Existence and multiplicity results for a nonlinear stationary Schrödinger equation

by Danila Sandra Moschetto (Catania)

Abstract

We revisit Kristály's result on the existence of weak solutions of the Schrödinger equation of the form $$
-\Delta u+a(x) u=\lambda b(x) f(u), \quad x \in \mathbb{R}^{N}, u \in H^{1}\left(\mathbb{R}^{N}\right)
$$ where λ is a positive parameter, a and b are positive functions, while $f: \mathbb{R} \rightarrow \mathbb{R}$ is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri's recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.

1. Introduction and statement of the main result. Sufficient conditions which ensure the multiplicity of weak solutions for nonlinear stationary Schrödinger-like equations have recently been proposed in the literature. In particular, Kristály [K] considers the Schrödinger equation of the form $\left(P_{\lambda}\right) \quad-\Delta u+a(x) u=\lambda b(x) f(u), \quad x \in \mathbb{R}^{N}, u \in H^{1}\left(\mathbb{R}^{N}\right)$, with a positive parameter λ. He assumes that the potentials a and b satisfy the following conditions:
$(\widetilde{a}) a \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{N}\right), \operatorname{ess}_{\inf }^{\mathbb{R}^{N}} \mid a>0$ and for any $M>0$ and any $r>0$,

$$
\operatorname{mes}\left(\left\{x \in B_{r}(y): a(x) \leq M\right\}\right) \rightarrow 0 \quad \text { as }|y| \rightarrow+\infty
$$

where "mes" stands for the Lebesgue measure and $B_{r}(y)$ denotes the open ball in \mathbb{R}^{N} with center y and radius $r>0$.
$(\widetilde{b}) b \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right), b \geq 0$ and

$$
\sup _{R>0} \operatorname{ess} \inf b(x)>0
$$

$\left(\widetilde{f}_{0}\right) f \in C^{0}(\mathbb{R})$ and there exist $\mathcal{C}>0$ and $\left.q \in\right] 0,1[$ such that

$$
|f(s)| \leq \mathcal{C}|s|^{q} \quad \text { for each } s \in \mathbb{R}
$$

[^0]$\left(\widetilde{f}_{1}\right) f(s)=o(|s|)$ as $s \rightarrow 0$.
$\left(\widetilde{f}_{2}\right) \sup _{s \in \mathbb{R}} F(s)>0$ where $F(s)=\int_{0}^{s} f(t) d t$.
Following the suggestions of Bartsch and Wang ($\overline{\mathrm{BW}})$), due to (\widetilde{a}), Kristály defines the Hilbert space
$$
E=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} a(x) u^{2} d x<+\infty\right\}
$$
endowed with the inner product
$$
(u, v)_{E}=\int_{\mathbb{R}^{N}}(\nabla u \cdot \nabla v+a(x) u v) d x \quad \text { for } u, v, \in E
$$
and consequently with the induced norm which we denote by $\|\cdot\|$. The condition (\widetilde{a}) implies that the space E can be continuously embedded into $L^{\ell}\left(\mathbb{R}^{N}\right)$ whenever $2 \leq \ell \leq 2^{*}$ and the embedding is compact when $2 \leq$ $\ell<2^{*}$ (see [Ba]). Here, 2^{*} denotes the critical Sobolev exponent, i.e., $2^{*}=$ $2 N /(N-2)$ for $N \geq 3$ and $2^{*}=+\infty$ for $N=1,2$. By applying a result established by Bonanno [B], Kristály has proved in $\left[\mathbb{K}\right.$ that $\left(P_{\lambda}\right)$ admits at least two solutions in E, provided that λ belongs to a suitable open interval. The aim of the present paper is to significantly improve Kristály's result, showing that, essentially under the same hypotheses, a more exact conclusion can be reached. Denoting by \mathcal{A} the class of all Carathéodory functions $g: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ such that the functional
$$
\mathcal{G}(u)=\int_{\mathbb{R}^{N}}\left(\int_{0}^{u(x)} g(x, t) d t\right) d x
$$
belongs to $C^{1}(E)$ and has compact derivative, our main result reads as follows:

Theorem 1.1. Assume $(\widetilde{a}),(\widetilde{b}),\left(\widetilde{f_{0}}\right),\left(\widetilde{f_{1}}\right)$, and $\left(\widetilde{f_{2}}\right)$. Then, setting

$$
\gamma=\frac{1}{2} \inf \left\{\frac{\|u\|^{2}}{\int_{\mathbb{R}^{N}} b(x) F(u(x)) d x}: u \in E, \int_{\mathbb{R}^{N}} b(x) F(u(x)) d x>0\right\},
$$

for each compact interval $[c, d] \subset] \gamma,+\infty[$ there exists a number $r>0$ with the following property: for every $\lambda \in[c, d]$ and every $g \in \mathcal{A}$ there exists $\delta>0$ such that, for each $\mu \in[0, \delta]$, the problem
$\left(P_{\lambda, \mu}\right) \quad-\Delta u+a(x) u=\lambda b(x) f(u)+\mu g(x, u), \quad x \in \mathbb{R}^{N}, u \in H^{1}\left(\mathbb{R}^{N}\right)$,
has at least three weak solutions whose norms in E are less than r.
Remark. This result covers, as a particular case, the problem studied by Kristály [K. Here, we prove it by a different method and we provide further information both on the size and location of the set containing the
parameter λ and the location of the possible weak solutions of the problem at issue.
2. Proof of Theorem 1.1. First, we recall a theorem from $[\mathrm{R}]$ which is the basic tool in the proof of our result. In the following, if X is a real Banach space, the symbol \mathcal{W}_{X} denotes the class of all functionals $I: X \rightarrow \mathbb{R}$ having the following property: if $\left\{u_{n}\right\}$ is a sequence in X converging weakly to $u \in X$ and $\liminf _{n \rightarrow+\infty} I\left(u_{n}\right) \leq I(u)$, then $\left\{u_{n}\right\}$ has a subsequence converging strongly to u.

Theorem 2.1 ([\mathbb{R}, Theorem 2]). Let X be a separable and reflexive real Banach space; $\Phi: X \rightarrow \mathbb{R}$ a coercive, sequentially weakly lower semicontinuous C^{1} functional, belonging to \mathcal{W}_{X}, bounded on each bounded subset of X and whose derivative admits a continuous inverse on X^{*}; and $J: X \rightarrow \mathbb{R}$ $a C^{1}$ functional with compact derivative. Assume that Φ has a strict local minimum at x_{0} with $\Phi\left(x_{0}\right)=J\left(x_{0}\right)=0$. Finally, setting

$$
\begin{aligned}
\alpha & =\max \left\{0, \limsup _{\|x\| \rightarrow+\infty} \frac{J(x)}{\Phi(x)}, \limsup _{x \rightarrow x_{0}} \frac{J(x)}{\Phi(x)}\right\} \\
\beta & =\sup _{x \in \Phi^{-1}(] 0,+\infty[)} \frac{J(x)}{\Phi(x)}
\end{aligned}
$$

assume that $\alpha<\beta$. Then, for each compact interval $[c, d] \subset] 1 / \beta, 1 / \alpha[$ (with the conventions $\frac{1}{0}=+\infty, \frac{1}{+\infty}=0$) there exists $r>0$ with the following property: for every $\lambda \in[c, d]$ and every C^{1} functional $\Psi: X \rightarrow \mathbb{R}$ with compact derivative, there exists $\delta>0$ such that, for each $\mu \in[0, \delta]$, the equation

$$
\Phi^{\prime}(x)=\lambda J^{\prime}(x)+\mu \Psi^{\prime}(x)
$$

has at least three solutions whose norms are less than r.
To use this theorem in our particular case, we begin by defining the functional $\mathcal{F}: E \rightarrow \mathbb{R}$ as

$$
\mathcal{F}(u)=\int_{\mathbb{R}^{N}} b(x) F(u(x)) d x
$$

for each $u \in E$. Standard arguments based on the hypothesis (\widetilde{a}) and on the fact that E is continuously embedded in $L^{\ell}\left(\mathbb{R}^{N}\right)$ when $2 \leq \ell \leq 2^{*}$ show that the functional \mathcal{F} is well defined, it is of class C^{1}, and satisfies

$$
\mathcal{F}^{\prime}(u)(v)=\int_{\mathbb{R}^{N}} b(x) f(u(x)) v(x) d x \quad \text { for all } u, v \in E
$$

Moreover, since the embedding $E \hookrightarrow L^{\ell}\left(\mathbb{R}^{N}\right)$ is compact for $2 \leq \ell<2^{*}, \mathcal{F}^{\prime}$ is a compact operator. In the following, we denote by $\kappa_{\ell}>0$ the Sobolev embedding constant for $E \hookrightarrow L^{\ell}\left(\mathbb{R}^{N}\right)$ where $\ell \in\left[2,2^{*}\right]$. Finally, for any
$\lambda>0$ and $\mu \geq 0$ we define the functional $\mathcal{H}: E \rightarrow \mathbb{R}$ by

$$
\mathcal{H}(u)=\frac{1}{2}\|u\|^{2}-\lambda \mathcal{F}(u)-\mu \mathcal{G}(u) \quad \text { for all } u \in E
$$

Obviously, the weak solutions of the problem $\left(P_{\lambda, \mu}\right)$ are the critical points of \mathcal{H}.

We are now in a position to prove Theorem 1.1.
Proof of Theorem 1.1. We apply Theorem 2.1 for $X=E, \Phi(u)=\frac{1}{2}\|u\|^{2}$ and $J=\mathcal{F}$. Note that Φ is a coercive, sequentially weakly lower semicontinuous C^{1} functional which belongs to \mathcal{W}_{E}. The latter assertion is a classical result, since the space E is uniformly convex and $\Phi(u)=h(\|u\|)$ with $h(t)=\frac{1}{2} t^{2}:[0,+\infty[\rightarrow \mathbb{R}$, which is a continuous and strictly increasing function. Because Φ is continuous, it is bounded on each bounded subset of E, its derivative is a homeomorphism between E and its dual (see [Z, Theorem 26. A]), and the hypotheses on J of Theorem 2.1 are satisfied as well. Putting $u_{0}=\theta_{E}$, where θ_{E} is the zero element of E, observe that Φ has at u_{0} the only global minimum. Moreover, if $u \neq \theta_{E}$ then $\Phi(u)>0$ by (\widetilde{a}) and $\Phi\left(u_{0}\right)=J\left(u_{0}\right)=0$. Now, we fix a number $\epsilon>0$; in view of $\left(\widetilde{f}_{0}\right)$ and (\widetilde{f}_{1}) there exist ρ_{1}, ρ_{2} with $0<\rho_{1}<\rho_{2}$ such that

$$
\begin{equation*}
b(x) F(s)<\epsilon a(x)|s|^{2} \tag{2.1}
\end{equation*}
$$

for a.e. $x \in \mathbb{R}^{N}$ and all $s \in \mathbb{R} \backslash\left(\left[-\rho_{2},-\rho_{1}\right] \cup\left[\rho_{1}, \rho_{2}\right]\right)$. Then, as F is bounded on $\left[-\rho_{2},-\rho_{1}\right] \cup\left[\rho_{1}, \rho_{2}\right]$, we can choose $\mathcal{D}>0$ and $2<q<2^{*}$ in such a way that

$$
b(x) F(s)<\epsilon a(x)|s|^{2}+\mathcal{D}|s|^{q}
$$

for a.e. $x \in \mathbb{R}^{N}$ and all $s \in \mathbb{R}$. Thus, by continuous embedding,

$$
\mathcal{F}(u) \leq \epsilon\|u\|^{2}+\mathcal{D} \kappa_{q}^{q}\|u\|^{q}
$$

for all $u \in E$. Hence,

$$
\begin{equation*}
\underset{u \rightarrow 0}{\limsup } \frac{2 \mathcal{F}(u)}{\|u\|^{2}} \leq 2 \epsilon . \tag{2.2}
\end{equation*}
$$

Further, by (2.1) again, for each $u \in E \backslash\left\{\theta_{E}\right\}$, we obtain

$$
\begin{aligned}
\frac{\mathcal{F}(u)}{\|u\|^{2}} & =\frac{\int_{\left(|u| \leq \rho_{2}\right)} b(x) F(u(x)) d x}{\|u\|^{2}}+\frac{\int_{\left(|u|>\rho_{2}\right)} b(x) F(u(x)) d x}{\|u\|^{2}} \\
& \leq \frac{\sup _{\left[-\rho_{2}, \rho_{2}\right]} F \int_{\mathbb{R}^{N}} b(x) d x}{\|u\|^{2}}+\epsilon
\end{aligned}
$$

So, we get

$$
\begin{equation*}
\limsup _{\|u\| \rightarrow+\infty} \frac{2 \mathcal{F}(u)}{\|u\|^{2}} \leq 2 \epsilon \tag{2.3}
\end{equation*}
$$

Since ϵ is arbitrary, from (2.2) and (2.3) it follows that

$$
\max \left\{\limsup _{\|u\| \rightarrow+\infty} \frac{2 \mathcal{F}(u)}{\|u\|^{2}}, \limsup _{u \rightarrow 0} \frac{2 \mathcal{F}(u)}{\|u\|^{2}}\right\} \leq 0 .
$$

Thus, by using the notation of Theorem 2.1, we have $\alpha=0$ and by our assumption $0<\beta \leq+\infty$. Therefore, for $\gamma=1 / \beta$, the conclusion follows from Theorem 2.1 with $\Psi=\mathcal{G}$.

Example 2.2. Let κ, h and ξ be arbitrary real positive. We choose $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(s)= \begin{cases}s|s|[4 m|s|+3 n], & |s| \leq \xi \\ \kappa s e^{-h|s|}, & |s| \geq \xi\end{cases}
$$

where

$$
m=m(\kappa, h, \xi)=-\frac{\kappa e^{-h \xi}(h \xi+1)}{4 \xi^{2}}, \quad n=n(\kappa, h, \xi)=\frac{\kappa e^{-h \xi}(2+h \xi)}{3 \xi} .
$$

Then, we take as potentials $a(x)=|x|^{2}+\ell$ with ℓ a positive constant and $b(x)=e^{-|x|^{2}}, x \in \mathbb{R}^{N}$. It follows easily that the assumptions $(\widetilde{a}),(\widetilde{b}),\left(\widetilde{f_{0}}\right)$, $\left(\widetilde{f}_{1}\right)$ and $\left(\widetilde{f}_{2}\right)$ of Theorem 1.1 hold.

References

[Ba] T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Comm. Contemp. Math. 4 (2001), 549-569.
[BW] T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^{N}, Comm. Partial Differential Equations 20 (1995), 17251741.
[B] G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003), 651-665.
[K] A. Kristály, Multiple solutions of a sublinear Schrödinger equation, Nonlinear Differential Equations Appl. 14 (2007), 291-301.
[R] B. Ricceri, A further three critical points theorem, Nonlinear Anal. 71 (2009), 4151-4157.
[Z] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/B, Springer, 1985.

Danila Sandra Moschetto
Department of Mathematics and Computer Science
University of Catania
Viale A. Doria, 6
95125 Catania, Italy
E-mail: moschetto@dmi.unict.it

[^0]: 2010 Mathematics Subject Classification: Primary 35J61.
 Key words and phrases: nonlinear Schrödinger equations, multiple solutions.

