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Abstract. Generalizations of the theorem of Forelli to holomorphic mappings into
complex spaces are given.

1. Introduction. The classical Hartogs theorem states that if a com-
plex-valued function f(z1, . . . , zn) defined for z = (z1, . . . , zn) ∈ U ⊂ Cn
(n ≥ 2) is separately holomorphic, i.e. holomorphic with respect to each
variable separately when the other variables are fixed, then f is jointly holo-
morphic. Equivalently, if f is holomorphic on each line which is parallel to
some coordinate axis, then f is jointly holomorphic. Much attention has
been given to generalizing this theorem, and many Hartogs-type theorems
for separately holomorphic mappings have been obtained by various authors
(see [Te], [S], [NZ1], [NZ2], [Shi2], [TM], [JP]).

Modifying the point of view of the above-mentioned theorem, in 1978,
F. Forelli proved the following remarkable result (see [Ru, p. 60] or [Sha,
p. 49]). If f is a function defined in the unit ball Bn ⊂ Cn, holomorphic
on the intersection of Bn with every complex line l passing through the
origin, and if f is of class C∞ in a neighbourhood of the origin, then it is
holomorphic in Bn.

Our main aim in this article is to generalize the theorem of Forelli to
holomorphic mappings into complex spaces. Namely, we are going to prove
the following:

Theorem A. Let M be a complex space and Bn the open unit ball of Cn.
Let f : Bn →M be a mapping such that f is holomorphic on the intersection
of Bn with every complex line l passing through the origin, and f is of
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class C∞ in a neighbourhood of the origin. Then there exists a pluripolar
subset S of Pn−1(C) such that f is holomorphic in a neighbourhood of Bn−⋃{l : l ∈ S}.

Theorem B. Let M be a complex space of Hartogs type. Then M has
the Forelli property.

Theorem C. Let M be a holomorphically convex Kähler complex space.
Then M has the Hartogs extension property if and only if M has the Forelli
property.

Theorem D. Let M be a holomorphically convex compact Kähler man-
ifold. Let f : Bn → M be a mapping such that f is holomorphic on the
intersection of Bn with every complex line l passing through the origin, and
f is of class C∞ in a neighbourhood of the origin. Then f is meromorphic
in Bn.

2. Preliminaries

2.1. Definition. For r > 0 put ∆r = ∆(0, r) = {|z| < r} ⊂ C and
∆1 = ∆.

LetX be a complex space. We say thatX has the Hartogs extension prop-
erty (briefly X has (HEP)) if every holomorphic mapping, from a Riemann
domain Ω over a Stein manifold into X, can be extended holomorphically
to Ω̂, the envelope of holomorphy of Ω.

Let H2(r) = {(z1, z2) ∈ ∆2 : |z1| < r or |z2| > 1− r} (0 < r < 1) denote
the 2-dimensional Hartogs domain.

It is well known ([Shi1] or [I]) that X has (HEP) iff every holomorphic
mapping f : H2(r)→ X extends holomorphically over ∆2.

The class of complex spaces having (HEP) is large: it contains the taut
complex spaces [Fu], complex Lie groups [ASY], and complete hermitian
complex manifolds with non-positive holomorphic sectional curvature [Shi1].
In particular, Ivashkovich [I] showed that a holomorphically convex Kähler
manifold has (HEP) iff it contains no rational curves. This was generalized
to holomorphically convex Kähler spaces by Do Duc Thai [T].

2.2. Definition. Let M be a complex space.

(i) An open subset A of M is said to be of type (H) if there exists a
biholomorphic mapping from A onto an analytic subset of a complex
space having (HEP).

(ii) The space M is said to be of Hartogs type if for each p ∈ M there
exists a neighbourhood Wp of p and rp > 0 and a neighbourhood Sp
of p of type (H) such that for each f ∈ Hol(∆,M), if f(0) ∈Wp then
f(∆rp) ⊂ Sp.
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The class of complex spaces of Hartogs type is rather large. It is easy to
see that it contains the complex spaces having (HEP) and the hyperbolic
complex spaces.

2.3. Definition. Let M be a complex space. We say that M has the
Forelli property for the unit ball Bn of Cn (briefly M has (FP)) if whenever
a mapping f : Bn → M is holomorphic on the intersection of Bn with
every complex line l passing through the origin, and f is of class C∞ in a
neighbourhood of the origin, then f is holomorphic in Bn.

Examples. (a) The complex plane C has the Forelli property (see [Ru,
p. 60]).

(b) Every complex space of Stein type has the Forelli property (see [TP]).

2.4. Let la be a complex line passing through the origin of Cn. Then in
Cn, the set la is given by {t(a1, . . . , an) : t ∈ C}. Thus we can consider la as
a point a = [a1 : . . . : an] in Pn−1(C).

2.5. Let S be a subset of a complex manifold M . We say that S is
pluripolar if for any x0 ∈ S there are an open neighbourhood U of x0
in M and a plurisubharmonic function ϕ : U → [−∞,∞) such that S ∩U ⊂
{ϕ = −∞}.

2.6. For z = (z1, . . . , zn) ∈ Cn, we let ‖z‖ = (|z1|2 + · · ·+ |zn|2)1/2.

For each R > 0 put BnR = Bn(0, R) = {z ∈ Cn : ‖z‖ < R}, Bn = Bn1 .

3. Proofs of the main results. In order to prove Theorem A we need
the following lemma:

3.1. Lemma ([Shi2]). Let M be a complex space. Let U, V be open sets
in Cm,Cn respectively and let K be a connected compact set in Cn contain-
ing V . Let f : U × V → M be a holomorphic map. If fz extends holomor-
phically to K for all z ∈ U , then there exists a closed pluripolar subset E
of U and a holomorphic map f̃ : (U − E) × K → M such that f = f̃ on
(U − E)× V .

3.2. Proof of Theorem A. By the theorem of Forelli [Ru, p. 60], there
exists r0 > 0 such that

(1) f is holomorphic in Bnr0 .

Put Bn∗ = Bn − {zn = 0}. Consider the holomorphic mapping ϕ : Bn∗ → Cn
given by ϕ(z1, . . . , zn) = (z1/zn, . . . , zn−1/zn, zn). Put ϕ(Bn∗ ) = T and define
ϕ1 : Bn∗ → T by ϕ1(z) = ϕ(z) for z ∈ Bn∗ . Then ϕ1 is biholomorphic.

Put g = f ◦ ϕ−1
1 : T →M and

TR,h = {t = (t′, zn) ∈ T : ‖t′‖ < R and 0 < |zn|2 < h/(1 +R2)}
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for R > 0 and 0 < h ≤ 1. It is easy to see that {TR,h} is a family of open
sets which is increasing when h is increasing and T =

⋃{TR,1 : R > 0} =⋃{TR,1 : R ∈ Q∗+}. From (1), it follows that g is holomorphic in TR,r2
0

for
all R > 0.

Define

∆̃R = ∆√1/(1+R2) = {z ∈ C : |z| ≤
√

1/(1 +R2)},

SR = {w′ ∈ Bn−1
R : g does not extend to any neighbourhood

of (w′ × ∆̃R) ∩ ϕ1(Bn∗ )}.
It is easy to see that SR is closed. We now prove that SR is pluripolar.

Indeed, by the hypothesis and since
1

1 + ‖w′‖2 >
1

1 +R2 for each w′ ∈ Bn−1
R ,

it follows that the mapping gw′(wn) = g(w′, wn) = f(wnw′, wn) is holomor-
phic on some neighbourhood of ∆̃R. From Lemma 3.1, there exists a closed
pluripolar subset S′R of Bn−1

R such that g extends to a holomorphic mapping

g̃ : (Bn−1
R − S′R)× ∆̃R)→M . Clearly, SR ⊂ S′R, and hence SR is pluripolar.

Put S̃R = SR× ∆̃R and S̃ =
⋃
R∈Q∗+ S̃R. Clearly, S̃ is a pluripolar subset

of T .
Take any point z = (z′, zn) ∈ T − S̃. Since T =

⋃
R∈Q∗+ TR,1, there exists

R ∈ Q∗+ such that z ∈ TR,1. On the other hand, by the definition of SR and
S̃R, we get z′ 6∈ SR. Thus g extends holomorphically over a neighbourhood of
(z′× ∆̃R)∩T . This means that g is holomorphic on an open neighbourhood
of z. This also implies that g is holomorphic on an open neighbourhood of
T − S̃.

Consider the mapping p : Cn → Cn−1 given by (z1, . . . , zn) 7→ (z1, . . .
. . . , zn−1) and put T ∗ = {z : z ∈ T and p(z) 6∈ ⋃R∈Q∗+ SR}. Since T ∗ ⊂
T − S̃, it follows that g is holomorphic on an open neighbourhood of T ∗.

Since Bn =
⋃n
j=1(Bn − {zj = 0}) ∪ Bnr0 , we conclude that f is holomor-

phic on an open neighbourhood of Bn − ⋃a∈S la, where S is pluripolar in
Pn−1(C).

In order to prove Theorem B we need the following lemma:

3.3. Lemma ([Shi2]). Let M be a complex space having (HEP). Let U, V
be domains in Cm,Cn respectively and let V0 be an open subset of V . If
f : U ×V0 →M is a holomorphic map such that fz extends holomorphically
to V for almost all z ∈ U , then f extends holomorphically to U × V .

3.4. Proof of Theorem B. By the theorem of Forelli [Ru, p. 60], there
exists r0 > 0 such that f is holomorphic in Bnr0 . Put r∗ = sup{r ∈ (0, 1) :
f is holomorphic in Bnr }. Then f is holomorphic in Bnr∗ . Suppose r∗ < 1.
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Step 1. Take p0 ∈ ∂Bnr∗ . For the point f(p0) ∈ M take W0 = Wf(p0),
r0 = rf(p0), S0 = Sf(p0) as in Definition 2.2(ii) of Hartogs type, i.e. for each
ϕ ∈ Hol(∆,M), if ϕ(0) ∈W0 then ϕ(∆r0) ⊂ S0.

Since

lim
α→1−

r∗(1− α)
1− α(r∗)2 = 0 < r0,

there exists α0 ∈ (0, 1) such that

r∗(1− α0)
1− α0(r∗)2 < r0, f(α0p0) ∈W0.

Since

lim
p→p0

‖p‖(1− α0)
1− α0‖p‖2

=
r∗(1− α0)
1− α0(r∗)2 < r0,

there exists B(p0, δ) ⊂ Bn such that ‖p‖(1− α0)/(1− α0‖p‖2) < r0 for each
p ∈ B(p0, δ) and

f(α0B(p0, δ)) = f(B(α0p0, α0δ)) ⊂W0.

We now prove that f(B(p0, δ)) ⊂ S0. Indeed, take p ∈ B(p0, δ). Consider
the Möbius map ψ : ∆→ ∆ given by

ψ(z) =
z − ‖α0p‖
1− ‖α0p‖z

.

Put ψ(‖p‖) = p′. Consider the map ϕ : ∆→ Bn given by ϕ(z) = z.p/‖p‖ and
the composite map φ := f ◦ ϕ ◦ ψ−1 : ∆ → M . Then φ(0) = f(α0p) ∈ W0,
φ(p′) = f(p). On the other hand, since

|p′| = ‖p‖(1− α0)
1− α0‖p‖2

< r0,

we have p′ ∈ ∆r0 , and hence φ(p′) = f(p) ∈ S0.

Step 2. We now prove that, for each p0 ∈ ∂Bnr∗ , there exists δp0 > 0
such that the restriction of f to B(p0, δp0) is holomorphic. Without loss of
generality we may assume that p0 = (0, . . . , 0, r∗).

By using again the mappings ϕ1, g and the definitions of T , TR,h, we
find that g is holomorphic in TR,(r∗)2 for all R > 0. By Step 1 and since ϕ1
is biholomorphic, there exists δ > 0 such that g(B(p0, δ)) is contained in a
subset S0 of Hartogs type. Note that ϕ1(p0) = p0.

Take a sufficiently small δ1 > 0 such that ∆n−1
δ1
× ∆(p0, δ1) ⊂ B(p0, δ).

Since

lim
δ→0+

(r∗)2

1 + (n− 1)δ2 = (r∗)2 >

(
r∗ − δ1

4

)2

,
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there exists δ2 > 0 such that

(∗) (r∗)2

1 + (n− 1)δ2
2
>

(
r∗ − δ1

4

)2

, 0 < δ2 < δ1.

This implies ∆n−1
δ2
×∆(r∗ − δ1/2, δ1/4) ⊂ ∆n−1

δ2
×∆(r∗, δ1) ⊂ B(p0, δ) and

∆n−1
δ2
×∆(r∗ − δ1/2, δ1/4) ⊂ Tδ2,(r∗)2 .

By Lemma 3.3, g is holomorphic in ∆n−1
δ2
×∆(r∗, δ1). Thus the assertion

of Step 2 follows from the fact that ϕ1 is a biholomorphic mapping.

Step 3. For each p ∈ Bnr∗ put

δp = sup{δ : f is holomorphic in B(p, δ)}.
By Step 2, we know that δp is positive.

On the other hand, it is easy to see that

|δp0 − δp1 | ≤ ‖p0 − p1‖, ∀p0, p1 ∈ Bnr∗.
This implies that the function δ : Bnr∗ → R+

∗ is continuous. Hence
minp∈Bnr∗ δ(p) = δr∗ > 0. Then f is holomorphic in Bnr∗+δr∗ ) Bnr∗ . This
is a contradiction.

The following lemma plays an essential role in proving Theorem C:

3.5. Lemma ([T]). Let M be a holomorphically convex Kähler complex
space. Then M has (HEP) if and only if M contains no rational curves.

3.6. Proof of Theorem C. Sufficiency. This follows immediately from
Theorem B.

Necessity. By Lemma 3.5, it suffices to prove thatM contains no rational
curve.

Suppose that

(1) there exists a rational curve ϕ : P1(C)→M and ϕ 6= const.

Consider the mapping f : B2 → P1(C) given by (z, w) 7→ [(z + w − 1)2 :
(z − w)2] for each (z, w) 6= (1/2, 1/2) and f(1/2, 1/2) = [1 : 1]. Then it
is easy to check that f is C∞ in an open neighbourhood of the origin and
the restriction of f to each complex line through the origin is holomorphic.
Since M has (FP), ϕ ◦ f is holomorphic. In particular, it is continuous, and
hence the following limit exists:

(2) lim
(z,w)→(1/2,1/2)

(ϕ ◦ f)(z, w) = a ∈M.

From (1), it follows that

(3) ϕ−1(a) is a finite set in P1(C).

Put w = 1/2 + λ(z − 1/2), λ ∈ C. Then

lim
(z,w)→(1/2,1/2)

f(z, w) = [(1 + λ)2 : (1− λ)2].
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By (2), we have {[(1+λ)2 : (1−λ)2] : λ ∈ C} ⊂ ϕ−1(a). This contradicts (3).
The proof is complete.

In order to prove Theorem D we need the following lemma:

3.7. Lemma ([Shi 3]). Let M be a complex space having the meromorphic
extension property. Let U, V be open sets in Cm,Cn respectively , and let V0
be an open subset of V . Let f : U × V0 → M be a meromorphic mapping.
If fz has a meromorphic extension to V for almost all z ∈ U , then f has a
meromorphic extension to U × V .

3.8. Proof of Theorem D. We use the argument of the first part of The-
orem A. By the theorem of Forelli [Ru, p. 60], there exists r0 > 0 such that
g is holomorphic in TR,r2

0
for all R > 0.

From Lemma 3.7, we deduce that g is meromorphic in TR,1. Since T =⋃
R>0 TR,1, g is meromorphic in T . On the other hand, since Bn =

⋃n
i=1(Bn−

{zi = 0}) ∪ Bnr0 , we conclude that f is meromorphic in Bn.

3.9. Remark. The Kähler property in Theorem D cannot be omitted.
Consider the Hopf surface S = C2−{0}/z ∼ 2z and the canonical projection
ϕ : C2 − {0} → S. Then ϕ is holomorphic on any complex curve through
0 but does not extend meromorphically to C2. Let f : B2 → S be the
holomorphic mapping given by f(z, w) = ϕ((z+w−1)2, (z−w)2). It is easy
to see that the limit limt→0 ϕ(t, t) exists and equals f(1/2, 1/2). But f is
not meromorphic at 0.
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