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Canonical Poisson–Nijenhuis structures on
higher order tangent bundles

by P. M. Kouotchop Wamba (Yaoundé)

Abstract. Let M be a smooth manifold of dimension m > 0, and denote by Scan

the canonical Nijenhuis tensor on TM . Let Π be a Poisson bivector on M and ΠT the
complete lift of Π on TM . In a previous paper, we have shown that (TM,ΠT , Scan) is a
Poisson–Nijenhuis manifold. Recently, the higher order tangent lifts of Poisson manifolds
from M to T rM have been studied and some properties were given. Furthermore, the
canonical Nijenhuis tensors on TAM are described by A. Cabras and I. Kolář [Arch.
Math. (Brno) 38 (2002), 243–257], where A is a Weil algebra. In the particular case where
A = Jr0 (R,R) ' Rr+1 with the canonical basis (eα), we obtain for each 0 ≤ α ≤ r the
canonical Nijenhuis tensor Sα on T rM defined by the vector eα. The tensor Sα is called the
canonical Nijenhuis tensor on T rM of degree α. In this paper, we show that if (M,Π) is a
Poisson manifold, then for each α with 1 ≤ α ≤ r, (T rM,Π(c), Sα) is a Poisson–Nijenhuis
manifold. In particular, we describe other prolongations of Poisson manifolds from M to
T rM and we give some of their properties.

1. Introduction. LetM be a smooth manifold of dimension m > 0. We
denote by πM : TM →M the tangent vector bundle and by π∗M : T ∗M →M
the cotangent vector bundle. We also denote by 〈·, ·〉M : TM ×M T ∗M → R
the usual canonical pairing. Let S be a (1, 1)-tensor field onM . The Nijenhuis
torsion of S is defined by, for any X,Y ∈ X(M),

TS(X,Y ) = [SX,SY ]− S([SX, Y ] + [X,SY ]− S[X,Y ]).

If TS = 0, then S is said to be a Nijenhuis tensor and the pair (M,S) is
called a Nijenhuis manifold. Let Π be a Poisson bivector on M . We denote
by SΠ the (2, 0)-tensor field associated with the vector bundle morphism
S ◦ ]Π from T ∗M to TM defined for any 1-forms ω,$ by

SΠ(ω,$) = 〈ω, S ◦ ]Π($)〉M = 〈S∗ω, ]Π($)〉M = Π(S∗ω,$),

where S∗ denotes the dual map of S. Let (M,S) be a Nijenhuis manifold
and Π a Poisson bivector on M . The Poisson structure Π and the Nijenhuis
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tensor S are called compatible (see [KO], [KM2], [V1] or [V2]) if

]Π ◦ S∗ = S ◦ ]Π and ∇ΠS(ω,$) = 0

for any ω,$ ∈ Ω1(M), where

∇ΠS(ω,$) = [ω,$]SΠ − ([S∗ω,$]Π + [ω, S∗$]Π − S∗[ω,$]Π)

and [·, ·]Π , [·, ·]SΠ are the Koszul brackets induced by the bivectors Π and
SΠ. In particular, the bivector SΠ defined by the vector bundle morphism
S ◦ ]Π : T ∗M → TM over idM is a Poisson bivector on M .

Let (x1, . . . , xm) be a local coordinate system of M such that

S = Sijdx
j ⊗ ∂

∂xi
and Π = Π ij ∂

∂xi
∧ ∂

∂xj
.

Writing

∇ΠS = Γ ijk dx
k ⊗

(
∂

∂xi
∧ ∂

∂xj

)
we have

Γ ijk = Π`j ∂S
i
k

∂x`
+Π i`∂S

j
k

∂x`
− S`k

∂Π ij

∂x`
+ Sj`

∂Π i`

∂xk
−Π`j ∂S

i
`

∂xk
.

LetMf be the category of all manifolds and all smooth maps, and FM
the category of all smooth fibred manifolds and fibred morphisms. For any
integer r ≥ 1 and any manifold M , we put T rM = Jr0 (R,M). The elements
of T rM are said to be 1-dimensional velocities of order r on M . The smooth
map πrM : T rM → M defined by πrM (jr0ϕ) = ϕ(0) for jr0ϕ ∈ T rM defines
the structure of a smooth fiber bundle. Usually, the manifold T rM with
the projection πrM is called the tangent bundle of M of order r. On the
other hand, every smooth map f : M → N extends to an FM-morphism
T rf : T rM → T rN defined by T rf(jr0ϕ) = jr0(f ◦ϕ). Hence, T r is a functor
Mf → FM and it preserves products.

Let (U, xi) be a local coordinate system of M . The local coordinate
system of T rM over T rU is such that the coordinate functions (xiβ) with
i = 1, . . . ,m and β = 0, . . . , r are given by

xi0(j
r
0g) = xi(g(0)),

xiβ(j
r
0g) =

1

β!

dβ(xi ◦ g)
dtβ

(t)

∣∣∣∣
t=0

.

In the following, the coordinate function xi0 is denoted by xi. For r = 1, we
obtain the usual tangent functor denoted by T .

In this paper, we generalize the work of [KW]. The main results are The-
orems 4.1, 4.2 and 5.2: given a Poisson manifold (M,Π) and the canonical
Nijenhuis tensor field Sα of degree α on T rM defined below, we prove that
(T rM,Π(c), Sα) is a Poisson–Nijenhuis manifold, where the Poisson bivector
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Π(c) on T rM is the complete lift of Π to T rM defined in [KWN]; moreover,
we study some properties of the Poisson bivector Πα defined by Sα ◦ ]Π(c) .

In this paper, all manifolds and mappings are assumed to be of class C∞.
We shall fix a natural number r ≥ 1.

2. Preliminaries

2.1. The canonical isomorphism κrM : T rTM → TT rM . For each
β ∈ {0, . . . , r}, we denote by τβ the canonical linear form on Jr0 (R,R) defined
by

τβ(j
r
0g) =

1

β!

dβ

dtβ
(g(t))

∣∣∣∣
t=0

, for g ∈ C∞(R,R).

Let M be a smooth manifold of dimension m > 0. For f ∈ C∞(M), we set
f (β) = τβ ◦T rf. The smooth map f (β) is called the β-prolongation of f ; it is
defined for any jr0ϕ ∈ T rM by

f (β)(jr0ϕ) =
1

β!

dβ(f ◦ ϕ)
dtβ

(t)

∣∣∣∣
t=0

.

It follows that xiβ = (xi)(β) on T rU with coordinate system (x1, . . . , xm).
For each manifold M , there is a canonical diffeomorphism (see [GMP],

[KMS])
κrM : T rTM → TT rM,

which is an isomorphism of vector bundles from

T r(πM ) : T rTM → T rM to πT rM : TT rM → T rM

such that T (πrM ) ◦κrM = πrTM and for any smooth map f :M → N we have
the equality

κrN ◦ T rTf = TT rf ◦ κrM .
Let (x1, . . . , xm) be a local coordinate system ofM . We introduce the coordi-
nates (xi, ẋi) in TM , (xi, ẋi, xiβ, ẋ

i
β) in T

rTM and (xi, xiβ, ẋ
i, ẋiβ) in TT

rM .
We have

κrM (xi, ẋi, xiβ, ẋ
i
β) = (xi, xiβ, ẋ

i, ẋiβ)

with ẋiβ = ẋiβ .

2.2. The canonical isomorphism αrM : T ∗T rM → T rT ∗M . For any
manifold M , there is a canonical diffeomorphism

αrM : T ∗T rM → T rT ∗M

which is an isomorphism of the vector bundles

π∗T rM : T ∗T rM → T rM and T r(π∗M ) : T rT ∗M → T rM
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dual to κrM with respect to the pairings 〈·, ·〉′T rM = τr ◦ T r(〈·, ·〉M ) and
〈·, ·〉T rM , i.e. for any (u, u∗) ∈ T rTM ⊕ T ∗T rM,

〈κrM (u), u∗〉T rM = 〈u, αrM (u∗)〉′T rM .

Let (x1, . . . , xm) be a local coordinate system of M . We introduce the co-
ordinates (xi, pj) in T ∗M , (xi, pj , xiβ, p

β
j ) in T rT ∗M and (xi, xiβ, πj , π

β
j ) in

T ∗T rM . We have

αrM (xi, πj , x
i
β, π

β
j ) = (xi, xiβ, pj , p

β
j ) with

{
pj = πrj ,

pβj = πr−βj .

We denote (αrM )−1 by εrM .

3. Canonical Nijenhuis tensor on higher order tangent bundles

3.1. Higher order lifting of vector fields. Let (E,M, π) be a vector
bundle, and consider the vector bundle morphism χ

(α)
E : T rE → T rE defined

by
χ
(α)
E (jr0Ψ) = jr0(t

αΨ)

where Ψ ∈ C∞(R, E) and tαΨ is the smooth map defined for any t ∈ R by

(tαΨ)(t) = tαΨ(t).

Let X be a vector field on the manifold M . We define the α-prolongation
of X, denoted X(α), by

X(α) = κrM ◦ χ
(α)
TM ◦ T

rX.

When α = 0, it is called the complete lift of X to T rM , and it is denoted
by X(c). We put X(α) = 0 for α > r or α < 0.

If (U, xi) is a local coordinate system of M such that X = Xi ∂
∂xi
, then

X(α) = (Xi)(β−α)
∂

∂xiβ
.

Proposition 3.1.

(i) For X ∈ X(M), f ∈ C∞(M) and α, β ∈ {0, . . . , r}, we have

X(α)(f (β)) = (X(f))(β−α).

(ii) For X,Y ∈ X(M) and α, β ∈ {0, . . . , r}, we have:

(3.1) [X(α), Y (β)] = [X,Y ](α+β).

(iii) The set {X(β) | X ∈ X(M), β = 0, . . . , r} generates the C∞(T rM)-
module X(T rM).
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3.2. Higher order tangent lifts of 1-forms. Let ω ∈ Ω1(M). We
define the α-lift of ω, denoted ω(α), by

ω(α) = εrM ◦ χ
(r−α)
T ∗M ◦ T rω.

When α = r, ω(α) is called the complete lift of ω and denoted by ω(c).
In local coordinates, if ω = ωidx

i, then

ω(α) = (ωi)
(α−β)dxiβ.

Proposition 3.2.

(i) For any X ∈ X(M) and β = 0, . . . , r, we have

ω(α)(X(β)) = [ω(X)](α−β).

(ii) For any X ∈ X(M) and β = 0, . . . , r, we have

(dω)(α) = d(ω)(α) and LX(β)ω(α) = (LXω)(α−β).

(iii) The set {ω(α) | ω ∈ Ω1(M), α = 0, . . . , r} generates the C∞(T rM)-
module Ω1(T rM).

The proofs of Propositions 3.1 and 3.2 can be found in [MO].

3.3. Canonical Nijenhuis tensors on higher order tangent bun-
dles. Let M be a smooth manifold. Multiplication of tangent vectors by
real numbers is a map mM : R × TM → TM . Applying the functor T r, we
obtain T r(mM ) : Jr0 (R,R)× T rTM → T rTM . Then

T r(mM ) = κrM ◦T r(mM )◦(idJr0 (R,R)×(κ
r
M )−1) : Jr0 (R,R)×TT rM → TT rM

and we define, for each α ∈ {0, . . . , r}, the tensor field

Sα = T r(mM )(eα, ·) : TT rM → TT rM,

where (e0, . . . , er) is the canonical basis of Jr0 (R,R) ' Rr+1.

Definition 3.1. The (1, 1)-tensor field Sα is called the canonical Nijen-
huis tensor on T rM of degree α.

Proposition 3.3.

(i) For any X ∈ X(M) and β ∈ {0, . . . , r}, we have

Sα(X
(β)) = X(α+β).

(ii) Denote by S∗α the dual map of Sα. Then for any ω ∈ Ω1(M) and
β ∈ {0, . . . , r}, we have

S∗α(ω
(β)) = ω(β−α).



26 P. M. Kouotchop Wamba

Proof. (i) Let X ∈ X(M). We know that X(β) = κrM ◦T r(mM )(eβ, T
rX),

and it follows that

Sα(X
(β)) = κrM ◦ T r(mM )(eα, (κ

r
M )−1) ◦ κrM ◦ T r(mM )(eβ, T

rX)

= κrM ◦ T r(mM )(eα, T
r(mM )(eβ, T

rX))

= κrM ◦ T r(mM )(eα+β, T
rX) = X(α+β).

(ii) For any X ∈ X(M) and γ ∈ {0, . . . , r}, we have

S∗α(ω
(β))(X(γ)) = ω(β)(Sα(X

(γ))) = ω(β)(X(γ+α))

= (ω(X))(β−α−γ) = ω(β−α)(X(γ)).

Therefore, S∗α(ω(β)) = ω(β−α).

Let (U, xi) be a local coordinate system of M . We denote by (xi, xiβ) the
local coordinate system of T rM over T rU . The local expression of the tensor
field Sα is

Sα = dxiβ ⊗
∂

∂xiα+β
.

Corollary 3.1. Denote by Tα the torsion of the (1, 1)-tensor Sα. Then
Tα = 0.

Proof. Let X,Y ∈ X(M) and β, γ ∈ {0, . . . , r}. We have

Tα(X
(β), Y (γ)) = [SαX

(β), SαY
(γ)]− Sα([SαX(β), Y (γ)])

+ Sα([X
(β), SαY

(γ)])− S2α([X(β), Y (γ)])

= [X,Y ](β+γ+2α) − Sα([X,Y ](β+γ+α)).

As Tα(X(β), Y (γ)) = 0 for any X,Y ∈ X(M) and β, γ = 0, . . . , r, we deduce
that Tα = 0.

From this corollary, we deduce that the pair (T rM,Sα) is a Nijenhuis
manifold, called the canonical Nijenhuis manifold on T rM .

Corollary 3.2.

(i) For any α, β ∈ {0, . . . , r}, we have

Sα ◦ Sβ = Sβ ◦ Sα = Sα+β.

(ii) Let pα be a natural number such that α · pα > r. Then

Sα ◦ · · · ◦ Sα︸ ︷︷ ︸
pα times

= 0.

In particular, when r = α = 1 we obtain the canonical (1, 1)-tensor on TM
and we have the famous formula

Scan ◦ Scan = 0.
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Proof. Let X ∈ X(M) and γ ∈ {0, . . . , r}. We have

Sα ◦ Sβ(X(γ)) = Sα(X
(β+γ)) = X(α+β+γ) = Sα+β(X

(γ)).

Therefore Sα ◦ Sβ = Sα+β .

Remark 3.1. Let S : TM → TM be a (1, 1)-tensor field. For each
β ∈ {0, . . . , r} we put

(3.2) S(β) = κrM ◦ χ
(β)
TM ◦ T

rS ◦ (κrM )−1.

Then S(β) is a (1, 1)-tensor field on T rM ; when β = 0, it is called the complete
lift of S and denoted by S(c). We verify easily that for any X ∈ X(M) and
γ ≤ r,

S(β)(X(γ)) = (SX)(β+γ).

From this equality, it follows that

Sα ◦ S(β) = S(β) ◦ Sα = S(α+β).

In particular,
[S(β), Sα] = 0 and (S(c) ◦ Sα)pα = 0.

We show easily that if TS = 0 then TS(β) = 0, so that (T rM,S(β)) is a
Nijenhuis manifold.

4. Canonical Poisson–Nijenhuis manifolds

4.1. Higher order tangent lifts of Poisson manifolds. We recall in
this subsection the notion of higher order tangent lifts of Poisson manifolds.
For each natural number q ≥ 2, we consider the natural transformations∧q :

⊕q T ∗ →
∧q T ∗ defined for any smooth manifold M by∧q

M :
⊕q T ∗M →

∧q T ∗M, ξ1 ⊕ · · · ⊕ ξq 7→ ξ1 ∧ · · · ∧ ξq.

The bundle map

T r(
∧q
M ) ◦ (

⊕qαrM ) :
⊕qT ∗T rM → T r(

∧qT ∗M)

is a well-defined and skew-symmetric fibred morphism over idT rM . Therefore,
there is a unique bundle morphism

αr,qM :
∧qT ∗T rM → T r(

∧qT ∗M)

over idT rM such that

αr,qM ◦
∧q
T rM = T r(

∧q
M ) ◦ (

⊕qαrM ).

For q = 1, we put αr,1M = αrM and the local expression for αr,qM is given
in [KWN]. We denote by κr,qM the vector bundle morphism

κr,qM : T r(
∧qTM)→

∧qTT rM



28 P. M. Kouotchop Wamba

such that, for any u⊕ v ∈ T r(
∧q TM)⊕

∧q(T ∗T rM),

〈u, αr,qM (v)〉
′q
T rM = 〈κr,qM (u), v〉qT rM ,

where 〈·, ·〉qM :
∧q TM ×M

∧q T ∗M → R is the canonical pairing and
〈·, ·〉′qT rM = τr ◦ T r(〈·, ·〉qM ) : T r(

∧q TM) ×T rM T r(
∧q T ∗M) → R. So, we

have the natural transformation (see [KWN])

κr,q : T r ◦ (
∧qT )→

∧qT ◦ T r.

For any manifold M of dimension m, we have locally

κr,qM (xiβ, Π
i1···iq
β ) = (xiβ, Π̃

i1,β1···iq ,βq)

with
Π̃ i1,β1···iq ,βq =

∑
γ1+···+γq+γ=r

δr−γ1β1
· · · δr−γqβq

Π
i1···iq
γ .

Let Π be a multivector field of degree q on M . We put

Π(c) = κr,qM ◦ T
r(Π) : T rM →

∧qTT rM.

Then Π(c) is a multivector field of degree q on T rM . Let (x1, . . . , xm) be a
local coordinate system of M such that

Π =
∑

1≤i1<···<iq≤m
Π i1···iq ∂

∂xi1
∧ · · · ∧ ∂

∂xiq
.

Then

Π(c) =
∑

β1+···+βq+β=r
(Π i1···iq)(β)

∂

∂xi1r−β1
∧ · · · ∧ ∂

∂x
iq
r−βq

.

In the particular case where q = 2 and Π = Π ij ∂
∂xi
∧ ∂
∂xj

, we have

Π(c) = (Π ij)(β+γ−r)
∂

∂xiβ
∧ ∂

∂xjγ
.

Proposition 4.1 (see [KWN]). If Π is a simple multivector field of
degree k (i.e. Π = X1 ∧ · · · ∧Xk with X1, . . . , Xk ∈ X(M)), then

(4.1) Π(c) =
∑

β1+···+βk=r
X

(r−β1)
1 ∧ · · · ∧X(r−βk)

k .

Remark 4.1. For r = 1, we have

Π(c) =

k∑
i=1

X
(v)
1 ∧ · · · ∧X(c)

i ∧ · · · ∧X
(v)
k ,

where X(v)
j is the vertical lift of the vector field Xj from M to TM . Thus,

we obtain the result of [GU].
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By the formulas (3.1) and (4.1), we deduce that for any Φ ∈ Xp(M) and
Ψ ∈ Xq(M), we have

[Φ(c), Ψ (c)] = [Φ, Ψ ](c).

So, if (M,Π) is a Poisson manifold then so is (T rM,Π(c)). This induced
Poisson structure on T rM is called the tangent lifting of the Poisson structure
of order r.

Proposition 4.2 (see [KWN]). Let (M,Π) be a Poisson manifold.

(i) If ]Π is the anchor map induced by Π, we have

(4.2) ]Π(c) = κrM ◦ T r(]Π) ◦ αrM .
(ii) For any ω ∈ Ω1(M) and β ∈ {0, . . . , r}, we have

]Π(c)(ω(β)) = []Π(ω)]
(r−β).

(iii) For any ω,$ ∈ Ω1(M) and α, β ∈ {0, . . . , r}, we have

[ω(α), $(β)]Π(c) = ([ω,$]Π)
(α+β−r).

.

4.2. The main result. Let (M,Π) be a Poisson manifold. The pair
(T rM,Π(c)) is also a Poisson manifold and its sharp map is given by (4.2).

Lemma 4.1. For each α ∈ {0, . . . , r}, we have

]Π(c) ◦ S∗α = Sα ◦ ]Π(c) .

Proof. For any ω ∈ Ω1(M) and β = 0, . . . , r, we have

]Π(c) ◦ S∗α(ω(β)) = ]Π(c)(ω(β−α)) = []Π(ω)]
(r+α−β).

In the same way,

Sα ◦ ]Π(c)(ω(β)) = Sα([]Π(ω)]
(r−β)) = []Π(ω)]

(r+α−β).

It follows that, for any ω ∈ Ω1(M) and β = 0, . . . , r,

]Π(c) ◦ S∗α(ω(β)) = Sα ◦ ]Π(c)(ω(β)).

Therefore, ]Π(c) ◦ S∗α = Sα ◦ ]Π(c) .

Remark 4.2. From this lemma, it follows that the vector bundle mor-
phism ]Π(c) ◦S∗α is skew-symmetric. It defines a bivector field denoted by Πα

on T rM , and for α = 0, we have Π0 = Π(c).

Lemma 4.2.

(i) For any ω ∈ Ω1(M) and β ∈ {0, . . . , r}, we have

]Πα(ω(β)) = []Π(ω)]
(r−β+α).

(ii) For any ω,$ ∈ Ω1(M) and β, γ = 0, . . . , r,

[ω(β), $(γ)]Πα = [ω,$]
(β+γ−α−r)
Π .
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Proof. (i) By (3.2), we have

]Π(α)(ω(β)) = Sα ◦ ]Π(c)(ω(β)) = Sα([]Π(ω)]
(r−β)) = []Π(ω)]

(r−β+α).

(ii) By the equality

[ω(β), $(γ)]Π(α) = L]
Π(α) (ω

(β))$
(γ) − L]

Π(α) ($
(β))ω

(γ) − d(Π(α)(ω(β), $(γ)))

the result follows from the first part of the lemma and Propositions 3.1, 3.2
and 4.2.

Theorem 4.1. Let (M,Π) be a Poisson manifold. Then for each α ∈
{0, . . . , r}, (T rM,Π(c), Sα) is a Poisson–Nijenhuis manifold.

Proof. Let ω,$ ∈ Ω1(M) and β, γ ∈ {0, . . . , r}. We have

∇SαΠ(c)(ω(β), $(γ)) = [ω(β), $(γ)]Πα − [S∗αω
(β), $(γ)]Π(c)

− [ω(β), S∗α$
(γ)]Π(c) + S∗α[ω

(β), $(γ)]Π(c)

= [ω,$]
(β+γ−α−r)
Π − [ω(β−α), $(γ)]Π(c)

− [ω(β), $(γ−α)]Π(c) + S∗α([ω,$]
(γ+β−r)
Π )

= [ω,$]
(β+γ−α−r)
Π − [ω,$]

(γ+β−α−r)
Π

− [ω,$]
(γ+β−α−r)
Π + S∗α([ω,$]

(γ+β−r)
Π )

= [ω,$]
(β+γ−α−r)
Π − [ω,$]

(γ+β−α−r)
Π .

It follows that ∇SαΠ(c) = 0. The rest follows from Lemma 4.1.

Remark 4.3. In [KO], the author has shown that, if (M,Π,S) is a
Poisson–Nijenhuis manifold, then the 2-vector field defined by the vector
bundle morphism S◦]Π is a Poisson bivector. It follows that, for α = 1, . . . , r,
the bivector Πα is a Poisson bivector. This Poisson structure on T rM is
called the α-lift of the Poisson manifold (M,Π).

Let (U, xi) be a local coordinate system of M such that locally,

Π = Π ij ∂

∂xi
∧ ∂

∂xj
.

Then
Πα = (Π ij)(β+γ−α−r)

∂

∂xiβ
∧ ∂

∂xjγ
.

In particular, for r = α = 1, we have

Π1 = Π ij ∂

∂ẋi
∧ ∂

∂ẋj
.

So, we obtain the result of [KW].
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4.3. Some properties of the α-lift of Poisson manifolds. In this
subsection, we fix α ∈ {1, . . . , r}.

Theorem 4.2. Let (M,Π) be a Poisson manifold.

(i) We have
]Πα = κrM ◦ χ

(α)
TM ◦ T

r(]Π) ◦ αrM .
(ii) For any f ∈ C∞(M) and β ∈ {0, . . . , r}, we have

(4.3) Xf (β) = (Xf )
(r−β+α).

(iii) For f, g ∈ C∞(M) and β, γ ∈ {0, . . . , r}, we have

{f (β), g(γ)}Πα = ({f, g}Π)(β+γ−α−r),
where {·, ·}Π is a Poisson bracket on C∞(M).

(iv) If f : (M,ΠM )→ (N,ΠN ) is a Poisson morphism, then so is T rf :
(T rM,Πα

M )→ (T rN,Πα
N ). In particular, if (G,Π) is a Poisson–Lie

group, then (T rG,Πα) is a Poisson–Lie group.

Proof. (i) Let ω ∈ Ω1(M) and β = 0, . . . , r. We know that

]Πα(ω(β)) = []Π(ω)]
(r−β+α).

We put κrM ◦ χ
(α)
TM ◦ T r(]Π) ◦ αrM = (]Π)

(α). Then

(]Π)
(α)(ω(β)) = κrM ◦ χ

(α)
TM ◦ T

r(]Π) ◦ χ(r−β)
T ∗M ◦ T

rω

= κrM ◦ χ
(α)
TM ◦ χ

(r−β)
TM ◦ T r(]Π(ω))

= κrM ◦ χ
(r+α−β)
TM ◦ T r(]Π(ω)) = (]Π(ω))

(r+α−β).

(ii) Let f ∈ C∞(M). Then

Xf (β) = ]Πα(df (β)) = []Π(df)]
(r+α−β) = (Xf )

(r+α−β).

(iii) Let f, g ∈ C∞(M) and β, γ = 0, . . . , r. Then

{f (β), g(γ)}Πα = Xf (β)(g
(γ)) = (Xf )

(r+α−β)(g(γ)) = ({f, g}Π)(γ+β−α−r).
(iv) We use the properties of the natural transformations of κrM and αrM :

TT rf ◦ ]Πα
M
◦ T ∗T rf = TT rf ◦ κrM ◦ χ

(α)
TM ◦ T

r(]ΠM ) ◦ αrM ◦ T ∗T rf

= κrN ◦ χ
(α)
TN ◦ T

rTf ◦ T r(]ΠM ) ◦ T rT ∗f ◦ αrN
= κrN ◦ χ

(α)
TN ◦ T

r(Tf ◦ ]ΠM ◦ T
∗f) ◦ αrN = ]Πα

N
.

Thus T rf is a Poisson morphism.

Remark 4.4. (i) By (4.3), if f is a Casimir function for (M,Π), then for
each β ∈ {0, . . . , r}, f (β) is a Casimir function for (T rM,Πα). In particular,
for any β < α, f (β) is a Casimir function.
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(ii) If Π is a regular Poisson bivector of rank 2d, then Πα is regular of
rank 2d(r − α+ 1).

Remark 4.5. For β ∈ {0, . . . , r}, we have

]Πα ◦ S∗β = ]Π(c) ◦ S∗α ◦ S∗β = ]Π(c) ◦ S∗α+β = Sα+β ◦ ]Π(c) = Sβ ◦ ]Πα .

By the procedure of Subsection 4.2, we verify easily that (T rM,Πα, Sβ) is
a Poisson–Nijenhuis manifold. This structure is the same as the structure
obtained from the canonical Nijenhuis tensor Sα+β on the Poisson mani-
fold (T rM,Π(c)).

Corollary 4.1. For any α, β ∈ {0, . . . , r}, Πα and Πβ are compatible,
so

[Πα, Πβ] = 0.

Proof. Apply [V2, Theorem 1.3] and Remark 4.5.

5. Applications

5.1. Other prolongations of Lie algebroids. For any vector bundle
(E,M, π), we define the β-prolongation of a section u, denoted u(β), by

u(β) = χ
(β)
E ◦ T

ru, 0 ≤ β ≤ r,

where χ(β)
E : T rE → T rE is a smooth map defined in Subsection 3.1. For

convenience, we put u(β) = 0 for β /∈ {0, . . . , r}.
We denote by (xi, yj) a local coordinate system of E; it induces local

coordinate systems

(xi, πj) in E∗,

(xi, yj , xiβ, y
j
β) in T rE,

(xi, πj , x
i
β, π

β
j ) in T rE∗,

(xi, π̃j , x
i
β, π̃

β
j ) in (T rE)∗.

We recall that there exists a natural bundle isomorphism

IrE∗ : T
rE∗ → (T rE)∗

such that locally,

IrE∗(x
i, πj , x

i
γ , π

γ
j ) = (xi, π̃j , x

i
γ , π̃

γ
j ) with

{
π̃j = πrj ,

π̃γj = πr−γj .

With these notations, we deduce the following result:

Theorem 5.1. Let (E, [·, ·], ρ) be a Lie algebroid and α ∈ {0, . . . , r}.
There is a unique Lie algebroid structure on the bundle T rE → T rM with
anchor map

ρ(α) = κrM ◦ χ
(α)
TM ◦ T

rρ
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such that for any u, v ∈ Γ (E) and β, γ = 0, . . . , r,

[u(β), v(γ)] = [u, v](α+β+γ).

This structure is called the α-lift of the Lie algebroid E.

Proof. Since (E, [·, ·], ρ) is a Lie algebroid, it induces a linear Poisson
bivector ΠE∗ on E∗. So, the map ]ΠE∗ : T

∗E∗ → TE∗ is a morphism of dou-
ble vector bundles. By Theorem 4.2(1), ]Πα

E∗
is a morphism of double vector

bundles. Therefore, (T rE∗, Πα
E∗) is a linear Poisson bivector and it follows

that (T rE∗)∗ is a Lie algebroid. We endow T rE with the structure of Lie al-
gebroid such that IrE : T rE → (T rE∗)∗ is an isomorphism of Lie algebroids.
The rest of the proof is similar to the proof of [KWN, Theorem 3].

Remark 5.1. Let (E, [·, ·], ρ) be a Lie algebroid and u a smooth section
of E. For β ∈ {0, 1, . . . , r}, we have ρ(α)(u(β)) = [ρ(u)](α+β).

Corollary 5.1. Let (E, [·, ·], ρ) be a Lie algebroid. Then the vector bun-
dle morphism χ

(α)
E : T rE → T rE is a morphism of Lie algebroids between

the α-lift of the Lie algebroid denoted by (T rE, [·, ·], ρ(α)) and the tangent lift
of order r of the Lie algebroid denoted by (T rE, [·, ·], ρ(r)) (see [KWN]).

Proof. We know that for any u ∈ Γ (E) and β = 0, . . . , r, we have
χ
(α)
E (u(β)) = u(α+β). It follows that

χ
(α)
E [u(β), v(γ)] = χ

(α)
E ([u, v](α+β+γ)) = [u, v](2α+β+γ)

= [χ
(α)
E (u(β)), χ

(α)
E (v(γ))]

for any u, v ∈ Γ (E) and β, γ = 0, . . . , r. We deduce our result from

ρ(r) ◦ χ(α)
E = κrM ◦ T rρ ◦ χ

(α)
E = κrM ◦ χ

(α)
TM ◦ T

rρ.

Thus ρ(r) ◦ χ(α)
E = ρ(α).

Corollary 5.2. Let (M,Π) be a Poisson manifold, let T rT ∗M desig-
nate the α-lift of the Lie algebroid (T ∗M, [·, ·]Π , ]Π), and let T ∗T rM be the
Lie algebroid defined by the Poisson bivector Πα. The canonical mapping
αrM : T ∗T rM → T rT ∗M is an isomorphism of Lie algebroids.

Proof. This follows by a calculation in local coordinates.

Example 5.1. We know that since (T rM,Sα) is a Nijenhuis manifold,
it induces a Lie algebroid structure on TT rM such that the bracket is given
for X,Y ∈ X(T rM) by

[X,Y ]Sα = [SαX,Y ] + [X,SαY ]− Sα[X,Y ].

We denote by (T rTM, [·, ·]α) the α-lift of the canonical Lie algebroid on TM .
The vector bundle isomorphism κrM is an isomorphism of Lie algebroids
between (T rTM, [·, ·]α) and (TT rM, [·, ·]Sα).
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Example 5.2. Let g be a Lie algebra; it is a Lie algebroid over a point.
Let {e1, . . . , em} be a basis of g. For all i, j ∈ {1, . . . ,m}, we have

[ei, ej ] = ckijek.

Here the ckij are constant functions, so that (ckij)
(ν) = 0 for all ν ≥ 1.

The α-lift of the Lie algebroid g is such that for any i, j ∈ {1, . . . ,m} and
β, γ ∈ {0, . . . , r},

[eβi , e
γ
j ] = ckije

α+β+γ
k .

In particular, when r = 1, the vertical lift of the Lie algebra is such that

[ėi, ėj ] = [ėi, ej ] = [ei, ėj ] = 0 and [ei, ej ] = ckij ėk.

When α = 0, we obtain the usual tangent lift of order r of Poisson
manifolds and Lie algebroids.

Remark 5.2. Let (E, [·, ·], ρ) be a Lie algebroid over M , and J : E → E
a morphism of vector bundles over M . For u, v ∈ Γ (E), we put

[u, v]J = [Ju, v] + [u, Jv]− J [u, v],
TJ(u, v) = [Ju, Jv]− J([Ju, v] + [u, Jv]− J [u, v]).

We easily verify that if TJ = 0, then (E, [·, ·]J) is a Lie algebroid over M
with anchor map ρJ = ρ ◦ J . We thus obtain a J-deformation of the initial
Lie algebroid (E, [·, ·], ρ).

Consider the canonical vector bundle morphism Jα = χ
(α)
E . By Corollary

5.1, the α-prolongation of the Lie algebroid on T rE coincides with the Jα-
deformation of the Lie algebroid (T rE, [·, ·], ρ(r)).

5.2. Higher order tangent lifts of Poisson–Nijenhuis manifolds.
Let S : TM → TM be a tensor. We put

(S∗)(c) = εrM ◦ T r(S∗) ◦ αrM ,

where S∗ designates the dual map of S.

Lemma 5.1. Let (M,S) be a Nijenhuis manifold. Then

(S(c))∗ = (S∗)(c).

Proof. For any ω ∈ Ω1(M) and X ∈ X(M), we have

〈X(α), (S(c))∗(ω(β))〉T rM = 〈S(c)(X(α)), ω(β)〉T rM = 〈(SX)(α), ω(β)〉T rM
= (〈SX,ω〉M )(β−α) = (〈X,S∗ω〉M )(β−α)

= 〈X(α), (S∗ω)(β)〉T rM = 〈X(α), (S∗)(c)(ω(β))〉T rM .

Therefore (S(c))∗(ω(β)) = (S∗)(c)(ω(β)), thus (S(c))∗ = (S∗)(c).
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Lemma 5.2. Let (M,Π,S) be a Poisson–Nijenhuis manifold. Then

]Π(c) ◦ (S(c))∗ = S(c) ◦ ]Π(c) .

Proof. We compute

]Π(c) ◦ (S(c))∗ = ]Π(c) ◦ (S∗)(c) = κrM ◦ T r(]Π) ◦ αrM ◦ εrM ◦ T rS∗ ◦ αrM
= κrM ◦ T r(]Π ◦ S∗) ◦ αrM = κrM ◦ T r(S ◦ ]Π) ◦ αrM
= S(c) ◦ ]Π(c) .

Let (M,Π,S) be a Poisson–Nijenhuis manifold. We denote by ΠS the
bivector defined by S ◦ ]Π . By Lemma 5.2, we deduce that

]
Π

(c)
S

= S(c) ◦ ]Π(c) .

Therefore, for any ω,$ ∈ Ω1(M) and α, β ∈ {0, . . . , r}, we have

(5.1) [ω(α), $(β)]
Π

(c)
S

= [ω,$]
(α+β−r)
ΠS

.

Theorem 5.2. Let (M,Π,S) be a Poisson–Nijenhuis manifold. For any
ω,$ ∈ Ω1(M) and α, β = 0, . . . , r, we have

∇Π(c)S(c)(ω(α), $(β)) = (∇ΠS(ω,$))(α+β−r).

In particular, (T rM,Π(c), S(c)) is a Poisson–Nijenhuis manifold.

Proof. This follows from Lemma 5.2, Proposition 4.2 and equation (5.1).

Corollary 5.3. Let (M,Π,S) be a Poisson–Nijenhuis manifold. Recall
that for α ∈ {0, . . . , r}, S(α) = κrM ◦ χ

(α)
TM ◦ T rS ◦ (κrM )−1.

(i) For each α ∈ {0, . . . , r}, (T rM,Π(c), S(α)) is a Poisson–Nijenhuis
manifold.

(ii) For each α, β ∈ {0, . . . , r}, (T rM,Πα, S(β)) is a Poisson–Nijenhuis
manifold.

Proof. This follows from the equalities Sα ◦ S(c) = S(α) = S(c) ◦ Sα.

Remark 5.3. Let (M,Π,S) be a Poisson–Nijenhuis manifold. For any
k ≥ 2, we put

S〈k〉 = S ◦ · · · ◦ S︸ ︷︷ ︸
k times

and S〈1〉 = S.

In the same way, Π〈k〉 is the Poisson bivector defined by the vector bundle
morphism S ◦ ]Π〈k−1〉 with Π〈1〉 = Π. The sequence (S〈k〉, Π〈k〉)k≥2 is the
hierarchy of the Poisson–Nijenhuis manifold (M,Π,S), so that for k, p ≥ 1
we have

[Π〈k〉, Π〈p〉] = 0.
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From the equalities

(S(c))〈k〉 ◦ Sα = Sα ◦ (S(c))〈k〉 = (Sα ◦ S)〈k〉 = (S(α))〈k〉 (k ≥ 1),

it follows that (Π〈k〉)α = (Πα)〈k〉 where the sequence (Πα)〈k〉 is defined
by (S(α))〈k〉.
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