Some subclasses of meromorphic and multivalent functions

by Ding-Gong Yang (Suzhou) and Jin-Lin Liu (Yangzhou)

Abstract

The authors introduce two new subclasses $F_{p, k}(\lambda, A, B)$ and $G_{p, k}(\lambda, A, B)$ of meromorphically multivalent functions. Distortion bounds and convolution properties for $F_{p, k}(\lambda, A, B), G_{p, k}(\lambda, A, B)$ and their subclasses with positive coefficients are obtained. Some inclusion relations for these function classes are also given.

1. Introduction and preliminaries. Throughout this paper, we assume that

$$
\begin{align*}
& N=\{1,2,3, \ldots\}, \quad p \in \mathbb{N}, \quad k \in \mathbb{N} \backslash\{1\}, \\
& -1 \leq B<0, \quad B<A \leq-B, \quad 0 \leq \lambda \leq 1 . \tag{1.1}
\end{align*}
$$

For functions $f(z)$ and $g(z)$ analytic in the open unit disk $U=\{z:|z|<1\}$, we say that $f(z)$ is subordinate to $g(z)$ in U and write $f(z) \prec g(z)(z \in U)$ if there exists an analytic function $w(z)$ in U such that $|w(z)| \leq|z|$ and $f(z)=g(w(z))(z \in U)$.

Let Σ_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n} \quad(p \in \mathbb{N}) \tag{1.2}
\end{equation*}
$$

which are analytic and p-valent in the punctured open unit disk $U_{0}=U \backslash\{0\}$.
The following lemma will be required in our investigation.
Lemma 1.1. Let $f(z) \in \Sigma_{p}$ defined by (1.2) satisfy

$$
\begin{equation*}
\sum_{n=p}^{\infty}\left[n(1-B)+p \lambda \delta_{n, p, k}(1-A)\right]\left|a_{n}\right| \leq p(A-B) \tag{1.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
-\frac{z f^{\prime}(z)}{(1-\lambda) z^{-p}+\lambda f_{p, k}(z)} \prec p \frac{1+A z}{1+B z} \quad(z \in U), \tag{1.4}
\end{equation*}
$$

[^0]where
\[

\delta_{n, p, k}= $$
\begin{cases}1 & ((n+p) / k \in \mathbb{N}), \tag{1.5}\\ 0 & ((n+p) / k \notin \mathbb{N}) .\end{cases}
$$
\]

for $n \geq p$ and

$$
\begin{equation*}
f_{p, k}(z)=\frac{1}{k} \sum_{j=0}^{k-1} \varepsilon_{k}^{j p} f\left(\varepsilon_{k}^{j} z\right), \quad \varepsilon_{k}=\exp \left(\frac{2 \pi i}{k}\right) \tag{1.6}
\end{equation*}
$$

Proof. For $f(z) \in \Sigma_{p}$ defined by (1.2), the function $f_{p, k}(z)$ in (1.6) can be expressed as

$$
\begin{equation*}
f_{p, k}(z)=z^{-p}+\sum_{n=p}^{\infty} \delta_{n, p, k} a_{n} z^{n} \tag{1.7}
\end{equation*}
$$

with

$$
\delta_{n, p, k}=\frac{1}{k} \sum_{j=0}^{k-1} \varepsilon_{k}^{j(n+p)}= \begin{cases}1 & ((n+p) / k \in \mathbb{N}) \\ 0 & ((n+p) / k \notin \mathbb{N})\end{cases}
$$

In view of (1.1) and (1.5), we see that

$$
\begin{equation*}
p A \lambda \delta_{n, p, k}+n B \leq-p B \lambda \delta_{n, p, k}+p B \leq 0 \quad(n \geq p) \tag{1.8}
\end{equation*}
$$

Let the inequality (1.3) be satisfied. Then from (1.7) and (1.8) we deduce that

$$
\begin{aligned}
\left|\frac{\frac{z f^{\prime}(z)}{(1-\lambda) z^{-p}+\lambda f_{p, k}(z)}+p}{p A+\frac{B z f^{\prime}(z)}{(1-\lambda) z^{-p}+\lambda f_{p, k}(z)}}\right| & =\left|\frac{\sum_{n=p}^{\infty}\left(n+p \lambda \delta_{n, p, k}\right) a_{n} z^{n+p}}{p(A-B)+\sum_{n=p}^{\infty}\left(p A \lambda \delta_{n, p, k}+n B\right) a_{n} z^{n+p}}\right| \\
& \leq \frac{\sum_{n=p}^{\infty}\left(n+p \lambda \delta_{n, p, k}\right)\left|a_{n}\right|}{p(A-B)+\sum_{n=p}^{\infty}\left(p A \lambda \delta_{n, p, k}+n B\right)\left|a_{n}\right|} \\
& \leq 1 \quad(|z|=1)
\end{aligned}
$$

Hence, by the maximum modulus theorem, we arrive at (1.4).
We now consider the following two subclasses of Σ_{p}.
Definition 1.2. A function $f(z) \in \Sigma_{p}$ defined by (1.2) is said to be in the class $F_{p, k}(\lambda, A, B)$ if it satisfies the coefficient inequality (1.3).

It follows from Lemma 1.1 that, if $f(z) \in F_{p, k}(\lambda, A, B)$, then the subordination relation (1.4) holds. In particular, we see that each function in the class $F_{p, k}(\lambda, A, B)$ with $\lambda=1$ is meromorphically p-valent starlike with respect to k-symmetric points. A number of properties for analytic (and meromorphic) functions which are starlike with respect to symmetric points and related functions have been studied by several authors (see, e.g., [1, 2, (4-10).

Definition 1.3. A function $f(z) \in \Sigma_{p}$ defined by (1.2) is said to be in the class $G_{p, k}(\lambda, A, B)$ if

$$
\begin{equation*}
\sum_{n=p}^{\infty} n\left[n(1-B)+p \lambda \delta_{n, p, k}(1-A)\right]\left|a_{n}\right| \leq p^{2}(A-B) \tag{1.9}
\end{equation*}
$$

For $f(z) \in \Sigma_{p}$ defined by (1.2), we have

$$
2 z^{-p}+\frac{z f^{\prime}(z)}{p}=z^{-p}+\sum_{n=p}^{\infty} \frac{n}{p} a_{n} z^{n},
$$

which implies that
(1.10) $f(z) \in G_{p, k}(\lambda, A, B) \quad$ if and only if $\quad 2 z^{-p}+\frac{z f^{\prime}(z)}{p} \in F_{p, k}(\lambda, A, B)$. If we write

$$
\begin{align*}
& \alpha_{n}=\alpha_{n, p, k}(\lambda, A, B)=\frac{n(1-B)+p \lambda \delta_{n, p, k}(1-A)}{p(A-B)}, \tag{1.11}\\
& \beta_{n}=\frac{n}{p} \alpha_{n} \quad(n \geq p),
\end{align*}
$$

then it is easy to verify that

$$
\frac{\partial \beta_{n}}{\partial \lambda}=\frac{n}{p} \frac{\partial \alpha_{n}}{\partial \lambda} \geq 0, \quad \frac{\partial \beta_{n}}{\partial A}=\frac{n}{p} \frac{\partial \alpha_{n}}{\partial A}<0 \quad \text { and } \quad \frac{\partial \beta_{n}}{\partial B}=\frac{n}{p} \frac{\partial \alpha_{n}}{\partial B} \geq 0 .
$$

Hence we have the following inclusion relations. If

$$
0 \leq \lambda_{0} \leq \lambda \leq 1, \quad-1 \leq B_{0} \leq B<0, \quad B<A \leq-B, \quad A \leq A_{0} \leq-B_{0},
$$ then

$$
\begin{aligned}
G_{p, k}(\lambda, A, B) & \subset F_{p, k}(\lambda, A, B) \subseteq F_{p, k}\left(\lambda_{0}, A, B\right) \subseteq F_{p, k}\left(\lambda_{0}, A_{0}, B_{0}\right) \\
& \subseteq F_{p, k}(0,1,-1) \\
& =t\left\{f(z) \in \Sigma_{p}:-\operatorname{Re}\left\{z^{p+1} f^{\prime}(z)\right\}>0(z \in U)\right\}
\end{aligned}
$$

and

$$
G_{p, k}(\lambda, A, B) \subseteq G_{p, k}\left(\lambda_{0}, A_{0}, B_{0}\right) \subseteq G_{p, k}(0,1,-1)
$$

Let

$$
f_{j}(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n, j} z^{n} \in \Sigma_{p} \quad(j=1,2) .
$$

Then the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\left(f_{1} * f_{2}\right)(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n, 1} a_{n, 2} z^{n}=\left(f_{2} * f_{1}\right)(z) .
$$

In the present paper, we obtain distortion bounds and convolution properties for the classes $F_{p, k}(\lambda, A, B)$ and $G_{p, k}(\lambda, A, B)$ and their subclasses
with positive coefficients. Some inclusion relations for these function classes are also provided.

2. Distortion bounds

Theorem 2.1. Let $2 p / k \in \mathbb{N}$ and $\lambda \leq \frac{1-B}{p(1-A)}$.
(i) If $f(z) \in F_{p, k}(\lambda, A, B)$, then for $z \in U_{0}$,

$$
\begin{align*}
|z|^{-p}-\frac{A-B}{1-B+\lambda(1-A)}|z|^{p} & \leq|f(z)| \tag{2.1}\\
& \leq|z|^{-p}+\frac{A-B}{1-B+\lambda(1-A)}|z|^{p} .
\end{align*}
$$

(ii) If $f(z) \in G_{p, k}(\lambda, A, B)$, then for $z \in U_{0}$,

$$
\begin{align*}
& p\left(|z|^{-p-1}-\frac{A-B}{1-B+\lambda(1-A)}|z|^{p-1}\right) \leq\left|f^{\prime}(z)\right| \tag{2.2}\\
& \leq p\left(|z|^{-p-1}+\frac{A-B}{1-B+\lambda(1-A)}|z|^{p-1}\right)
\end{align*}
$$

The bounds in (2.1) and (2.2) are sharp.
Proof. Let $2 p / k \in \mathbb{N}$. For $n \geq p(n \in \mathbb{N})$ and $(n+p) / k \in \mathbb{N}$, we have

$$
\begin{equation*}
\frac{n(1-B)+p \lambda \delta_{n, p, k}(1-A)}{p(A-B)} \geq \frac{1-B+\lambda(1-A)}{A-B} \tag{2.3}
\end{equation*}
$$

For $n \geq p+1$ and $(n+p) / k \notin \mathbb{N}$, we have $\delta_{n, p, k}=\delta_{p+1, p, k}=0$ and

$$
\begin{equation*}
\frac{n(1-B)+p \lambda \delta_{n, p, k}(1-A)}{p(A-B)} \geq \frac{(p+1)(1-B)}{p(A-B)} \tag{2.4}
\end{equation*}
$$

From the assumptions of the theorem we obtain

$$
\begin{equation*}
\frac{(p+1)(1-B)}{p(A-B)} \geq \frac{1-B+\lambda(1-A)}{A-B} \tag{2.5}
\end{equation*}
$$

(i) If $f(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n} \in F_{p, k}(\lambda, A, B)$, then it follows from (2.3) to (2.5) that

$$
\frac{1-B+\lambda(1-A)}{A-B} \sum_{n=p}^{\infty}\left|a_{n}\right| \leq 1 .
$$

Hence we have

$$
|f(z)| \leq|z|^{-p}+|z|^{p} \sum_{n=p}^{\infty}\left|a_{n}\right| \leq|z|^{-p}+\frac{A-B}{1-B+\lambda(1-A)}|z|^{p}
$$

and

$$
|f(z)| \geq|z|^{-p}-|z|^{p} \sum_{n=p}^{\infty}\left|a_{n}\right| \geq|z|^{-p}-\frac{A-B}{1-B+\lambda(1-A)}|z|^{p}>0
$$

for $z \in U_{0}$.
(ii) If $f(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n} \in G_{p, k}(\lambda, A, B)$, then (2.3)-(2.5) yield

$$
\frac{1-B+\lambda(1-A)}{p(A-B)} \sum_{n=p}^{\infty} n\left|a_{n}\right| \leq 1 .
$$

This leads to (2.2).
Furthermore, the bounds in (2.1) and (2.2) are best possible as can be seen for the function

$$
\begin{equation*}
f(z)=z^{-p}+\frac{A-B}{1-B+\lambda(1-A)} z^{p} \in G_{p, k}(\lambda, A, B) \subset F_{p, k}(\lambda, A, B) . \tag{2.6}
\end{equation*}
$$

Theorem 2.2. Let $2 p / k \notin \mathbb{N}$.
(i) If $f(z) \in F_{p, k}(\lambda, A, B)$, then for $z \in U_{0}$,

$$
\begin{equation*}
|z|^{-p}-\frac{A-B}{1-B}|z|^{p} \leq|f(z)| \leq|z|^{-p}+\frac{A-B}{1-B}|z|^{p} . \tag{2.7}
\end{equation*}
$$

(ii) If $f(z) \in G_{p, k}(\lambda, A, B)$, then for $z \in U_{0}$,

$$
\begin{align*}
p\left(|z|^{-p-1}-\frac{A-B}{1-B}|z|^{p-1}\right) & \leq\left|f^{\prime}(z)\right| \tag{2.8}\\
& \leq p\left(|z|^{-p-1}+\frac{A-B}{1-B}|z|^{p-1}\right) .
\end{align*}
$$

The bounds in (2.7) and (2.8) are sharp.
Proof. Let $2 p / k \notin \mathbb{N}$. For $n \geq p$ and $(n+p) / k \notin \mathbb{N}$, we have $\delta_{n, p, k}=$ $\delta_{p, p, k}=0$ and so for $0 \leq \lambda \leq 1$,

$$
\begin{equation*}
\frac{n(1-B)+p \lambda \delta_{n, p, k}(1-A)}{p(A-B)} \geq \frac{1-B}{A-B} . \tag{2.9}
\end{equation*}
$$

For $n \geq p$ and $(n+p) / k \in N$, we have

$$
\delta_{n, p, k}=1, \quad n=k\left(\left[\frac{2 p}{k}\right]+l\right)-p>p \quad(l \in N)
$$

and

$$
\begin{equation*}
\frac{n(1-B)+p \lambda \delta_{n, p, k}(1-A)}{p(A-B)}>\frac{1-B+\lambda(1-A)}{A-B} \geq \frac{1-B}{A-B} . \tag{2.10}
\end{equation*}
$$

(i) If $f(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n} \in F_{p, k}(\lambda, A, B)$, then it follows from (2.9) and (2.10) that

$$
\frac{1-B}{A-B} \sum_{n=p}^{\infty}\left|a_{n}\right| \leq 1
$$

which leads to (2.7).
(ii) If $f(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n} \in G_{p, k}(\lambda, A, B)$, then (2.9) and (2.10) yield

$$
\frac{1-B}{p(A-B)} \sum_{n=p}^{\infty} n\left|a_{n}\right| \leq 1
$$

which gives (2.8).
Furthermore, the function $f(z)$ defined by

$$
\begin{equation*}
f(z)=z^{-p}+\frac{A-B}{1-B} z^{p} \in G_{p, k}(\lambda, A, B) \subset F_{p, k}(\lambda, A, B) \tag{2.11}
\end{equation*}
$$

shows that the bounds in (2.7) and (2.8) are best possible.
3. Inclusion relation between $F_{p, k}(\lambda, C, D)$ and $G_{p, k}(\lambda, A, B)$. We now generalize the above-mentioned inclusion relation $G_{p, k}(\lambda, A, B) \subset$ $F_{p, k}(\lambda, A, B)$.

Theorem 3.1. If $-1 \leq D \leq B$, then

$$
G_{p, k}(\lambda, A, B) \subset F_{p, k}(\lambda, C(D), D)
$$

where

$$
C(D)=D+\frac{(1-D)(A-B)}{1-B}
$$

The number $C(D)$ is the smallest possible for each D.
Proof. Since $B<A \leq-B$ and $-1 \leq D \leq B<0$, we see that

$$
D<C(D) \leq D-\frac{2 B(1-D)}{1-B} \leq-D
$$

Let $f(z) \in G_{p, k}(\lambda, A, B)$. In order to prove that $f(z) \in F_{p, k}(\lambda, C(D), D)$, we need only find the smallest $C(D<C \leq-D)$ such that

$$
\begin{equation*}
\frac{n(1-D)+p \lambda \delta_{n, p, k}(1-C)}{p(C-D)} \leq \frac{n\left[n(1-B)+p \lambda \delta_{n, p, k}(1-A)\right]}{p^{2}(A-B)} \tag{3.1}
\end{equation*}
$$

for all $n \geq p$, that is, that

$$
\begin{align*}
& \frac{(1-D)\left(n+p \lambda \delta_{n, p, k}\right)}{p(C-D)}-\lambda \delta_{n, p, k} \tag{3.2}\\
& \quad \leq \frac{n}{p}\left(\frac{(1-B)\left(n+p \lambda \delta_{n, p, k}\right)}{p(A-B)}-\lambda \delta_{n, p, k}\right) \quad(n \geq p)
\end{align*}
$$

For $n \geq p$ and $(n+p) / k \in \mathbb{N}$, (3.2) is equivalent to

$$
\begin{equation*}
C \geq D+\frac{1-D}{\frac{\lambda(p-n)}{n+p \lambda}+\frac{n(1-B)}{p(A-B)}}=\varphi(\lambda, n) \quad \text { (say). } \tag{3.3}
\end{equation*}
$$

Since

$$
\begin{aligned}
\varphi(\lambda, n) & \geq D+\frac{p(1-D)(A-B)}{n(1-B)} \\
& \geq D+\frac{(1-D)(A-B)}{1-B}=: C(D) \quad(n=p, p+1, \ldots),
\end{aligned}
$$

by (3.3) we have $f(z) \in F_{p, k}(\lambda, C(D), D)$.
Furthermore, for $2 p / k \in \mathbb{N}$ and $D<C_{0}<C(D)$, we have

$$
\begin{aligned}
\frac{1-D+\lambda\left(1-C_{0}\right)}{C_{0}-D} & \cdot \frac{A-B}{1-B+\lambda(1-A)} \\
& >\frac{1-D+\lambda(1-C(D))}{C(D)-D} \cdot \frac{A-B}{1-B+\lambda(1-A)}=1,
\end{aligned}
$$

which implies that the function $f(z) \in G_{p, k}(\lambda, A, B)$ defined by (2.6) is not in the class $F_{p, k}\left(\lambda, C_{0}, D\right)$. Also, for $2 p / k \notin \mathbb{N}$ and $D<C_{0}<C(D)$, we have

$$
\frac{1-D}{C_{0}-D} \cdot \frac{A-B}{1-B}>\frac{1-D}{C(D)-D} \cdot \frac{A-B}{1-B}=1,
$$

which implies that the function $f(z) \in G_{p, k}(\lambda, A, B)$ defined by (2.11) is not in the class $F_{p, k}\left(\lambda, C_{0}, D\right)$. The proof of Theorem 3.1 is thus complete.
4. Convolution properties. In this section, we assume that

$$
\begin{equation*}
-1 \leq B_{j}<0 \quad \text { and } \quad B_{j}<A_{j} \leq-B_{j} \quad(j=1,2) . \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Let $f_{j}(z) \in F_{p, k}\left(\lambda, A_{j}, B_{j}\right)(j=1,2)$ with $2 p / k \in \mathbb{N}$ and $-1 \leq B \leq \max \left\{B_{1}, B_{2}\right\}$.
(i) If $\left(1-B_{1}\right)\left(1-B_{2}\right) \geq p\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $0 \leq \lambda \leq 1$, then $\left(f_{1} * f_{2}\right)(z) \in F_{p, k}(\lambda, A(B), B)$, where

$$
\begin{equation*}
A(B)=B+\frac{(1-B)\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)+\lambda\left(1-A_{1}\right)\left(1-A_{2}\right)} . \tag{4.2}
\end{equation*}
$$

The number $A(B)$ is the smallest possible for each B.
(ii) If $\left(1-B_{1}\right)\left(1-B_{2}\right)<p\left(1-A_{1}\right)\left(1-A_{2}\right)$ and

$$
\begin{equation*}
0 \leq \lambda \leq \lambda_{1}=\frac{\left(1-B_{1}\right)\left(1-B_{2}\right)}{p\left(1-A_{1}\right)\left(1-A_{2}\right)} \tag{4.3}
\end{equation*}
$$

then $\left(f_{1} * f_{2}\right)(z) \in F_{p, k}(\lambda, A(B), B)$ and the number $A(B)$ is the smallest possible for each B.
(iii) If $\left(1-B_{1}\right)\left(1-B_{2}\right)<p\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $\lambda_{1}<\lambda \leq 1$, then $\left(f_{1} * f_{2}\right)(z) \in F_{p, k}\left(\lambda, \widetilde{A_{1}}(B), B\right)$, where

$$
\begin{equation*}
\widetilde{A_{1}}(B)=B+\frac{p(1-B)}{p+1} \prod_{j=1}^{2} \frac{A_{j}-B_{j}}{1-B_{j}} \tag{4.4}
\end{equation*}
$$

The number $\widetilde{A_{1}}(B)$ is the smallest possible for each B.
Proof. Suppose that $-1 \leq B \leq \max \left\{B_{1}, B_{2}\right\}$. It follows from (4.1) and (4.2) that

$$
\begin{aligned}
& \frac{1-B}{A(B)-B} \geq \frac{1-B_{j}}{A_{j}-B_{j}} \geq-\frac{1-B_{j}}{2 B_{j}} \geq-\frac{1-B}{2 B}>0 \\
& \frac{1-B}{\widetilde{A_{1}}(B)-B}=\left(1+\frac{1}{p}\right) \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}>-\frac{1-B}{2 B}>0
\end{aligned}
$$

Hence $B<A(B) \leq-B$ and $B<\widetilde{A_{1}}(B)<-B$.
Let $f_{j}(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n, j} z^{n} \in F_{p, k}\left(\lambda, A_{j}, B_{j}\right)(j=1,2)$ and $2 p / k \in \mathbb{N}$.
Then

$$
\begin{align*}
\sum_{n=p}^{\infty}\left\{\prod_{j=1}^{2}\right. & \left.\frac{n\left(1-B_{j}\right)+p \lambda \delta_{n, p, k}\left(1-A_{j}\right)}{p\left(A_{j}-B_{j}\right)}\right\}\left|a_{n, 1} a_{n, 2}\right| \tag{4.5}\\
& \leq \prod_{j=1}^{2}\left\{\sum_{n=p}^{\infty} \frac{n\left(1-B_{j}\right)+p \lambda \delta_{n, p, k}\left(1-A_{j}\right)}{p\left(A_{j}-B_{j}\right)}\left|a_{n, j}\right|\right\} \leq 1
\end{align*}
$$

Also, $\left(f_{1} * f_{2}\right)(z) \in F_{p, k}(\lambda, A, B)$ if and only if

$$
\begin{equation*}
\sum_{n=p}^{\infty} \frac{n(1-B)+p \lambda \delta_{n, p, k}(1-A)}{p(A-B)}\left|a_{n, 1} a_{n, 2}\right| \leq 1 \tag{4.6}
\end{equation*}
$$

In order to prove Theorem 4.1, it follows from (4.5) and (4.6) that we need only find the smallest A such that

$$
\begin{align*}
& \frac{n(1-B)+p \lambda \delta_{n, p, k}(1-A)}{p(A-B)} \tag{4.7}\\
& \qquad \leq \prod_{j=1}^{2} \frac{n\left(1-B_{j}\right)+p \lambda \delta_{n, p, k}\left(1-A_{j}\right)}{p\left(A_{j}-B_{j}\right)} \quad(n \geq p)
\end{align*}
$$

For $n \geq p$ and $(n+p) / k \in \mathbb{N}$, (4.7) is equivalent to

$$
\begin{align*}
A & \geq B+\frac{1-B}{\frac{n+p \lambda}{p} \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\lambda \sum_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}+\frac{p \lambda(\lambda+1)}{n+p \lambda}} \tag{4.8}\\
& =\varphi_{1}(\lambda, n) \quad \text { (say) }
\end{align*}
$$

It is easy to verify that $\varphi_{1}(\lambda, n)(0 \leq \lambda \leq 1)$ is decreasing with respect to n and so, in view of $2 p / k \in \mathbb{N}$,

$$
\begin{align*}
\varphi_{1}(\lambda, n) & \leq \varphi_{1}(\lambda, p)=B+\frac{1-B}{(1+\lambda) \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\lambda \sum_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}+\lambda} \tag{4.9}\\
& =B+\frac{(1-B)\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)+\lambda\left(1-A_{1}\right)\left(1-A_{2}\right)}
\end{align*}
$$

For $n \geq p+1$ and $(n+p) / k \notin \mathbb{N}$, (4.7) simplifies to

$$
\begin{equation*}
A \geq B+\frac{1-B}{\frac{n}{p} \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}}=\varphi_{1}(0, n) \tag{4.10}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\varphi_{1}(0, n) \leq \varphi_{1}(0, p+1)=B+\frac{p(1-B)}{p+1} \prod_{j=1}^{2} \frac{A_{j}-B_{j}}{1-B_{j}} \tag{4.11}
\end{equation*}
$$

Now

$$
\begin{align*}
& \varphi_{1}(\lambda, p)-\varphi_{1}(0, p+1) \tag{4.12}\\
& =\frac{(1-B)\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)\left[\left(1-B_{1}\right)\left(1-B_{2}\right)-p \lambda\left(1-A_{1}\right)\left(1-A_{2}\right)\right]}{(p+1)\left(1-B_{1}\right)\left(1-B_{2}\right)\left[\left(1-B_{1}\right)\left(1-B_{2}\right)+\lambda\left(1-A_{1}\right)\left(1-A_{2}\right)\right]} .
\end{align*}
$$

Therefore, if p, λ, A_{j} and $B_{j}(j=1,2)$ satisfy (i) or (ii), then from (4.7) to (4.12) we conclude that

$$
\varphi_{1}(0, p+1) \leq \varphi_{1}(\lambda, p)=A(B), \quad\left(f_{1} * f_{2}\right)(z) \in F_{p, k}(\lambda, A(B), B)
$$

and the number $A(B)$ is sharp for the functions

$$
\begin{equation*}
f_{j}(z)=z^{-p}+\frac{A_{j}-B_{j}}{1-B_{j}+\lambda\left(1-A_{j}\right)} z^{p} \in F_{p, k}\left(\lambda, A_{j}, B_{j}\right) \quad(j=1,2) \tag{4.13}
\end{equation*}
$$

Also, if p, λ, A_{j} and $B_{j}(j=1,2)$ satisfy (iii), then

$$
\varphi_{1}(\lambda, p)<\varphi_{1}(0, p+1)=\widetilde{A_{1}}(B), \quad\left(f_{1} * f_{2}\right)(z) \in F_{p, k}\left(\lambda, \widetilde{A_{1}}(B), B\right),
$$

and the number $\widetilde{A_{1}}(B)$ is sharp for the functions

$$
\begin{equation*}
f_{j}(z)=z^{-p}+\frac{p\left(A_{j}-B_{j}\right)}{(p+1)\left(1-B_{j}\right)} z^{p+1} \in F_{p, k}\left(\lambda, A_{j}, B_{j}\right) \quad(j=1,2) \tag{4.14}
\end{equation*}
$$

Corollary 4.2. Let $f_{1}(z) \in F_{p, k}\left(\lambda, A_{1}, B_{1}\right), f_{2}(z) \in G_{p, k}\left(\lambda, A_{2}, B_{2}\right)$, $2 p / k \in \mathbb{N},-1 \leq B \leq \max \left\{B_{1}, B_{2}\right\}$, and let $A(B), \widetilde{A_{1}}(B), \lambda_{1}$ be as in Theorem 4.1.
(i) If $\left(1-B_{1}\right)\left(1-B_{2}\right) \geq p\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $0 \leq \lambda \leq 1$, then $\left(f_{1} * f_{2}\right)(z) \in G_{p, k}(\lambda, A(B), B)$ and the number $A(B)$ is the smallest possible for each B.
(ii) If $\left(1-B_{1}\right)\left(1-B_{2}\right)<p\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $0 \leq \lambda \leq \lambda_{1}$, then $\left(f_{1} * f_{2}\right)(z) \in G_{p, k}(\lambda, A(B), B)$ and the number $A(B)$ is the smallest possible for each B.
(iii) If $\left(1-B_{1}\right)\left(1-B_{2}\right)<p\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $\lambda_{1}<\lambda \leq 1$, then $\left(f_{1} * f_{2}\right)(z) \in G_{p, k}\left(\lambda, \widetilde{A_{1}}(B), B\right)$ and the number $\widetilde{A_{1}}(B)$ is the smallest possible for each B.
Proof. Since

$$
f_{1}(z) \in F_{p, k}\left(\lambda, A_{1}, B_{1}\right), \quad 2 z^{-p}+\frac{z f_{2}^{\prime}(z)}{p} \in F_{p, k}\left(\lambda, A_{2}, B_{2}\right)
$$

(see (1.10)), and

$$
f_{1}(z) *\left(2 z^{-p}+\frac{z f_{2}^{\prime}(z)}{p}\right)=2 z^{-p}+\frac{z\left(f_{1} * f_{2}\right)^{\prime}(z)}{p} \quad\left(z \in U_{0}\right)
$$

an application of Theorem 4.1 yields Corollary 4.2.
Theorem 4.3. Let $f_{j}(z) \in F_{p, k}\left(\lambda, A_{j}, B_{j}\right)(j=1,2)$ with $2 p / k \notin \mathbb{N}$ and $-1 \leq B \leq \max \left\{B_{1}, B_{2}\right\}$. Then $\left(f_{1} * f_{2}\right)(z) \in F_{p, k}(\lambda, \widetilde{A}(B), B)$, where

$$
\begin{equation*}
\widetilde{A}(B)=B+\frac{(1-B)\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)} \tag{4.15}
\end{equation*}
$$

and the number $\widetilde{A}(B)$ is the smallest possible for each B.
Proof. It is easy to see that $B<\widetilde{A}(B) \leq-B$. Proceeding as in the proof of Theorem 4.1, we have (4.5)-(4.8) and (4.10). Noting that $2 p / k \notin \mathbb{N}$, we find that

$$
\begin{aligned}
& \varphi_{1}(\lambda, n) \leq \varphi_{1}\left(\lambda, k\left(\left[\frac{2 p}{k}\right]+1\right)-p\right) \\
&=B+\frac{1-B}{\left(n_{p, k}+\lambda-1\right) \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\lambda \sum_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}+\frac{\lambda(\lambda+1)}{n_{p, k}+\lambda-1}} \\
& \quad(n \geq p,(n+p) / k \in N)
\end{aligned}
$$

where $n_{p, k}=(k / p)([2 p / k]+1)>2$, and

$$
\varphi_{1}(0, n) \leq \varphi_{1}(0, p)=B+\frac{1-B}{\prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}} \quad(n \geq p,(n+p) / k \notin \mathbb{N})
$$

Since

$$
\begin{array}{r}
\left(n_{p, k}+\lambda-1\right)\left[\left(n_{p, k}+\lambda-1\right) \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\lambda \sum_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}\right] \\
+\lambda(\lambda+1)
\end{array}
$$

$$
\begin{aligned}
& =\left(n_{p, k}+\lambda-1\right)\left[\left(n_{p, k}-2\right) \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\lambda+\lambda \prod_{j=1}^{2} \frac{1-A_{j}}{A_{j}-B_{j}}\right]+\lambda(\lambda+1) \\
& \geq\left(n_{p, k}+\lambda-1\right)\left(n_{p, k}-2-\lambda\right)+\lambda(\lambda+1) \\
& =\left(n_{p, k}-1\right)\left(n_{p, k}-2\right)>0 \quad(0 \leq \lambda \leq 1)
\end{aligned}
$$

it follows that

$$
\varphi_{1}(0, p)>\varphi_{1}(\lambda, k([2 p / k]+1)-p)
$$

Hence, if we take $A=\varphi_{1}(0, p)=\widetilde{A}(B)$, then $\left(f_{1} * f_{2}\right)(z) \in F_{p, k}(\lambda, \widetilde{A}(B), B)$ and the number $\widetilde{A}(B)$ is best possible for the functions

$$
f_{j}(z)=z^{-p}+\frac{A_{j}-B_{j}}{1-B_{j}} z^{p} \in F_{p, k}\left(\lambda, A_{j}, B_{j}\right) \quad(j=1,2)
$$

Corollary 4.4. Let $f_{1}(z) \in F_{p, k}\left(\lambda, A_{1}, B_{1}\right), f_{2}(z) \in G_{p, k}\left(\lambda, A_{2}, B_{2}\right)$, $2 p / k \notin \mathbb{N}$ and $-1 \leq B \leq \max \left\{B_{1}, B_{2}\right\}$. Then $\left(f_{1} * f_{2}\right)(z) \in G_{p, k}(\lambda, \widetilde{A}(B), B)$, where $\widetilde{A}(B)$ is as in Theorem 4.3, and it is the smallest possible for each B.

TheOrem 4.5. Let $f_{1}(z) \in F_{p, k}\left(\lambda, A_{1}, B_{1}\right), f_{2}(z) \in G_{p, k}\left(\lambda, A_{2}, B_{2}\right)$, $2 p / k \in \mathbb{N}$ and $-1 \leq B \leq \max \left\{B_{1}, B_{2}\right\}$.
(i) If $(2 p+1)\left(1-B_{1}\right)\left(1-B_{2}\right) \geq p^{2}\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $0 \leq \lambda \leq 1$, then $\left(f_{1} * f_{2}\right)(z) \in F_{p, k}(\lambda, A(B), B)$, where $A(B)$ is as in Theorem 4.1, and it is the smallest possible for each B.
(ii) If $(2 p+1)\left(1-B_{1}\right)\left(1-B_{2}\right)<p^{2}\left(1-A_{1}\right)\left(1-A_{2}\right)$ and

$$
\begin{equation*}
0 \leq \lambda \leq \lambda_{2}=\frac{(2 p+1)\left(1-B_{1}\right)\left(1-B_{2}\right)}{p^{2}\left(1-A_{1}\right)\left(1-A_{2}\right)} \tag{4.16}
\end{equation*}
$$

then $\left(f_{1} * f_{2}\right)(z) \in F_{p, k}(\lambda, A(B), B)$ and the number $A(B)$ is the smallest possible for each B.
(iii) If $(2 p+1)\left(1-B_{1}\right)\left(1-B_{2}\right)<p^{2}\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $\lambda_{2}<\lambda \leq 1$, then $\left(f_{1} * f_{2}\right)(z) \in F_{p, k}\left(\lambda, \widetilde{A_{2}}(B), B\right)$, where

$$
\begin{equation*}
\widetilde{A_{2}}(B)=B+\frac{p^{2}(1-B)}{(p+1)^{2}} \prod_{j=1}^{2} \frac{A_{j}-B_{j}}{1-B_{j}} \tag{4.17}
\end{equation*}
$$

and the number $\widetilde{A_{2}}(B)$ is the smallest possible for each B.
Proof. It is easy to see that $B<\widetilde{A_{2}}(B)<-B$. In order to prove Theorem 4.5 , we need only find the smallest A such that

$$
\begin{align*}
& \frac{n(1-B)+p \lambda \delta_{n, p, k}(1-A)}{p(A-B)} \tag{4.18}\\
& \quad \leq \frac{n}{p} \prod_{j=1}^{2} \frac{n\left(1-B_{j}\right)+p \lambda \delta_{n, p, k}\left(1-A_{j}\right)}{p\left(A_{j}-B_{j}\right)} \quad(n \geq p)
\end{align*}
$$

For $n \geq p$ and $(n+p) / k \in \mathbb{N}$, (4.18) is equivalent to

$$
\begin{align*}
A & \geq B+\frac{1-B}{\frac{n(n+p \lambda)}{p^{2}} \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\frac{n \lambda}{p} \sum_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}+\frac{\lambda(p+n \lambda)}{n+p \lambda}} \tag{4.19}\\
& =\varphi_{2}(\lambda, n) \quad(\text { say }) .
\end{align*}
$$

Defining the function $\psi(\lambda, x)$ by
$\psi(\lambda, x)=\frac{x(x+p \lambda)}{p^{2}} \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\frac{\lambda x}{p} \sum_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}+\frac{\lambda(p+\lambda x)}{x+p \lambda}$ $(x \geq p, 0 \leq \lambda \leq 1)$,
we obtain

$$
\begin{aligned}
\frac{\partial \psi(\lambda, x)}{\partial x}= & \frac{2 x+p \lambda}{p^{2}} \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\frac{\lambda}{p}\left(\prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\prod_{j=1}^{2} \frac{1-A_{j}}{A_{j}-B_{j}}+1\right) \\
& -\frac{\lambda p\left(1-\lambda^{2}\right)}{(x+p \lambda)^{2}} \\
\geq & \frac{2}{p} \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\frac{\lambda}{p}-\frac{\lambda(1-\lambda)}{p(1+\lambda)} \\
\geq & \frac{2-\lambda}{p}-\frac{\lambda(1-\lambda)}{p(1+\lambda)}>0 \quad(x \geq p, 0 \leq \lambda \leq 1)
\end{aligned}
$$

which implies that $\varphi_{2}(\lambda, n)$ defined by (4.19) is decreasing with respect to $n(n \geq p)$. Hence, in view of $2 p / k \in \mathbb{N}$, we have

$$
\varphi_{2}(\lambda, n) \leq \varphi_{2}(\lambda, p)=B+\frac{1-B}{\prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}+\lambda \prod_{j=1}^{2} \frac{1-A_{j}}{A_{j}-B_{j}}}=A(B)
$$

For $n \geq p+1$ and $(n+p) / k \notin \mathbb{N}$, (4.18) becomes

$$
A \geq B+\frac{1-B}{\left(\frac{n}{p}\right)^{2} \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}}=\varphi_{2}(0, n)
$$

and, in view of $2 p / k \in \mathbb{N}$, we obtain

$$
\varphi_{2}(0, n) \leq \varphi_{2}(0, p+1)=B+\frac{1-B}{\left(1+\frac{1}{p}\right)^{2} \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}}=\widetilde{A}_{2}(B) .
$$

Now,

$$
\begin{aligned}
\left(\left(1+\frac{1}{p}\right)^{2}-1\right) & \prod_{j=1}^{2} \frac{1-B_{j}}{A_{j}-B_{j}}-\lambda \prod_{j=1}^{2} \frac{1-A_{j}}{A_{j}-B_{j}} \\
& =\frac{(2 p+1)\left(1-B_{1}\right)\left(1-B_{2}\right)-p^{2} \lambda\left(1-A_{1}\right)\left(1-A_{2}\right)}{p^{2}\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}
\end{aligned}
$$

The remaining part of the proof is much akin to that of Theorem 4.1.

Furthermore, the number $A(B)$ is sharp for the functions

$$
\begin{aligned}
& f_{1}(z)=z^{-p}+\frac{A_{1}-B_{1}}{1-B_{1}+\lambda\left(1-A_{1}\right)} z^{p} \in F_{p, k}\left(\lambda, A_{1}, B_{1}\right), \\
& f_{2}(z)=z^{-p}+\frac{A_{2}-B_{2}}{1-B_{2}+\lambda\left(1-A_{2}\right)} z^{p} \in G_{p, k}\left(\lambda, A_{2}, B_{2}\right),
\end{aligned}
$$

and the number $\widetilde{A_{2}}(B)$ is sharp for the functions

$$
\begin{aligned}
& f_{1}(z)=z^{-p}+\frac{p\left(A_{1}-B_{1}\right)}{(p+1)\left(1-B_{1}\right)} z^{p+1} \in F_{p, k}\left(\lambda, A_{1}, B_{1}\right) \\
& f_{2}(z)=z^{-p}+\frac{p^{2}\left(A_{2}-B_{2}\right)}{(p+1)^{2}\left(1-B_{2}\right)} z^{p+1} \in G_{p, k}\left(\lambda, A_{2}, B_{2}\right)
\end{aligned}
$$

Corollary 4.6. Let $f_{j}(z) \in G_{p, k}\left(\lambda, A_{j}, B_{j}\right)(j=1,2)$ with $2 p / k \in \mathbb{N}$ and $-1 \leq B \leq \max \left\{B_{1}, B_{2}\right\}$, and let $A(B), \widetilde{A_{2}}(B), \lambda_{2}$ be as in Theorem 4.5.
(i) If $(2 p+1)\left(1-B_{1}\right)\left(1-B_{2}\right) \geq p^{2}\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $0 \leq \lambda \leq 1$, then $\left(f_{1} * f_{2}\right)(z) \in G_{p, k}(\lambda, A(B), B)$ and $A(B)$ cannot be decreased.
(ii) If $(2 p+1)\left(1-B_{1}\right)\left(1-B_{2}\right)<p^{2}\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $0 \leq \lambda \leq \lambda_{2}$, then $\left(f_{1} * f_{2}\right)(z) \in G_{p, k}(\lambda, A(B), B)$ and $A(B)$ cannot be decreased.
(iii) If $(2 p+1)\left(1-B_{1}\right)\left(1-B_{2}\right)<p^{2}\left(1-A_{1}\right)\left(1-A_{2}\right)$ and $\lambda_{2}<\lambda \leq 1$, then $\left(f_{1} * f_{2}\right)(z) \in G_{p, k}\left(\lambda, \widetilde{A_{2}}(B), B\right)$ and $\widetilde{A_{2}}(B)$ cannot be decreased.
Theorem 4.7. Let $f(z) \in F_{p, k}(\lambda, A, B)$. Then

$$
\begin{equation*}
\left(f * h_{\sigma}\right)(z) \neq 0 \quad\left(z \in U_{0}, \sigma \in \mathbb{C},|\sigma|=1\right) \tag{4.20}
\end{equation*}
$$

where

$$
h_{\sigma}(z)=z^{-p}+\frac{1+B \sigma}{p \sigma(A-B)}\left(\frac{p z^{p}}{1-z}+\frac{z^{p+1}}{(1-z)^{2}}\right)+\frac{\lambda(1+A \sigma)}{\sigma(A-B)} g(z)
$$

and

$$
g(z)= \begin{cases}\frac{z^{p}}{1-z^{k}} & (2 p / k \in \mathbb{N}) \\ \frac{z^{k([2 p / k]+1)-p}}{1-z^{k}} & (2 p / k \notin \mathbb{N})\end{cases}
$$

Proof. For $f(z) \in F_{p, k}(\lambda, A, B)$, from Lemma 1.1 we have (1.4), which is equivalent to

$$
-\frac{z f^{\prime}(z)}{(1-\lambda) z^{-p}+\lambda f_{p, k}(z)} \neq p \frac{1+A \sigma}{1+B \sigma} \quad(z \in U, \sigma \in \mathbb{C},|\sigma|=1,1+B \sigma \neq 0)
$$

or to

$$
\begin{align*}
& p(1+A \sigma)\left[(1-\lambda) z^{-p}+\lambda f_{p, k}(z)\right]+(1+B \sigma) z f^{\prime}(z) \neq 0 \tag{4.21}\\
&\left(z \in U_{0}, \sigma \in \mathbb{C},|\sigma|=1\right) .
\end{align*}
$$

Note that

$$
\begin{align*}
-\frac{z f^{\prime}(z)}{p} & =f(z) *\left(z^{-p}-\frac{1}{p} \sum_{n=p}^{\infty} n z^{n}\right) \tag{4.22}\\
& =f(z) *\left(z^{-p}-\frac{z^{p}}{1-z}-\frac{z^{p+1}}{p(1-z)^{2}}\right)
\end{align*}
$$

If we set

$$
\begin{equation*}
f_{p, k}(z)=f(z) *\left(z^{-p}+g(z)\right) \tag{4.23}
\end{equation*}
$$

then for $2 p / k \in \mathbb{N}$,

$$
\begin{equation*}
g(z)=\sum_{n=p}^{\infty} \delta_{n, p, k} z^{n}=\sum_{l=0}^{\infty} z^{p+l k}=\frac{z^{p}}{1-z^{k}} \tag{4.24}
\end{equation*}
$$

and for $2 p / k \notin \mathbb{N}$,

$$
\begin{equation*}
g(z)=\sum_{l=1}^{\infty} z^{k([2 p / k]+l)-p}=\frac{z^{k([2 p / k]+1)-p}}{1-z^{k}} \tag{4.25}
\end{equation*}
$$

Now, making use of (4.21)-(4.25), we arrive at

$$
\begin{aligned}
& f(z) *\left\{p(1+A \sigma)\left[(1-\lambda) z^{-p}+\lambda\left(z^{-p}+g(z)\right)\right]\right. \\
& \left.\quad+(1+B \sigma)\left(-p z^{-p}+\frac{p z^{p}}{1-z}+\frac{z^{p+1}}{(1-z)^{2}}\right)\right\} \neq 0
\end{aligned}
$$

for $z \in U_{0}, \sigma \in \mathbb{C}$ and $|\sigma|=1$. This gives the desired result (4.20).
Corollary 4.8. Let $f(z) \in G_{p, k}(\lambda, A, B)$. Then

$$
\begin{equation*}
f(z) *\left(2 z^{-p}+\frac{z h_{\sigma}^{\prime}(z)}{p}\right) \neq 0 \quad\left(z \in U_{0}, \sigma \in \mathbb{C},|\sigma|=1\right) \tag{4.26}
\end{equation*}
$$

where $h_{\sigma}(z)$ is as in Theorem 4.7.
Proof. Since $f(z) \in G_{p, k}(\lambda, A, B)$ if and only if

$$
2 z^{-p}+\frac{z f^{\prime}(z)}{p} \in F_{p, k}(\lambda, A, B)
$$

it follows from Theorem 4.7 that

$$
\begin{aligned}
f(z) *\left(2 z^{-p}+\frac{z h_{\sigma}^{\prime}(z)}{p}\right)=\left(2 z^{-p}+\frac{z f^{\prime}(z)}{p}\right) & * h_{\sigma}(z) \neq 0 \\
& \left(z \in U_{0}, \sigma \in \mathbb{C},|\sigma|=1\right) .
\end{aligned}
$$

5. Functions with positive coefficients. Let Σ_{p}^{*} denote the subclass of Σ_{p} consisting of all functions of the form

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{n=p}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0\right) . \tag{5.1}
\end{equation*}
$$

Further let

$$
\begin{align*}
F_{p, k}^{*}(\lambda, A, B) & =\Sigma_{p}^{*} \cap F_{p, k}(\lambda, A, B), \tag{5.2}\\
G_{p, k}^{*}(\lambda, A, B) & =\Sigma_{p}^{*} \cap G_{p, k}(\lambda, A, B) .
\end{align*}
$$

Lemma 5.1. A function $f(z) \in \Sigma_{p}^{*}$ is in the class $F_{p, k}^{*}(\lambda, A, B)$ if and only if it satisfies the subordination relation (1.4).

Proof. If $f(z) \in F_{p, k}^{*}(\lambda, A, B)$, then Lemma 1.1 implies that (1.4) holds true. Conversely, suppose that $f(z) \in \Sigma_{p}^{*}$ defined by (5.1) satisfies (1.4). Then, in view of $\operatorname{Re} w \leq|w|(w \in \mathbb{C})$, we easily see that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{n=p}^{\infty}\left(n+p \lambda \delta_{n, p, k}\right) a_{n} z^{n+p}}{p(A-B)+\sum_{n=p}^{\infty}\left(p A \lambda \delta_{n, p, k}+n B\right) a_{n} z^{n+p}}\right\}<1 \quad(z \in U) . \tag{5.3}
\end{equation*}
$$

By letting $z=\operatorname{Re} z \rightarrow 1$, (5.3) leads to

$$
\sum_{n=p}^{\infty}\left[n(1-B)+p \lambda \delta_{n, p, k}(1-A)\right] a_{n} \leq p(A-B) .
$$

Hence $f(z) \in F_{p, k}^{*}(\lambda, A, B)$.
By using Lemma 5.1, we observe that

$$
F_{p, k}^{*}(0, A, B)=\left\{f(z) \in \Sigma_{p}^{*}:-z^{p+1} f^{\prime}(z) \prec p \frac{1+A z}{1+B z}(z \in U)\right\}
$$

coincides with the class $H^{*}(p ;-A,-B)$ introduced and studied by Mogra 3].
It is worth noting that our Theorems 2.1, 2.2, 3.1, 4.1, 4.3, 4.5 and Corollaries 4.2, 4.4, 4.6 are still true if the class $F_{p, k}(\lambda, A, B)$ is replaced by $F_{p, k}^{*}(\lambda, A, B)$ and the class $G_{p, k}(\lambda, A, B)$ is replaced by $G_{p, k}^{*}(\lambda, A, B)$. Moreover, by using Lemma 5.1, (the proof of) Theorem 4.7 and Corollary 4.8, we get the following result.

Theorem 5.2. Let $f(z) \in \Sigma_{p}^{*}$ and $h_{\sigma}(z)$ be as in Theorem 4.7. Then:
(i) $f(z) \in F_{p, k}^{*}(\lambda, A, B)$ if and only if (4.20) holds.
(ii) $f(z) \in G_{p, k}^{*}(\lambda, A, B)$ if and only if (4.26) holds.

Acknowledgements. The authors would like to express sincere thanks to the referees for careful reading and suggestions which helped improve the paper.

References

[1] N. E. Cho, O. S. Kwon and S. Owa, Certain subclasses of Sakaguchi functions, Southeast Asian Bull. Math. 17 (1993), 121-126.
[2] S. A. Halim, Functions starlike with respect to other points, Int. J. Math. Math. Sci. 14 (1991), 451-456.
[3] M. L. Mogra, Meromorphic multivalent functions with positive coefficients II, Math. Japon. 35 (1990), 1089-1098.
[4] R. Pavatham and S. Radha, On α-starlike and α-close-to-convex functions with respect to n-symmetric points, Indian J. Pure Appl. Math. 16 (1986), 1114-1122.
[5] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
[6] H. M. Srivastava, D.-G. Yang and N.-E. Xu, Some subclasses of meromorphically multivalent functions associated with a linear operator, Appl. Math. Comput. 195 (2008), 11-23.
[7] Z. G. Wang, C. Y. Gao and S. M. Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl. 322 (2006), 97-106.
[8] Z. Wu, On classes of Sakaguchi functions and Hadamard products, Sci. Sinica Ser. A 30 (1987), 128-135.
[9] N.-E. Xu and D.-G. Yang, Some classes of analytic and multivalent functions involving a linear operator, Math. Comput. Modelling 49 (2009), 955-965.
[10] D.-G. Yang and J.-L. Liu, On Sakaguchi functions, Int. J. Math. Math. Sci. 2003, no 30, 1923-1931.

Jin-Lin Liu (corresponding author)
Department of Mathematics
Yangzhou University
Yangzhou 225002, P.R. China
E-mail: jlliu@yzu.edu.cn

Received 23.6.2013
and in final form 5.10.2013

[^0]: 2010 Mathematics Subject Classification: Primary 30C45.
 Key words and phrases: meromorphic functions, p-valent functions, Hadamard product (or convolution), subordination, distortion bounds, inclusion relations, symmetric points.

