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Canonical Poisson—Nijenhuis structures on
higher order tangent bundles

by P. M. KovoTcHOP WAMBA (Yaoundé)

Abstract. Let M be a smooth manifold of dimension m > 0, and denote by Scan
the canonical Nijenhuis tensor on TM. Let IT be a Poisson bivector on M and IT” the
complete lift of IT on T'M. In a previous paper, we have shown that (T'M, II”, Scan) is a
Poisson—Nijenhuis manifold. Recently, the higher order tangent lifts of Poisson manifolds
from M to T"M have been studied and some properties were given. Furthermore, the
canonical Nijenhuis tensors on T“*M are described by A. Cabras and 1. Kolai [Arch.
Math. (Brno) 38 (2002), 243-257|, where A is a Weil algebra. In the particular case where
A = J5(R,R) ~ R"™! with the canonical basis (eq), we obtain for each 0 < a < r the
canonical Nijenhuis tensor S, on T" M defined by the vector eo. The tensor S, is called the
canonical Nijenhuis tensor on 7" M of degree «. In this paper, we show that if (M, IT) is a
Poisson manifold, then for each a with 1 < a < r, (T"M, e, Sa) is a Poisson—Nijenhuis
manifold. In particular, we describe other prolongations of Poisson manifolds from M to
T"M and we give some of their properties.

1. Introduction. Let M be a smooth manifold of dimension m > 0. We
denote by mpr : TM — M the tangent vector bundle and by 73, : T*M — M
the cotangent vector bundle. We also denote by (-,-)ar : TM xp T*M — R
the usual canonical pairing. Let S be a (1, 1)-tensor field on M. The Nijenhuis
torsion of S is defined by, for any X,Y € X(M),

Ts(X,Y)=[SX,SY] - S([SX,Y] + [X,SY] - S[X,Y)).
If Tg = 0, then S is said to be a Nijenhuis tensor and the pair (M, S) is
called a Nijenhuis manifold. Let II be a Poisson bivector on M. We denote
by SII the (2,0)-tensor field associated with the vector bundle morphism
S oty from T*M to TM defined for any 1-forms w, w by
SH(w,w) = (w,Sotn(w)m = (S*w,tg(w))m = (5w, w),

where S* denotes the dual map of S. Let (M, S) be a Nijenhuis manifold
and II a Poisson bivector on M. The Poisson structure II and the Nijenhuis
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tensor S are called compatible (see [KO|, [KM2|, [V1] or [V2]) if
froS*=Sofy and Vpg(w,w)=0
for any w,w € 2*(M), where
Vis(w, @) = [w,@wlsg — ([S*w, w|r + [w, S*w|r — S*|w, w|n)

and [-,-]m, [, ]sm are the Koszul brackets induced by the bivectors IT and
SII. In particular, the bivector SII defined by the vector bundle morphism
Sotg: T*M — TM over idys is a Poisson bivector on M.

Let (x!,...,2™) be a local coordinate system of M such that
.9 0 0
= S'dy) @ — i
S = Sidx) ® pIe and Il =1II B 895]
Writing
iy o )
Vs Ear” ® <axz A 8ZL‘J>
we have
aS! 85 oIT oIT™* a5}
F H[‘] Hlfi <4 J _ Hé] .
oz et ozt Sk ozt 5 Ok Ok

Let M f be the category of all manifolds and all smooth maps, and F M
the category of all smooth fibred manifolds and fibred morphisms. For any
integer r > 1 and any manifold M, we put 7"M = Jj(R, M). The elements
of T" M are said to be 1-dimensional velocities of order r on M. The smooth
map 7y, : T"M — M defined by 7, (j5¢) = ¢(0) for jop € T"M defines
the structure of a smooth fiber bundle. Usually, the manifold T"M with
the projection 7, is called the tangent bundle of M of order r. On the
other hand, every smooth map f : M — N extends to an F M-morphism
T7f:T"M — T"N defined by T" f(j5¢) = jo(f o ¢). Hence, T" is a functor
Mf — FM and it preserves products.

Let (U,2%) be a local coordinate system of M. The local coordinate
system of T"M over T"U is such that the coordinate functions (:L‘Zﬁ) with

it=1,...,mand §=0,...,r are given by
w(i6g) = #'(9(0)),
1 dﬁ(a:Z 0g)

T ——(7 .

$k0) = 5 0]
In the following, the coordinate function xé is denoted by z'. For r = 1, we
obtain the usual tangent functor denoted by T'.

In this paper, we generalize the work of [KW]. The main results are The-
orems 4.1, 4.2 and 5.2: given a Poisson manifold (M, IT) and the canonical
Nijenhuis tensor field S, of degree o on T" M defined below, we prove that
(T"M, 19| S,) is a Poisson-Nijenhuis manifold, where the Poisson bivector
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I1(9) on T"M is the complete lift of IT to T" M defined in [KWN]; moreover,
we study some properties of the Poisson bivector II* defined by S, o f7¢c).

In this paper, all manifolds and mappings are assumed to be of class C'*.
We shall fix a natural number r > 1.

2. Preliminaries

2.1. The canonical isomorphism ', : T"T'M — TT"M. For each
B €{0,...,r}, we denote by 73 the canonical linear form on Jj(RR, R) defined
by

1 dP

75(J0g) = a dTB(g(t)) , for g € C(R,R).

t=0

Let M be a smooth manifold of dimension m > 0. For f € C°(M), we set
B = TgoT" f. The smooth map ) is called the S-prolongation of f; it is
defined for any jyp € T"M by

1 d’(foy)
Biry) = — 2N~ )
It follows that x/’B = (z")®) on T"U with coordinate system (z!,... ™).

For each manifold M, there is a canonical diffecomorphism (see [GMP],
[RNS))

t=0

Ky :T"TM — TT"M,
which is an isomorphism of vector bundles from
T (mpg) : T"TM —T"M  to wprpy : TT"M — T"M

such that T'(7,) o K}, = 77, and for any smooth map f : M — N we have
the equality
KnoT"Tf=TT"fokl,.
Let (z',...,2™) be alocal coordinate system of M. We introduce the coordi-
nates (2%, 2%) in TM, (azl,xz,xfg,xzﬁ) in T"TM and (x’,x’ﬂ,x’,xlﬁ) in TT™M.
We have .
Ky (2!, 2", 2, 7)) = (mz,xzﬁ,j:z,xfg)
i

with xfB = &p.
2.2. The canonical isomorphism o', : T*T"M — T"T*M. For any
manifold M, there is a canonical diffeomorphism
ay :T*T"M — T"'T*M
which is an isomorphism of the vector bundles

wpepg c TXT"M — T"M  and T"(myy) : T"T"M — T"M
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dual to k', with respect to the pairings (-, )y, = 7 0 T7((-,-)ar) and
(-, )rra, e for any (u,u*) € T"TM & T*T" M,

(ks (u), u")rras = (u, @y (u*)) e g
Let (z',...,2™) be a local coordinate system of M. We introduce the co-
ordinates (z%,p;) in T*M, (a;i,pj,xiﬁ,pf) in T"T*M and (xi,xiﬁ,ﬂj,ﬂf) in
T*T" M. We have

—_ T
i i BN (i i B : Pj =Tj,
aM(x,ﬂj,mg,ﬂj)—(x,xﬁ,pj,pj) with {p?:W; ‘

We denote (a},)~t by &%,

3. Canonical Nijenhuis tensor on higher order tangent bundles

3.1. Higher order lifting of vector fields. Let (F, M, ) be a vector
bundle, and consider the vector bundle morphism XS;) :T"E — T"FE defined
by

G ) = ja(eew)
where ¥ € C*(R, F) and t*¥ is the smooth map defined for any ¢ € R by
(tw)(t) = t*U(t).

Let X be a vector field on the manifold M. We define the a-prolongation

of X, denoted X (@), by
X©@ = gh o Xg?}\)/[ oT"X.

When a = 0, it is called the complete lift of X to T"M, and it is denoted
by X (). We put X(® =0 for a > r or a < 0.

If (U, 2%) is a local coordinate system of M such that X = X* 8‘?&, then

x(@) = (xiy-e_9_
am;}

PROPOSITION 3.1.
(i) For X e X(M), f € C>*(M) and o, 8 € {0,...,r}, we have
X0 = (x (7).
(i) For X, Y € X(M) and o, 8 € {0,...,7}, we have:
(3.1) (X(@ y®) = [x,y]@+F),

(iit) The set {XP®) | X € (M), B=0,...,7} generates the C=(T"M)-
module X(T"M).
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3.2. Higher order tangent lifts of 1-forms. Let w € 2'(M). We
define the a-lift of w, denoted w(®), by

a)

w@ = gy o X*E/:«_]\(;) oT"w.

When a = 7, w@ is called the complete lift of w and denoted by w(©).
In local coordinates, if w = w;dz?, then

w@ — (wi)(a_ﬁ)dxiﬁ.
PROPOSITION 3.2.
(i) For any X € X(M) and 8 =0,...,r, we have
w@(XP)) = [w(X)]H),
(ii) For any X € X(M) and B =0,...,r, we have
(dw)® = d(w)®  and ﬁx(ﬁ)w(a) = (Lxw) @A),

(iii) The set {w® |w e Y (M), a=0,...,7} generates the C®(T" M)-
module 2Y(T"M).

The proofs of Propositions 3.1 and 3.2 can be found in [MO].

3.3. Canonical Nijenhuis tensors on higher order tangent bun-
dles. Let M be a smooth manifold. Multiplication of tangent vectors by
real numbers is a map mp; : R x TM — T'M. Applying the functor T", we
obtain T"(myy) : JE(R,R) x T"TM — T"T'M. Then

T (mar) = whroT" (mar) o (id jrmry X (K3y) )+ J§(R,R)xTT"M — TT"M
and we define, for each a € {0,...,r}, the tensor field

Sa = T"(mpr)(€a,) : TT"M — TT" M,
where (eg, ..., e,) is the canonical basis of J§(R,R) ~ R" 1,

DEFINITION 3.1. The (1,1)-tensor field S, is called the canonical Nijen-
huis tensor on T" M of degree a.

PROPOSITION 3.3.
(i) For any X € X(M) and g € {0,...,r}, we have
Sa(X(ﬁ)) — x(atp)

(ii) Denote by S¥ the dual map of Se. Then for any w € 2*(M) and
B €{0,...,r}, we have

S (wP)) = B,
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Proof. (i) Let X € X(M). We know that X(®) = k% oT"(mys)(es, T X),
and it follows that

Sa(X) = Ky o T" (mr) (e, (Khy) ™) 0 Ky 0 T" (mar) (e, T X)
= Ky o T" (mar) (€as T" (mar)(e5, T7 X))
= Khy o T (mpr)(eqrs, T"X) = X (@),
(i) For any X € X(M) and ~ € {0,...,r}, we have
SZ(W(B))(X(W)) = WP (S (X)) = B (x Oy
= (w(X))Bmo=) = (B (x ),
Therefore, S (w®) = W~

Let (U, x') be a local coordinate system of M. We denote by (z°, wzﬁ) the
local coordinate system of T" M over T"U. The local expression of the tensor

field S, is

Sa:dx%éb —,
8x£+ﬁ

COROLLARY 3.1. Denote by Ty, the torsion of the (1,1)-tensor S,. Then
T, =0.

Proof. Let X, Y € X(M) and S, € {0,...,r}. We have
To(XB) Yy = [, XB) 5 v — 5, ([SaX P Y]
+ S ([XP) S, Y N]) — Son ([X B, Y]
= [X,Y]FH+20) _ g (1X, Y],

As Tp(XB) Y)Y =0 for any X,Y € X(M) and 3,7 =0,...,r, we deduce
that T, = 0. m

From this corollary, we deduce that the pair (T"M,S,) is a Nijenhuis
manifold, called the canonical Nijenhuis manifold on 7" M.

COROLLARY 3.2.
(i) For any o, B € {0,...,7}, we have
Sa 085 =550 S0 = Sarsp.
(ii) Let po be a natural number such that o - po > 1. Then
Sqo0---08, =0.

Pa times

In particular, when r = a = 1 we obtain the canonical (1,1)-tensor on T M
and we have the famous formula

Secan © Scan = 0.
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Proof. Let X € X(M) and v € {0,...,r}. We have
S, o SB(XM) = S (X By = xlatb+y) — Sa+ﬁ(X(7))-

Therefore S, 0 Sg = Sy15. =

REMARK 3.1. Let S : TM — TM be a (1,1)-tensor field. For each
B €{0,...,r} we put
(3.2) SO = ki o\ 0TS 0 (i)
Then S is a (1, 1)-tensor field on 77 M; when 8 = 0, it is called the complete
lift of S and denoted by S(©). We verify easily that for any X € X(M) and
Y=,

SE (XY = (§x)B+),
From this equality, it follows that
S,088) =g g — glath)

In particular,

[S(ﬁ)a Sa] =0 and (S(C) o Sa)Pa =0.

We show easily that if Ts = 0 then Tgp) = 0, so that (7T"M, S®)) is a
Nijenhuis manifold.

4. Canonical Poisson—Nijenhuis manifolds

4.1. Higher order tangent lifts of Poisson manifolds. We recall in
this subsection the notion of higher order tangent lifts of Poisson manifolds.
For each natural number ¢ > 2, we consider the natural transformations
N @PIT* — \?T* defined for any smooth manifold M by

Ny @IT*M — N1T*M, &L @D — &N N
The bundle map
T"(Nip) © (D aly) : @ITT"M — T"(\"T* M)

is a well-defined and skew-symmetric fibred morphism over id7r ;. Therefore,
there is a unique bundle morphism

ag’; NT*T"M — TT(NTT*M)
over idprps such that

ayf © Nrear = T" (i) o (@ aly)-

1 . L
For ¢ = 1, we put o}, = o, and the local expression for aqu is given

in [KWN]. We denote by s/ the vector bundle morphism
K9 T (NITM) — NOTT™M
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such that, for any u @ v € T"(AN*TM) & NY(T*T"M),

(u, Q@) forr = (37 (0), 0
where (-,)%, :+ ANTTM xp N'T*M — R is the canonical pairing and
(Vg = T o T7((,)4)) + TT(NITM) xprps T (NTT*M) — R. So, we
have the natural transformation (see [KWN])
KT o (NIT) — NIT o TT.
For any manifold M of dimension m, we have locally

K%(xlig’]];l'“iq) — (:L;%’ﬁi17ﬂl"'i(I7B‘I)
with
~ i1 B1evig By _ =g 7010
B Be — Z 5;171...55q q]]wl T
Y14y ty=r

Let IT be a multivector field of degree ¢ on M. We put
) = o T (IT) : T"M — N'TT" M.

Then I1(9) is a multivector field of degree ¢ on T"M. Let (z!,...,2™) be a
local coordinate system of M such that

i 0 0
D= Y I ——pnpN—

1<i1 < <ig<m Oz Oxs

Then
17 — Z (Hil“"iq)(ﬂ) 181 A-ee A Za .
q
B1+-+PBq+B=r axT*ﬂl 8567’—6,,

In the particular case where ¢ = 2 and I = IT% 8‘; A %, we have

1@ = iy 9, 9

a.’l‘z ax]
g v

PROPOSITION 4.1 (see [KWN]). If IT is a simple multivector field of
degree k (i.e. IT = X1 A -+ N Xy with Xq,..., X, € X(M)), then
(4.1) o€ =N XA axIT

Br-totBr=r

REMARK 4.1. For r = 1, we have
k
7o = ZXl(”) Ao AXE Am/\X,g“),
i=1

where X j(v) is the vertical lift of the vector field X; from M to T'M. Thus,
we obtain the result of [GU].
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By the formulas (3.1)) and (4.1)), we deduce that for any ¢ € XP(M) and
U € X9(M), we have
[@(C),@(C)] - [QS,Q](C)_

So, if (M, II) is a Poisson manifold then so is (7" M, II(?)). This induced
Poisson structure on 7" M is called the tangent lifting of the Poisson structure
of order r.

PROPOSITION 4.2 (see [KWN]). Let (M, II) be a Poisson manifold.
(1) If 57 is the anchor map induced by II, we have
(4.2) b = ka0 T (B) o aly-
(ii) For any w € 21(M) and B € {0,...,7}, we have
e (W) = [t ().
(iii) For any w,w € 21(M) and o, 3 € {0,...,r}, we have

[w(a),w(ﬂ)]mc) — ([w,w]n)(o‘%_”.

4.2. The main result. Let (M, II) be a Poisson manifold. The pair
(T"M, 11 (C)) is also a Poisson manifold and its sharp map is given by ll

LEMMA 4.1. For each o € {0,...,r}, we have
f17(0 © Sq = Sa o i)
Proof. For any w € 2'(M) and 8 =0,...,r, we have
e © Sa(w?) =t (W) = [fr (W) TP,
In the same way,
Sa 0 f70 (WD) = Sa((fn(W)]"™) = [ (w)] "+
It follows that, for any w € (M) and 8 =0,...,r,
fre © Sa(W®) = Sy 0t i (W),

Therefore, ) 0 Sy = Sa ot =

REMARK 4.2. From this lemma, it follows that the vector bundle mor-
phism f#;7() oS}, is skew-symmetric. It defines a bivector field denoted by IT*
on T"M, and for o = 0, we have I7° = I1(°).

LEMMA 4.2.

(i) For any w € 2Y(M) and B € {0,...,r}, we have
b ) = [ @)+

(i) For any w,w € 2Y(M) and B,v=0,...,r,

w®, oM ga = [w, w]%ﬂ*aﬂ")'
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Proof. (i) By (3-2), we have
B (@) = Sa 0 700 (W) = Sal[im(@)] ") = [ (w)] " 7H.
(ii) By the equality

[w®, ) Ld(ﬁ))w(v) L (ww))w(v) — d(IT @ (w®) M))

me) = Eﬁn(a)( It PN

the result follows from the first part of the lemma and Propositions 3.1, 3.2
and 4.2. u

THEOREM 4.1. Let (M, II) be a Poisson manifold. Then for each o €
{0,...,7}, (T"M, 119, S,) is a Poisson—Nijenhuis manifold.

Proof. Let w,ww € 2Y(M) and B,v € {0,...,r}. We have
V. (w(ﬁ)7w(v)) — [w(ﬁ),w(ﬂ]na _ [S;w(ﬁ),w(w]n(@
_ [w(ﬁ), S;w(”)]n(c) + S;[w(ﬁ),w(”]mc)

= o,y T — W), O]

J1(c)
— W, @07 o + S (w, @I H7)
= [w, @@ — fw, w]g
— [, @G + S (w, @]
= w, @G — fw,w| .

It follows that Vg () = 0. The rest follows from Lemma 4.1. m

REMARK 4.3. In [KO|, the author has shown that, if (M,II,S) is a
Poisson—Nijenhuis manifold, then the 2-vector field defined by the vector
bundle morphism Sof7 is a Poisson bivector. It follows that, foraa =1,...,r,
the bivector IT“ is a Poisson bivector. This Poisson structure on T"M is
called the a-lift of the Poisson manifold (M, IT).

Let (U,z*) be a local coordinate system of M such that locally,

0 0
II=1I"%—na—.
oxt Oz’
Then
7 = (Hij)(ﬁﬂ—a—r)i A i
83725 o,
In particular, for r = a = 1, we have
I =m9 —— N —.
ot 047

So, we obtain the result of [KW].
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4.3. Some properties of the a-lift of Poisson manifolds. In this
subsection, we fix a € {1,...,7}.

THEOREM 4.2. Let (M, II) be a Poisson manifold.
(i) We have
110 = Ky o Xy o " (#11) © oy
(ii) For any f € C®(M) and g € {0,...,r}, we have
(43) X oy = (X)),

(iii) For f,g € C°(M) and B,y € {0,...,r}, we have
{9, 6 e = ({f, 93 )P,

where {-,-} 11 is a Poisson bracket on C*°(M).

(iv) If f: (M, IIp) — (N, IIN) is a Poisson morphism, then so is T" f :
(T"M, 1) = (T"N, IIg). In particular, if (G, II) is a Poisson-Lie
group, then (T"G,II1%) is a Poisson—Lie group.

Proof. (i) Let w € 2Y(M) and B =0,...,r. We know that
e (W) = [t (w)] 7T
We put nMoX(T]\)/[oT’"(ﬁg)oaM (#17)(®). Then

(ﬁﬂ) (‘*’(ﬂ)) = Ky © ngj\)/[ oT"(f7) o ngfﬁ) oT"w

= K} o X{s © x(TM oT"(fn(w))
= rhroxiar o T (@) = (B (@),
(ii) Let f € C°°(M). Then
X o) = e (df D) = [ (df)] 0 = (Xp)rremo),
(iii) Let f,g € C>°(M) and B,y =0,...,r. Then
(£, 9N e = X000 (g7 = (Xf)(”a ﬂ)( )= {fgrm) e,
(iv) We use the properties of the natural transformations of £}, and af,:
TT folpg oT*T"f =TT"for}y o Xg?é]\)/[ oT"(f1,,) 0y o T*T" f
=Ko Xg?l]z/ oT"TfoT (8,,) 0T " T" foaly
= ki o X o T (Tf 0 11,0 o T*f) 0 aly = .
Thus 1" f is a Poisson morphlsm "

REMARK 4.4. By ,if f is a Casimir function for (M, IT), then for
each g € {0, .. 7“} f® is a Casnmr function for (T"M, I1%). In particular,
for any 8 < «a, f(ﬁ) is a Casimir function.
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(ii) If II is a regular Poisson bivector of rank 2d, then IT% is regular of
rank 2d(r — a + 1).

REMARK 4.5. For 8 € {0,...,r}, we have

firre 0 Sh =) 055 085 = ) © S p = Sarp o e = Spofma.
By the procedure of Subsection 4.2, we verify easily that ("M, II%, Sg) is
a Poisson—Nijenhuis manifold. This structure is the same as the structure
obtained from the canonical Nijenhuis tensor S,4s on the Poisson mani-
fold (T M, IT®)).

COROLLARY 4.1. For any o, 8 € {0,...,r}, II* and IT? are compatible,

50
[I1¢, IT°) = 0.
Proof. Apply |[V2, Theorem 1.3] and Remark 4.5. =

5. Applications

5.1. Other prolongations of Lie algebroids. For any vector bundle
(E, M, ), we define the ﬁ-prolongation of a section u, denoted u(®, by

where XSE) T'E — T"FE is a smooth map defined in Subsection 3.1. For

convenience, we put u(®) =0 for 3 ¢ {0,...,r}.
We denote by (2%,77) a local coordinate system of E; it induces local
coordinate systems

(z*, ;) in E*,
(2,97, xﬁ,yﬁ) mnT'E,
(z°, 71'],565, ]ﬂ) inT"E*,
(¢!, 7j,25,7)) in (I"E)".
We recall that there exists a natural bundle isomorphism
Ip. :T"E* — (T"E)*
such that locally,
I (2, 7y, 28 7)) = (2,75, o 7) with {fj: ;’_
» Ly T g Ty Fl =,

With these notations, we deduce the following result:

THEOREM b5.1. Let (E,[-,-],p) be a Lie algebroid and a € {0,...,r}.
There is a unique Lie algebroid structure on the bundle T"E — T"M with
anchor map

P = Ko XSy o T"p
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such that for any u,v € I'(E) and 5,7y =0,...,r,
[u® 0] = [u, v] (@A),

This structure is called the a-lift of the Lie algebroid E.

Proof. Since (E,[-,-],p) is a Lie algebroid, it induces a linear Poisson
bivector IIg+ on E*. So, the map fi7,. : T*E* — TE* is a morphism of dou-
ble vector bundles. By Theorem 4.2(1), me, isa morphism of double vector
bundles. Therefore, (T"E*, II%.) is a linear Poisson bivector and it follows
that (7" E*)* is a Lie algebroid. We endow 7" FE with the structure of Lie al-
gebroid such that I, : T"E — (T"E*)* is an isomorphism of Lie algebroids.
The rest of the proof is similar to the proof of [KWN|, Theorem 3|. m

REMARK 5.1. Let (E, [, ], p) be a Lie algebroid and u a smooth section
of E. For B € {0,1,...,r}, we have p(® (u®)) = [p(u)]@+F).
COROLLARY 5.1. Let (E,[-, -], p) be a Lie algebroid. Then the vector bun-

dle morphism X%Y) :T"E — T"E is a morphism of Lie algebroids between
the a-lift of the Lie algebroid denoted by (T"E, [-,-], p'*)) and the tangent lift
of order 1 of the Lie algebroid denoted by (T"E,[-,-], p{")) (see [KWN]).

Proof. We know that for any v € I'(E) and 8 = 0,...,r, we have
X%‘) (u®) = ule+P) Tt follows that

DB ] = 3 ([, 0] @) = [, 0] C+0+7)

= [XS;) (u®), X(];)(U(v))]
for any u,v € I'(F) and 8,7 =0,...,r. We deduce our result from

(r) o (@) _ (@) (a)

poxg =kpyoT poxg =kyoxpyoT p.

Thus p(™ o XS;) =pl@) u

COROLLARY 5.2. Let (M,II) be a Poisson manifold, let T"T*M desig-
nate the a-lift of the Lie algebroid (T*M,[-, |, tm), and let T*T"M be the
Lie algebroid defined by the Poisson bivector I1%. The canonical mapping
ah T*T"M — T"T*M is an isomorphism of Lie algebroids.

Proof. This follows by a calculation in local coordinates. m

EXAMPLE 5.1. We know that since (77 M, S,) is a Nijenhuis manifold,
it induces a Lie algebroid structure on 77" M such that the bracket is given
for X,Y € X(T"M) by

[X,Y]s, = [SaX, Y]+ [X,S.Y] — So[X,Y].
We denote by (T"TM, [-,]a) the a-lift of the canonical Lie algebroid on T'M.
The vector bundle isomorphism &, is an isomorphism of Lie algebroids

between (T"T'M, |-, ]o) and (TT"M,[-,"]s.,)-
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ExXAMPLE 5.2. Let g be a Lie algebra; it is a Lie algebroid over a point.
Let {e1,...,emn} be a basis of g. For all 7,5 € {1,...,m}, we have
lei, ej] = cfjek.

Here the cfj are constant functions, so that (cfj)(”) = 0 for all v > 1.
The a-lift of the Lie algebroid g is such that for any i,j € {1,...,m} and

B/Ye {07"'>T}7

k a+B+
lef )] = ckep ™.

In particular, when r = 1, the vertical lift of the Lie algebra is such that

[6176]] = [elaej] = [6176]] =0 and [ei’e.j} = Cf;@k

When a = 0, we obtain the usual tangent lift of order r of Poisson
manifolds and Lie algebroids.

REMARK 5.2. Let (E, [, ], p) be a Lie algebroid over M, and J: E — E
a morphism of vector bundles over M. For u,v € I'(E), we put

[u,v]; = [Ju,v] + [u, Jv] — J[u,v],
Ty(u,v) = [Ju, Jv] — J([Ju,v] + [u, Jv] — J[u,v]).

We easily verify that if Ty = 0, then (E,[-,-];) is a Lie algebroid over M
with anchor map pj = p o J. We thus obtain a J-deformation of the initial
Lie algebroid (E, [+, ], p).

Consider the canonical vector bundle morphism J, = X(a) By Corollary
5.1, the a-prolongation of the Lie algebroid on T E coincides with the J,-
deformation of the Lie algebroid (T"E, [-, ], p").

5.2. Higher order tangent lifts of Poisson—Nijenhuis manifolds.
Let S: TM — TM be a tensor. We put

(5@ = el 0 T7(8*) 0 oy,
where S* designates the dual map of S.
LEMMA 5.1. Let (M, S) be a Nijenhuis manifold. Then
(5)" = (5.
Proof. For any w € £2'(M) and X € X(M), we have

(X, (8O (@) rrar = (X D), w0 )geas = (5X), D) prns
<<SX w)u) P = (X, 5w)ar) O~
= (X, (5*w0) D) peas = (X, (5 W) s

Therefore (S©)*(w®)) = (8%)() (W), thus (5))* = (§%)(©). u
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LEMMA 5.2. Let (M,I1,S) be a Poisson—Nijenhuis manifold. Then
frcer © (8" = 5@ ot

Proof. We compute
tr0 © (89) = 80 0 (59 = Kiy o T" (k1) 0 aly 0 fy 0 TS 0y

— Wiy o T7 (ki 0 8") 0 aly = Ky o T7(S 0 ) 0

N ON B,
Let (M, II,S) be a Poisson-Nijenhuis manifold. We denote by ITg the

bivector defined by S o ;7. By Lemma 5.2, we deduce that
U = S ol

Therefore, for any w,w € 21(M) and o, 3 € {0,...,r}, we have
(5.1) [w<a>,w<ﬂ>]ﬂg> = [w, @] (7.

THEOREM 5.2. Let (M, I1,S) be a Poisson—Nijenhuis manifold. For any
w,w € RYM) and a, 3 =0,...,r, we have

V ) 5 (WY, Py = (Vs(w,w))@+Bs),
In particular, (T" M, 119, S is a Poisson—Nijenhuis manifold.
Proof. This follows from Lemma 5.2, Proposition 4.2 and equation (5.1]). =

COROLLARY 5.3. Let (M, II,S) be a Poisson—Nijenhuis manifold. Recall
that for o € {0,...,r}, S = Kh, OXS./?;\Z 0T S o (k},) L.

(i) For each a € {0,...,7}, (T"M, 119, S) is a Poisson—Nijenhuis
manifold.

(ii) For each o, B € {0,...,r}, (T"M,1I*,S®) is a Poisson—Nijenhuis
manifold.

Proof. This follows from the equalities Sq 0 S(© = §(@) = §() 6 G u

REMARK 5.3. Let (M, I1,S) be a Poisson—Nijenhuis manifold. For any
k > 2, we put
S* =8o0...08 and SN =25
—

k times

In the same way, I1%*) is the Poisson bivector defined by the vector bundle
morphism S o {71y with IV = I1. The sequence (S<k>,ﬂ<k>)k22 is the
hierarchy of the Poisson—Nijenhuis manifold (M, II,S), so that for k,p > 1
we have

%) e = o.
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From the equalities
(SN 6 5, = 540 (SR = (5, 0 §)F) = (SNk) (k> 1),

it follows that (II*))* = (I1%)) where the sequence (II*)*¥) is defined
by (S(@) k),
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