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On the extreme points of subordination families

by Jacek Dziok (Rzeszów)

Abstract. We investigate extreme points of some classes of analytic functions defined
by subordination and classes of functions with varying argument of coefficients. By using
extreme point theory we obtain coefficient estimates and distortion theorems in these
classes of functions. Some integral mean inequalities are also pointed out.

1. Introduction. Let Ã denote the class of functions which are analytic
in U = {z ∈ C : |z| < 1}. We consider the usual topology on Ã (see [9])
defined by a metric in which a sequence {fn} in Ã converges to f if and
only if it converges to f uniformly on each compact subset of U . It follows
from the theorems of Weierstrass and Montel that this topological space is
complete.

Let F be a subclass of Ã. A function f ∈ F is called an extreme point of
F if the condition

f = γg + (1− γ)h (g, h ∈ F , 0 < γ < 1)

implies g = h. We write EF for the set of all extreme points of F . It is clear
that EF ⊂ F .

We say that F is locally uniformly bounded if for each r, 0 < r < 1, there
is a real constant M = M(r) such that

|f(z)| ≤M (f ∈ F , |z| ≤ r).

We say that a class F is convex if

γf + (1− γ)g ∈ F (f, g ∈ F , 0 ≤ γ ≤ 1).

Moreover, we define the closed convex hull of F as the intersection of all
closed convex subsets of Ã that contain F . We denote the closed convex hull
of F by HF .
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If J : Ã → Ã is a linear homeomorphism which maps F onto J(F), then
it is easy to verify that

(1) HJ(F) = J(HF).

Likewise, if the class

F = {fn ∈ Ã : n ∈ N = {1, 2, . . . , }}
is locally uniformly bounded, then

(2) HF =
{ ∞∑
n=1

γnfn :
∞∑
n=1

γn = 1, γn ≥ 0 (n ∈ N
}
.

A functional J : Ã → R is called convex on a convex class F ⊂ Ã if

J (γf + (1− γ)g) ≤ γJ (f) + (1− γ)J (g) (f, g ∈ F , 0 ≤ γ ≤ 1).

For each fixed m,n ∈ N, z ∈ U the following real-valued functionals are
continuous and convex on Ã:
(3) J (f) = |an|, J (f) = |f(z)|, J (f) = |f (m)(z)| (f ∈ Ã).

Moreover, for λ > 0, 0 < r < 1, the real-valued functional

(4) J (f) =
(

1
2π

2π�

0

|f (n)(reiθ)|λ dθ
)1/λ

(f ∈ Ã)

is continuous on Ã. For λ ≥ 1, by Minkowski’s inequality it is also convex
on Ã.

The extreme point theory for analytic functions was intensively investi-
gated by Hallenbeck and MacGregor [9] (see also [3], [7], [8] and [16]).

Let Ω denote the class of ω ∈ Ã such that

|ω(z)| ≤ |z| (z ∈ U).

We say that a function f ∈ Ã is subordinate to a function F ∈ Ã, and write
f(z) ≺ F (z) (or simply f ≺ F ), if and only if there exists a function ω ∈ Ω
such that

f(z) = F (ω(z)) (z ∈ U).

In particular, if F is univalent in U , we have the following equivalence:

f(z) ≺ F (z) ⇔ f(0) = F (0) and f(U) ⊂ F (U).

Also, we denote
s(F ) := {f ∈ Ã : f ≺ F}.

For functions f, g ∈ Ã of the form

f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n,
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we denote by f ∗ g their Hadamard product (or convolution), defined by

(f ∗ g)(z) =
∞∑
n=0

anbnz
n (z ∈ U).

We denote by A the class of functions f ∈ Ã of the form

(5) f(z) = z +
∞∑
n=2

anz
n (z ∈ U).

Also, let Tη (η ∈ R) denote the class of functions f ∈ A of the form (5) for
which

(6) arg(an) = π + (1− n)η (n = 2, 3, . . .).

In particular, for η = 0 we obtain the class T0 of functions with negative
coefficients. Moreover, we define

(7) T :=
⋃
η∈R
Tη.

The class T was introduced by Silverman [17] (see also [20]). It is called the
class of functions with varying argument of coefficients.

Let A,B be real parameters, −1 ≤ A < B ≤ 1, and let ϕ, φ ∈ A be given
functions of the form

(8) ϕ(z) = z +
∞∑
n=2

αnz
n, φ(z) = z +

∞∑
n=2

βnz
n (z ∈ U),

where the sequences {αn}, {βn} are real and

0 ≤ αn < βn (n = 2, 3, . . .).

Moreover, we assume

(9) dn := (1 +B)βn − (1 +A)αn (n = 2, 3, . . .), lim inf
n→∞

n
√
dn ≥ 1.

We denote by W(φ, ϕ;A,B) the class of functions f ∈ A such that

(10)
(φ ∗ f)(z)
(ϕ ∗ f)(z)

≺ 1 +Az

1 +Bz
,

and we set

W(ϕ;A,B) :=W(zϕ′(z), ϕ(z);A,B),
W(ϕ;α) :=W(ϕ; 2α− 1, 1) (0 ≤ α < 1).

In particular,

S∗(α) :=W
(

z

1− z
;α
)
, Sc(α) :=W

(
z

(1− z)2
;α
)

are the well-known classes of starlike functions of order α and convex func-
tions of order α, respectively.
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If we denote

P(A,B) := s

(
1 +Az

1 +Bz

)
,

and
P(α) := P(2α− 1, 1), P := P(0) (0 ≤ α < 1),

then we observe that

(11) f ∈ W(φ, ϕ;A,B) ⇔ φ ∗ f
ϕ ∗ f

∈ P(A,B),

and

(12) p ∈ P ⇔ (1− α)p(z) + α ≡ q(z) ∈ P(α).

Finally, we define classes of functions with varying argument of coeffi-
cients related to the class W(φ, ϕ;A,B). Let us denote

T W(φ, ϕ;A,B) := T ∩W(φ, ϕ;A,B),
T Wη(φ, ϕ;A,B) := Tη ∩W(φ, ϕ;A,B).

The families W(φ, ϕ;A,B) and T Wη(φ, ϕ;A,B) unify various new and
also well-known classes of analytic functions. We list a few of them in the
last section.

The object of the present paper is to investigate extreme points of the
classes W(ϕ;A,B) and T Wη(φ, ϕ;A,B). By using extreme point theory
we obtain coefficient estimates and distortion theorems in these classes of
functions. Some integral mean inequalities are also pointed out.

2. Extreme points. First we consider extreme points ofW(ϕ;α). Using
the Herglotz formula for Carathéodory functions and the relationship (12)
we obtain

Lemma 1. A function p belongs to the class P(α) if and only if there is
a probability measure µ on ∂U such that

(13) p(z) =
�

|x|=1

1 + (2α− 1)xz
1 + xz

dµ(x) (z ∈ U).

The correspondence between P and probability measures µ on ∂U given trough
(13) is one-to-one.

Using Lemma 1 we get the following lemma.

Lemma 2. A function f belongs to the class S∗(α) if and only if there
exists a probability measure µ on ∂U such that

f(z) = z exp
�

|x|=1

{−2(1− α) log(1 + xz)} dµ(x) (z ∈ U).
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The correspondence between S∗(α) and probability measures µ on ∂U is one-
to-one.

Let f ∈ S∗(α). Then by Lemma 2 we have

f(z)
z

= exp
�

|x|=1

{−2(1− α) log(1 + xz)} dµ(x) (z ∈ U).

Since the function k(z) = log(1 + z) is univalent and convex in U , we have
�

|x|=1

log(1 + xz) dµ(x) ≺ k(z),

and consequently
f(z)
z

= exp{−2(1− α) log(1 + ω(z))} (z ∈ U)

for some ω ∈ Ω. Hence by definition of subordination we have the following
well-known result.

Lemma 3. If f ∈ S∗(α), then

f(z)
z
≺ 1

(1 + z)2(1−α)
.

Lemma 4 ([9]). Let

(14) Fa(z) =
1

(1 + z)a
(z ∈ U , a ≥ 1).

A function f ∈ Ã belongs to the class Hs(Fa) if and only if it can be repre-
sented by the formula

f(z) =
�

|x|=1

1
(1 + xz)a

dµ(x) (z ∈ U),

where µ is a probability measure on ∂U .

Theorem 1. Let 0 ≤ α ≤ 1/2. A function f ∈ A belongs to the class
HS∗(α) if and only if it can be represented by the formula

(15) f(z) =
�

|x|=1

z

(1 + xz)2(1−α)
dµ(x) (z ∈ U),

where µ is a probability measure on ∂U . Also,

(16) EHS∗(α) =
{

z

(1 + xz)2(1−α)
: |x| = 1

}
.

Proof. Let G be the class of functions represented by (15). It is clear
that HG = G. If f ∈ HS∗(α), then according to Lemma 3 we have f(z)/z ∈
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Hs(F2(1−α)), where F2(1−α) is defined by (14). Thus, by Lemma 4 we have
(15), i.e.

HS∗(α) ⊂ HG = G.

Since EG ⊂ S∗(α), we get G ⊂ HS∗(α), and therefore G = HS∗(α). More-
over, EG = EHS∗(α) and we obtain (16).

Remark 1. We can represent the extreme points of the class S∗(α) in
the following form:

z

(1 + xz)2(1−α)
= z +

∞∑
n=2

(2− 2α)n−1

(n− 1)!
(−x)n−1zn (z ∈ U),

where (λ)n is the Pochhammer symbol defined by

(λ)n =
{

1, n = 0,
λ(λ+ 1) · · · (λ+ n− 1), n ∈ N.

Theorem 2. Let {αn} be defined by (8), αn > 0 (n = 2, 3, . . .), and

(17) lim
n→∞

n
√
αn = 1, 0 ≤ α ≤ 1/2.

Then

(18) EHW(ϕ;α) = {ϕx : |x| = 1},

where

(19) ϕx(z) := z +
∞∑
n=2

(2− 2α)n−1

(n− 1)!αn
(−x)n−1zn (z ∈ U , |x| = 1).

Proof. Let

ϕ†(z) = z +
∞∑
n=2

1
αn
zn (z ∈ U).

Then the linear homeomorphism

I(f) = ϕ† ∗ f (f ∈ A)

maps S∗(α) ontoW(ϕ;α). Therefore, by (1) and Theorem 1 we obtain (18).

Now, we consider extreme points of the class T Wη(φ, ϕ;A,B). First we
mention a sufficient condition for a function to belong to W(φ, ϕ;A,B).

Theorem 3. Let {dn} be defined by (9) and −1 ≤ A < 1, 0 ≤ B ≤ 1. If
a function f ∈ A of the form (5) satisfies the condition

(20)
∞∑
n=2

dn|an| ≤ B −A,

then f ∈ W(φ, ϕ;A,B).
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Proof. A function f ∈ A of the form (5) belongs to W(φ, ϕ;A,B) if and
only if there exists ω ∈ Ω such that

(φ ∗ f)(z)
(ϕ ∗ f)(z)

=
1 +Aω(z)
1 +Bω(z)

(z ∈ U),

or equivalently

(21)
∣∣∣∣ (φ ∗ f)(z)− (ϕ ∗ f)(z)
B(φ ∗ f)(z)−A(ϕ ∗ f)(z)

∣∣∣∣ < 1 (z ∈ U).

Thus, it is sufficient to prove that∣∣∣∣(φ ∗ f)(z)− (ϕ ∗ f)(z)
z

∣∣∣∣− ∣∣∣∣B(φ ∗ f)(z)−A(ϕ ∗ f)(z)
z

∣∣∣∣ < 0 (z ∈ U).

Indeed, letting |z| = r (0 < r < 1) we have∣∣∣∣(φ ∗ f)(z)− (ϕ ∗ f)(z)
z

∣∣∣∣− ∣∣∣∣B(φ ∗ f)(z)−A(ϕ ∗ f)(z)
z

∣∣∣∣
=
∣∣∣ ∞∑
n=2

(βn − αn)anzn−1
∣∣∣− ∣∣∣(B −A)−

∞∑
n=2

(Bβn −Aαn)anzn−1
∣∣∣

≤
∞∑
n=2

(βn − αn)|an|rn−1 − (B −A) +
∞∑
n=2

(Bβn −Aαn)|an|rn−1

=
∞∑
n=2

dn|an|rn−1 − (B −A) < 0.

Theorem 4. Let f ∈ A be a function of the form (5), satisfying (6).
Then f ∈ T Wη(φ, ϕ;A,B) if and only if the condition (20) holds true.

Proof. In view of Theorem 3 we need only show that if the function f is
in T Wη(φ, ϕ;A,B) then it satisfies (20). So assume f ∈ T Wη(φ, ϕ;A,B).
Then, by (5) and (21) we have∣∣∣∣ ∑∞

n=2(βn − αn)anzn−1

B −A−
∑∞

n=2(Bβn −Aαn)anzn−1

∣∣∣∣ < 1 (z ∈ U).

Therefore, putting z = reiη (0 ≤ r < 1) and applying (6) we obtain

(22)
∑∞

n=2(βn − αn)|an|rn−1

B −A−
∑∞

n=2(Bβn −Aαn)|an|rn−1
< 1.

It is clear that the denominator above cannot vanish for r ∈ [0, 1).Moreover,
it is positive for r = 0, and hence for r ∈ [0, 1). Thus, by (22) we have

∞∑
n=2

[(1 +B)βn − (1 +A)αn]|an|rn−1 < B −A,

which, upon letting r → 1−, readily yields (20).
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Since the condition (20) is independent of η, Theorem 4 yields the fol-
lowing theorem.

Theorem 5. Let f ∈ A be a function of the form (5), satisfying (6).
Then f ∈ T W(φ, ϕ;A,B) if and only if the condition (20) holds true.

Since Ã is a complete metric space, Montel’s theorem (see [13]) implies
the following lemma.

Lemma 5. A class F contained in Ã is compact if and only if F is closed
and locally uniformly bounded.

Theorem 6. The class T Wη(φ, ϕ;A,B) is convex and compact.

Proof. Let f, g ∈ T Wη(φ, ϕ;A,B), 0 ≤ γ ≤ 1. Since

γf(z) + (1− γ)g(z) = γ
(
z +

∞∑
n=2

anz
n
)

+ (1− γ)
(
z +

∞∑
n=2

bnz
n
)

= z +
∞∑
n=2

(γan + (1− γ)bn)zn,

by Theorem 4 we have
∞∑
n=2

dn|γan + (1− γ)bn| ≤ γ
∞∑
n=2

dn|an|+ (1− γ)
∞∑
n=2

dn|bn|

≤ γ(B −A) + (1− γ)(B −A) = B −A,
and consequently h = γf + (1− γ)g ∈ T Wη(φ, ϕ;A,B). Hence this class is
convex. Furthermore, for f ∈ T Wη(φ, ϕ;A,B), |z| ≤ r, 0 < r < 1, we have

(23) |f(z)| ≤ r +
∞∑
n=2

dnan
rn

dn
≤ r + (B −A)

∞∑
n=2

rn

dn
.

By (9) we have

(24) lim sup
n→∞

(rnd−1
n )1/n =

r

lim infn→∞ n
√
dn
≤ r < 1.

Thus, the power series
∑∞

n=2 r
nd−1

n converges and by (23) we conclude that
the class T Wη(φ, ϕ;A,B) is locally uniformly bounded. By Lemma 5, we
only need to show that it is closed. Let fm ∈ T Wη(φ, ϕ;A,B) (m ∈ N) and
fm → f . Suppose that

fm(z) = z +
∞∑
n=2

an,mz
n (m ∈ N, z ∈ U)

and f is given by (5). Using Theorem 1 we have
∞∑
n=2

dn|an,m| ≤ B −A (m ∈ N).
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Since fm → f , we conclude that an,m → an as m → ∞ (n ∈ N). This gives
the condition (20), and so f ∈ T Wη(φ, ϕ;A,B), which completes the proof.

Theorem 7.

ET Wη(φ, ϕ;A,B) = {fn : n ∈ N},

where f1(z) = z and

(25) fn(z) = fn,η(z) = z − B −A
dn

ei(1−n)ηzn (n = 2, 3, . . . , z ∈ U).

Proof. By using (20) we easily verify that all functions of the form (25)
are extreme points of T Wη(φ, ϕ;A,B). Now, suppose f ∈ ET Wη(φ, ϕ;A,B)
and f is not of the form (25). If

f(z) = z − γB −A
dn

zn (0 < γ < 1, n = 2, 3, . . . , z ∈ U),

then
f(z) = (1− γ)f1(z) + γfn(z) (z ∈ U),

and so f is not an extreme point of T Wη(φ, ϕ;A,B). In the opposite case
there exist m, l ∈ N, m 6= l, so that the coefficients am and al do not vanish
in the power series (5). Putting

g(z) = f(z)− alzl +
al
dm

zm,

h(z) = f(z)− amzm +
am
dl
zl,

γ =
dmam

dmam + dlal
,

we have

g, h ∈ T Wη(φ, ϕ;A,B), g 6= h, 0 < γ < 1 and f = γg + (1− γ)h.

It follows that f /∈ ET Wη(φ, ϕ;A,B), and the proof is complete.

3. Applications. The Krein–Milman theorem (see [10] and [15]) is fun-
damental in the theory of extreme points.

Lemma 6 (Krein–Milman theorem). If F is a compact convex subclass
of A, then HEF = F .

In particular, the Krein–Milman implies the following important result.

Lemma 7 ([9]). Let F be a compact convex subclass of the class Ã and
J : Ã → R be a continuous and convex functional on F . Then

max{J (f) : f ∈ HF} = max{J (f) : f ∈ F} = max{J (f) : f ∈ EHF}.
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Lemma 8 ([11]). Let f, g ∈ Ã. If f ≺ g, then
2π�

0

|f(reiθ)|λ dθ ≤
2π�

0

|g(reiθ)|λ dθ (0 < r < 1, λ > 0).

By using (2) and Theorems 6 and 7, the Krein–Milman theorem gives
the following corollary.

Corollary 1.

T Wη(φ, ϕ;A,B) =
{ ∞∑
n=1

γnfn,η :
∞∑

n=2−1

γn = 1, γn ≥ 0 (n ∈ N)
}
,

where f1(z) = z and fn,η are defined by (25).

Moreover, by Theorem 2 we obtain

Corollary 2. Let ϕx be defined by (19), and suppose (17) holds. Then
the class HW(ϕ;α) contains all functions f ∈ A represented by the formula

f(z) =
�

|x|=1

ϕx(z) dµ(x) (z ∈ U),

where µ is a probability measure on ∂U .

Using the extremal points of the classes W(ϕ;α) and T Wη(φ, ϕ;A,B)
we obtain some results listed below. Combining (3) with Lemma 7 yields the
following three corollaries:

Corollary 3. Let ϕx be defined by (19), and suppose (17) holds. If a
function f of the form (5) belongs to the class W(ϕ;α), then

|an| ≤
(2− 2α)n−1

(n− 1)!αn
(n = 2, 3, . . .).

The result is sharp. The functions ϕx are the extremal functions.

Corollary 4. If a function f of the form (5) belongs to the class
T Wη(φ, ϕ;A,B), then

(26) |an| ≤
B −A
dn

(n = 2, 3, . . .),

where dn is defined by (9). The result is sharp. The functions fn,η of the form
(25) are the extremal functions.

Corollary 5. Let ϕx be defined by (19), and suppose (17) holds. If
f ∈ W(ϕ;α), then

min
|z|=r

ϕ
(k)
1 (z) ≤ |f (k)(z)| ≤ ϕ(k)

1 (r) (k = 0, 1, . . . , |z| = r < 1).

The result is sharp. The functions ϕx are the extremal functions.
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For the extreme points fn,η of the form (25) we have

f ′n,η(z) = 1− (B −A)n
dn

ei(1−n)ηzn−1,

f (k)
n,η(z) = − (B −A)n!

(n− k)!dn
ei(1−n)ηzn−k (k = 2, . . . , n),(27)

f (k)
n,η(z) = 0 (k = n+ 1, n+ 2, . . .).

Let k ∈ N0 = N ∪ {0}, 0 < r < 1, and define the sequence {δ(k)n } by

(28) δ(k)n =
(B −A)n!
(n− k)!dn

rn−k (n ≥ max{k, 2}).

Applying (24) we obtain

lim sup
n→∞

δ(k)n = 0 (k ∈ N0).

Thus, there exist nk ∈ N (k ∈ N0) such that

(29) δ(k)nk
= max{δ(k)n : n ≥ max{k, 2}} (k ∈ N0).

Therefore, by Lemma 7 we have the following corollary.

Corollary 6. If f ∈ T Wη(φ, ϕ;A,B) and |z| = r < 1, then

r − B −A
dn0

rn0 ≤ |f(z)| ≤ r +
B −A
dn0

rn0 ,(30)

1− (B −A)n1

dn1

rn1 ≤ |f ′(z)| ≤ 1 +
(B −A)n1

dn1

rn1 ,(31)

|f (k)(z)| ≤ (B −A)(nk)!
(nk − k)!dnk

rnk−k (k ≥ 2),(32)

where nk is defined by (29). The result is sharp. The functions fnk,η of the
form (25) are the extremal functions.

From Corollary 6 we have the following corollary.

Corollary 7. Let f ∈ T Wη(φ, ϕ;A,B), |z| = r < 1, and k ∈ N0. If
the sequence {δ(k)n } defined by (28) is nonincreasing with respect to n, then

r − B −A
d2

r2 ≤ |f(z)| ≤ r +
B −A
d2

r2 (k = 0),(33)

1− 2(B −A)
d2

r2 ≤ |f ′(z)| ≤ 1 +
2(B −A)

d2
r2 (k = 1),(34)

|f (k)(z)| ≤ (B −A)k!
dk

(k = 2, 3, . . .),(35)

where nk is defined by (29). The result is sharp. The functions fnk,η of the
form (25) are the extremal functions.
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Now, we consider some integral mean inequalities. By (4), Lemma 7 yields
the following corollary.

Corollary 8. Let ϕx be defined by (19), and suppose (17) holds. If
f ∈ W(ϕ;α), then

2π�

0

|f (k)(reiθ)|λ dθ ≤
2π�

0

|ϕ(k)
1 (reiθ)|λ dθ (0 < r < 1, λ ≥ 1).

Corollary 9. Let 0 < r < 1, λ ≥ 1, k ∈ N0 and assume that the
sequence {δ(k)n } defined by (28) is nonincreasing with respect to n. If f ∈
T Wη(φ, ϕ;A,B), then

1
2π

2π�

0

|f (k)(reiθ)|λ dθ ≤ 1
2π

2π�

0

|f (k)
2,η (reiθ)|λ dθ (k = 0, 1),(36)

1
2π

2π�

0

|f (k)(reiθ)|λ dθ ≤ 1
2π

2π�

0

|f (k)
k,η (re

iθ)|λ dθ (k = 2, 3, . . .),(37)

where fk,η are the functions defined by (25).

Proof. Since
fn,η
z
≺ f2,η

z
and f ′n,η ≺ f ′2,η (n ∈ N),

using (7) and Lemma 8 we have

max
{2π�

0

|f (k)
n,η(re

iθ)|λ dθ : n ∈ N
}

=
2π�

0

|f (k)
2,η (reiθ)|λ dθ (k = 0, 1).

Thus, Lemma 7 yields (36). The inequality (37) is an immediate consequence
of (35) and (27).

Making use of (7) and Corollaries 4, 6, 7 and 9, we get the corollaries
listed below.

Corollary 10. If a function f of the form (5) belongs to the class
T W(φ, ϕ;A,B), then the coefficient estimates (26) hold true. The result is
sharp. The functions fn,η of the form (25) (η ∈ R) are the extremal functions.

Corollary 11. If f ∈ T W(φ, ϕ;A,B) and |z| = r < 1, then the bounds
(30)–(32) hold true. The results are sharp. The functions fnk,η (η ∈ R) of
the form (25) are the extremal functions.

Corollary 12. Let f ∈ T W(φ, ϕ;A,B), |z| = r < 1, and k ∈ N0. If
the sequence {b(k)n } defined by (28) is nonincreasing with respect to n, then
the inequalities (33)–(35) hold true. The result is sharp. The functions fn,η
(η ∈ R) of the form (25) are the extremal functions.
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Corollary 13. Let 0 < r < 1, λ ≥ 1, k ∈ N0 and assume that the
sequence {δ(k)n } defined by (28) is nonincreasing with respect to n. If f ∈
T W(φ, ϕ;A,B), then the inequalities (36) and (37) hold true.

4. Concluding remarks. We conclude this paper by observing that,
in view of the subordination relation (10), choosing the functions φ and ϕ
appropriately, we can consider new and also well-known classes of functions.
In particular, the class

Wn(ϕ;A,B) :=W
(
zϕ′(z),

n−1∑
k=0

ϕ(xkz);A,B
)
,

where n ∈ N, xn = 1, consists of the functions f ∈ A such that
z(ϕ ∗ f)′(z)∑n−1
k=0(ϕ ∗ f)(xkz)

≺ 1 +Az

1 +Bz
.

It is related to the class of starlike functions with respect to n-symmetric
points. Moreover, for n = 1, we obtain the class

W(ϕ;A,B) =W1(ϕ;A,B)

defined by the following condition:
z(ϕ ∗ f)′(z)
(ϕ ∗ f)(z)

≺ 1 +Az

1 +Bz
.

This class is related to the class of starlike functions.
Let λ be a convex parameter. A function f ∈ A belongs to the class

Vλ(ϕ;A,B) :=W
(
λ
ϕ(z)
z

+ (1− λ)ϕ′(z), z;A,B
)

if it satisfies the following condition:

λ
(ϕ ∗ f)(z)

z
+ (1− λ)(ϕ ∗ f)′(z) ≺ 1 +Az

1 +Bz
.

Likewise, a function f ∈ A belongs to the class

Uλ(ϕ;A,B) :=W
(
λ
ϕ(z)
z

+ (1− λ)ϕ′(z);A,B
)

if it satisfies the following condition:
z(ϕ ∗ f)′(z) + (1− λ)z2(ϕ ∗ f)′′(z)
λ(ϕ ∗ f)(z) + (1− λ)z(ϕ ∗ f)′(z)

≺ 1 +Az

1 +Bz
.

The classesWp
n(ϕ;A,B), Uλ(ϕ;A,B) and Vλ(ϕ;A,B) generalize well-known

important classes, which were investigated in earlier works (see for example
[1, 4, 14, 18, 19, 12]). Most of these classes were defined by using linear
operators and special functions.
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If we apply the results of this paper to the classes discussed above, we
can get several additional new results. Some of these classes were obtained
in earlier works (see for example [2, 5, 6, 21]).
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