)(t) → T (x)(t) as n → ∞, and that the convergence is
uniform on [0,∞). Hence T is continuous.

Next, for λ ∈ (0, 1), let xλ ∈ AAP(X) be such that λT (xλ) = xλ.
Proceeding as in the proof of Theorem 2.1 we conclude that {xλ : λ ∈ (0, 1)}
is bounded.

Finally, we show that T is completely continuous. We take a bounded
set B ⊆ AAP(X). Since p and q are completely continuous, it is clear that
the set {C(·)(x0 − p(x)) + S(·)(x1 − q(x)) : x ∈ B} is relatively compact
in AAP(X). In addition, since the functions f(s, u(s)), x ∈ B, satisfy the
hypotheses of Proposition 3.1 we infer that the set {zx : x ∈ B}, where
zx(t) = � t0 S(t− s)f(s, u(s)) ds, is relatively compact in AAP(X). This com-
pletes the proof.

We say that the sine function S(·) is uniformly almost periodic if S :
R → L(X) is almost periodic. For instance, every periodic sine function is
uniformly almost periodic. Arguing as in the proof of Theorem 3.2 we can
establish the following results. We omit the proofs.

Theorem 3.3. Assume that S(·) is uniformly almost periodic and that
the following conditions hold :
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(a) p, q : AAP(X)→ X are continuous and bounded and p is completely
continuous.

(b) S(t)q : AAP(X)→ X is completely continuous for each t ≥ 0.
(c) For each 0 ≤ t′ ≤ t and each constant L ≥ 0 the set {S(t′)f(s, x, y) :

0 ≤ s ≤ t, ‖x‖, ‖y‖ ≤ L} is relatively compact.
(d) 2N � ∞0 m(s) ds < � ∞2c(1/W (s)) ds, where c = M(‖x0‖ + Np) +

N(‖x1‖+Nq).

Then there exists a mild solution x ∈ AAP(X) of (2.1)–(2.3).

Corollary 3.1. Assume that S(·) is compact and uniformly almost pe-
riodic and that the following conditions hold :

(a) p, q : AAP(X)→ X are continuous and bounded and p is completely
continuous.

(b) 2N � ∞0 m(s) ds < � ∞2c(1/W (s)) ds, where c = M(‖x0‖ + Np) +
N(‖x1‖+Nq).

Then there exists a mild solution x ∈ AAP(X) of (2.1)–(2.3).

Next we consider a situation where the derivative of a mild solution
x ∈ AAP(X) is also asymptotically almost periodic. We need the following
property of almost periodic sine functions.

Lemma 3.4. Assume that S(·) is almost periodic. Then for all x ∈ X
the function S(·)x is almost periodic for the norm in E. Furthermore, if
x : [0,∞)→ X is integrable then the function y : [0,∞)→ E given by

y(t) =
t�

0

S(s)x(s) ds

is continuous with range relatively compact in E.

Proof. Since C(·)x and S(·)x are almost periodic it follows that (C(·)x,
S(·)x) is almost periodic in X ×X. Thus, given ε > 0, there is a relatively
dense set Pε such that

‖C(t+ τ)x− C(t)x‖+ ‖S(t+ τ)x− S(t)x‖ ≤ ε, t ≥ 0, τ ∈ Pε.
Using the fact that C(·) is uniformly bounded and

C(t+ s)x = C(t)C(s)x + AS(t)S(s)x(3.1)

we obtain

‖S(t+ τ)x− S(t)x‖1
= ‖S(t+ τ)x− S(t)x‖+ sup

0≤h≤1
‖AS(h)[S(t+ τ)x− S(t)x]‖

≤ ε+ sup
0≤h≤1

‖C(t+ h+ τ)x− C(h)C(t+ τ)x+ C(t)C(h)x− C(t+ h)x‖
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≤ ε+ sup
0≤h≤1

(‖C(h)‖ ‖C(t+ τ)x− C(t)x‖+ ‖C(t+ h+ τ)x− C(t+ h)x‖)

≤ (M + 2)ε

for all t ≥ 0 and τ ∈ Pε, which proves the first assertion.
Moreover, in the introduction we have already mentioned that y(·)

is a continuous E-valued function. From (3.1) we infer that S(·)x(·) ∈
L1([0,∞);E), which allows us to complete the proof with the same argument
used in the proof of Lemma 3.3.

The following result is a consequence of the previous property.

Corollary 3.2. Assume that the conditions of Theorem 3.2 hold , x0−
p(x) ∈ E, and AS(·)y is uniformly bounded on [0,∞) for each y ∈ E. Let
x be a mild solution of (2.1)–(2.3). Then x ′ is also asymptotically almost
periodic.

Proof. From the uniform boundedness principle it follows that the oper-
ator family AS(t) : E → X, t ≥ 0, is uniformly bounded. This implies that
AS(·)y is uniformly continuous on [0,∞) for each y ∈ E. In fact,

‖AS(t+ h)y − AS(t)y‖ ≤ ‖AS(t)‖ ‖(C(h)− I)y‖+ ‖C(t)‖ ‖AS(h)y‖
converges to zero as h→ 0, uniformly with respect to t ≥ 0.

Moreover, from (1.9) we can write

x ′(t) = AS(t)(x0 − p(x)) + C(t)(x1 − q(x)) +
t�

0

C(t− s)f(s, u(s)) ds.

Since AS(t)(x0 − p(x)) is the derivative of C(t)(x0 − p(x)), the previous
remark and Theorem 5.2 of [20] imply that AS(t)(x0− p(x)) is almost peri-
odic. Consequently, the function AS(t)(x0−p(x))+C(t)(x1−q(x)) is almost
periodic.

It remains to prove that the function given by

y(t) =
t�

0

C(t− s)f(s, u(s)) ds

is asymptotically almost periodic. By Theorem 5.2 of [20], it is sufficient to
show that y is uniformly continuous. For this purpose we decompose

y(t+ h)− y(t) =
t�

0

[C(t+ h− s)− C(t− s)]f(s, u(s)) ds

+
t+h�

t

C(t+ h− s)f(s, u(s)) ds
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= (C(h)− I)y(t) + AS(h)
t�

0

S(t− s)f(s, u(s)) ds

+
t+h�

t

C(t+ h− s)f(s, u(s)) ds.

Since f(s, u(s)) is integrable on [0,∞), the range of y(·) is relatively compact,
which implies that (C(h) − I)y(t) → 0 as h → 0, uniformly for t ≥ 0. The
same argument shows that the third term of the above expression converges
to zero as h→ 0, uniformly with respect to t ≥ 0. Similarly, employing the
preceding lemma we find that the values � t0 S(t − s)f(s, u(s)) ds, t ≥ 0, lie
in a relatively compact subset of E and, from the introduction, we conclude
that AS(h) � t0 S(t− s)f(s, u(s)) ds→ 0 as h→ 0, uniformly with respect to
t ≥ 0. This completes the proof.

4. Applications. The one-dimensional wave equation modelled as an
abstract Cauchy problem has been extensively studied (see for example [19]).
In this section we illustrate some of our results by means of the wave equa-
tion. First we introduce some technical remarks.

On X = L2([0, π]) we consider the operator Af(ξ) = f ′′(ξ) with domain

D(A) = {f(·) ∈ H2(0, π) : f(0) = f(π) = 0}.
It is well known that A is the generator of a strongly continuous cosine
function (C(t))t∈R on X. Furthermore, A has discrete spectrum, the eigen-
values are −n2, n ∈ N, with corresponding normalized eigenvectors zn(ξ) :=√

2/π sin(nξ) and the following conditions hold:

(a) {zn : n ∈ N} is an orthonormal basis of X.
(b) If ϕ ∈ D(A) then Aϕ = −∑∞n=1 n

2〈ϕ, zn〉zn.
(c) For every ϕ ∈ X, C(t)ϕ =

∑∞
n=1 cos(nt)〈ϕ, zn〉zn. Consequently,

‖C(t)‖ = 1 for every t ∈ R.
(d) The associated sine function is given by

S(t)ϕ =
∞∑

n=1

sin(nt)
n

〈ϕ, zn〉zn.

It is clear from this expression that S(·) is 2π-periodic, compact and
‖S(t)‖ = 1 for every t ∈ R.

(e) If G denotes the group of translations on X defined by G(t)x(ξ) =
x̃(ξ + t), where x̃ is the extension of x with period 2π, then C(t) =
1
2(G(t) +G(−t)). Hence it follows (see [9]) that A = B2, where B is
the infinitesimal generator of the group G and E = {x ∈ H1(0, π) :
x(0) = x(π) = 0}.
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Now we consider the boundary value problem

∂2

∂t2
w(ξ, t) =

∂2

∂ξ2w(ξ, t) + F (ξ, t, w(ξ, t), w(ξ, a(t))),(4.1)

w(0, t) = w(π, t) = 0, t ∈ I,(4.2)

where the function F : [0, π]× I ×R2 → R satisfies the following Carathéo-
dory conditions:

(a) F (ξ, t, ·) : R2 → R is continuous for a.e. ξ ∈ [0, π], t ∈ I.
(b) For every w1, w2 ∈ R the function F (·, w1, w2) : [0, π] × I → R is

measurable.
(c) There exists a positive continuous function η on [0, π]× I such that

|F (ξ, t, w1, w2)| ≤ η(ξ, t)(|w1|+ |w2|).

Associated to problem (4.1)–(4.2), we consider the following nonlocal
initial conditions:

w(ξ, 0) +
T�

0

P (w(·, s))(ξ) dµ(s) = x0(ξ), ξ ∈ [0, π],(4.3)

∂w(ξ, 0)
∂t

+
T�

0

Q(w(·, s))(ξ) dν(s) = x1(ξ), ξ ∈ [0, π],(4.4)

where µ, ν are real functions of bounded variation on I. We also assume that
P,Q : X → X are bounded continuous operators and that P is completely
continuous. Let p, q : Cb(I;X)→ X be the maps defined by

p(x) =
T�

0

P (x(s)) dµ(s),(4.5)

q(x) =
T�

0

Q(x(s)) dν(s),(4.6)

where Cb(I;X) denotes the space of bounded continuous functions from I
into X endowed with the norm of uniform convergence. It is not difficult to
see that p, q are continuous and bounded and that p is completely continu-
ous.

Under the previous conditions, problem (4.1)–(4.4) can be modelled as
(2.1)–(2.3), where f(t, x, y)(ξ) = F (ξ, t, x(ξ), y(ξ)) satisfies Assumption A1.
Moreover, if x, y ∈ X then

‖f(t, x, y)‖ ≤
( π�

0

|F (ξ, t, x(ξ), y(ξ))|2 dξ
)1/2
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≤
( π�

0

η2(ξ, t)(|x(ξ)|+ |y(ξ)|)2 dξ
)1/2

≤ max
0≤ξ≤π

η(ξ, t)(‖x‖+ ‖y‖).

Since S(·) is compact, in the case T < ∞, from Corollary 2.1 we obtain
existence of a mild solution of (4.1)–(4.4).

For T =∞, we consider first the existence of asymptotically almost pe-
riodic solutions. In this case we consider p, q defined on AAP(X). Since S(·)
is compact and periodic, Corollary 3.1 shows that if � ∞0 max0≤ξ≤π η(ξ, t) dt
<∞, then there exists an asymptotically almost periodic solution of (4.1)–
(4.4).

Finally, we consider the existence of g-bounded solutions on [0,∞). We
assume that g satisfies the conditions specified at the beginning of Section 3.
Since P and Q are bounded operators, the maps p, q are well defined by (4.5)
and (4.6), respectively, on C0

g (X) and they are also bounded. Furthermore,
applying the Lebesgue dominated convergence theorem we deduce that p, q
are continuous. Moreover, if Vµ(t) denotes the variation of µ on [t,∞), then
Vµ(n)→ 0 as n→∞ and

∥∥∥
∞�

n

P (x(s)) ds
∥∥∥ ≤ NPVµ(n).

From this it follows easily that p is completely continuous. We assume that
the following conditions are fulfilled:

(a)
∞�

0

max
0≤ξ≤π

η(ξ, t) dt <∞;

(b)
1
g(t)

t�

0

max
0≤ξ≤π

η(ξ, s)g(s) ds→ 0 as t→∞.

Under these conditions, by Theorem 3.1, there exists a mild solution
x ∈ C0

g (X) of (4.1)–(4.4).
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