Existence and multiplicity results for a nonlinear stationary Schrödinger equation

by Danila Sandra Moschetto (Catania)

Abstract. We revisit Kristály's result on the existence of weak solutions of the Schrödinger equation of the form

$$-\Delta u + a(x)u = \lambda b(x)f(u), \quad x \in \mathbb{R}^N, \ u \in H^1(\mathbb{R}^N),$$

where λ is a positive parameter, a and b are positive functions, while $f : \mathbb{R} \to \mathbb{R}$ is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri's recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.

1. Introduction and statement of the main result. Sufficient conditions which ensure the multiplicity of weak solutions for nonlinear stationary Schrödinger-like equations have recently been proposed in the literature. In particular, Kristály [K] considers the Schrödinger equation of the form

$$(P_{\lambda}) \qquad -\Delta u + a(x)u = \lambda b(x)f(u), \qquad x \in \mathbb{R}^{N}, \ u \in H^{1}(\mathbb{R}^{N}),$$

with a positive parameter λ . He assumes that the potentials a and b satisfy the following conditions:

(*a*)
$$a \in L^{\infty}_{\text{loc}}(\mathbb{R}^N)$$
, ess $\inf_{\mathbb{R}^N} a > 0$ and for any $M > 0$ and any $r > 0$,
 $\operatorname{mes}(\{x \in B_r(y) : a(x) \le M\}) \to 0$ as $|y| \to +\infty$

where "mes" stands for the Lebesgue measure and $B_r(y)$ denotes the open ball in \mathbb{R}^N with center y and radius r > 0.

(\tilde{b}) $b \in L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N), b \ge 0$ and

$$\sup_{R>0} \operatorname{ess\,inf}_{|x| \le R} b(x) > 0.$$

 (\tilde{f}_0) $f \in C^0(\mathbb{R})$ and there exist $\mathcal{C} > 0$ and $q \in [0, 1]$ such that

 $|f(s)| \leq \mathcal{C}|s|^q$ for each $s \in \mathbb{R}$.

²⁰¹⁰ Mathematics Subject Classification: Primary 35J61.

Key words and phrases: nonlinear Schrödinger equations, multiple solutions.

 $\begin{array}{ll} (\widetilde{f}_1) \ f(s) = o(|s|) \text{ as } s \to 0. \\ (\widetilde{f}_2) \ \sup_{s \in \mathbb{R}} F(s) > 0 \text{ where } F(s) = \int_0^s f(t) \, dt. \end{array}$

Following the suggestions of Bartsch and Wang ([BW]), due to (\tilde{a}) , Kristály defines the Hilbert space

$$E = \left\{ u \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} a(x) u^2 \, dx < +\infty \right\}$$

endowed with the inner product

$$(u,v)_E = \int_{\mathbb{R}^N} (\nabla u \cdot \nabla v + a(x)uv) \, dx \quad \text{for } u, v, \in E$$

and consequently with the induced norm which we denote by $\|\cdot\|$. The condition (\tilde{a}) implies that the space E can be continuously embedded into $L^{\ell}(\mathbb{R}^N)$ whenever $2 \leq \ell \leq 2^*$ and the embedding is compact when $2 \leq \ell < 2^*$ (see [Ba]). Here, 2^* denotes the critical Sobolev exponent, i.e., $2^* = 2N/(N-2)$ for $N \geq 3$ and $2^* = +\infty$ for N = 1, 2. By applying a result established by Bonanno [B], Kristály has proved in [K] that (P_{λ}) admits at least two solutions in E, provided that λ belongs to a suitable open interval. The aim of the present paper is to significantly improve Kristály's result, showing that, essentially under the same hypotheses, a more exact conclusion can be reached. Denoting by \mathcal{A} the class of all Carathéodory functions $g: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ such that the functional

$$\mathcal{G}(u) = \int_{\mathbb{R}^N} \left(\int_0^{u(x)} g(x,t) \, dt \right) dx$$

belongs to $C^1(E)$ and has compact derivative, our main result reads as follows:

THEOREM 1.1. Assume
$$(\widetilde{a})$$
, (\widetilde{b}) , (\widetilde{f}_0) , (\widetilde{f}_1) , and (\widetilde{f}_2) . Then, setting

$$\gamma = \frac{1}{2} \inf \left\{ \frac{\|u\|^2}{\int_{\mathbb{R}^N} b(x) F(u(x)) \, dx} : u \in E, \int_{\mathbb{R}^N} b(x) F(u(x)) \, dx > 0 \right\},$$

for each compact interval $[c, d] \subset [\gamma, +\infty[$ there exists a number r > 0 with the following property: for every $\lambda \in [c, d]$ and every $g \in \mathcal{A}$ there exists $\delta > 0$ such that, for each $\mu \in [0, \delta]$, the problem

$$(P_{\lambda,\mu}) \quad -\Delta u + a(x)u = \lambda b(x)f(u) + \mu g(x,u), \quad x \in \mathbb{R}^N, \, u \in H^1(\mathbb{R}^N),$$

has at least three weak solutions whose norms in E are less than r.

REMARK. This result covers, as a particular case, the problem studied by Kristály [K]. Here, we prove it by a different method and we provide further information both on the size and location of the set containing the

r

parameter λ and the location of the possible weak solutions of the problem at issue.

2. Proof of Theorem 1.1. First, we recall a theorem from [R] which is the basic tool in the proof of our result. In the following, if X is a real Banach space, the symbol \mathcal{W}_X denotes the class of all functionals $I: X \to \mathbb{R}$ having the following property: if $\{u_n\}$ is a sequence in X converging weakly to $u \in X$ and $\liminf_{n\to+\infty} I(u_n) \leq I(u)$, then $\{u_n\}$ has a subsequence converging strongly to u.

THEOREM 2.1 ([R, Theorem 2]). Let X be a separable and reflexive real Banach space; $\Phi: X \to \mathbb{R}$ a coercive, sequentially weakly lower semicontinuous C^1 functional, belonging to \mathcal{W}_X , bounded on each bounded subset of X and whose derivative admits a continuous inverse on X^* ; and $J: X \to \mathbb{R}$ a C^1 functional with compact derivative. Assume that Φ has a strict local minimum at x_0 with $\Phi(x_0) = J(x_0) = 0$. Finally, setting

$$\alpha = \max\left\{0, \limsup_{\|x\|\to+\infty} \frac{J(x)}{\Phi(x)}, \limsup_{x\to x_0} \frac{J(x)}{\Phi(x)}\right\},\$$
$$\beta = \sup_{x\in\Phi^{-1}([0,+\infty[)]} \frac{J(x)}{\Phi(x)}$$

assume that $\alpha < \beta$. Then, for each compact interval $[c, d] \subset [1/\beta, 1/\alpha[$ (with the conventions $\frac{1}{0} = +\infty$, $\frac{1}{+\infty} = 0$) there exists r > 0 with the following property: for every $\lambda \in [c, d]$ and every C^1 functional $\Psi : X \to \mathbb{R}$ with compact derivative, there exists $\delta > 0$ such that, for each $\mu \in [0, \delta]$, the equation

$$\Phi'(x) = \lambda J'(x) + \mu \Psi'(x)$$

has at least three solutions whose norms are less than r.

To use this theorem in our particular case, we begin by defining the functional $\mathcal{F}: E \to \mathbb{R}$ as

$$\mathcal{F}(u) = \int_{\mathbb{R}^N} b(x) F(u(x)) \, dx$$

for each $u \in E$. Standard arguments based on the hypothesis (\tilde{a}) and on the fact that E is continuously embedded in $L^{\ell}(\mathbb{R}^N)$ when $2 \leq \ell \leq 2^*$ show that the functional \mathcal{F} is well defined, it is of class C^1 , and satisfies

$$\mathcal{F}'(u)(v) = \int_{\mathbb{R}^N} b(x) f(u(x)) v(x) \, dx \quad \text{ for all } u, v \in E.$$

Moreover, since the embedding $E \hookrightarrow L^{\ell}(\mathbb{R}^N)$ is compact for $2 \leq \ell < 2^*$, \mathcal{F}' is a compact operator. In the following, we denote by $\kappa_{\ell} > 0$ the Sobolev embedding constant for $E \hookrightarrow L^{\ell}(\mathbb{R}^N)$ where $\ell \in [2, 2^*]$. Finally, for any

 $\lambda > 0$ and $\mu \ge 0$ we define the functional $\mathcal{H} : E \to \mathbb{R}$ by

$$\mathcal{H}(u) = \frac{1}{2} \|u\|^2 - \lambda \mathcal{F}(u) - \mu \mathcal{G}(u) \quad \text{for all } u \in E.$$

Obviously, the weak solutions of the problem $(P_{\lambda,\mu})$ are the critical points of \mathcal{H} .

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We apply Theorem 2.1 for X = E, $\Phi(u) = \frac{1}{2}||u||^2$ and $J = \mathcal{F}$. Note that Φ is a coercive, sequentially weakly lower semicontinuous C^1 functional which belongs to \mathcal{W}_E . The latter assertion is a classical result, since the space E is uniformly convex and $\Phi(u) = h(||u||)$ with $h(t) = \frac{1}{2}t^2 : [0, +\infty[\to \mathbb{R}, \text{ which is a continuous and strictly increasing$ $function. Because <math>\Phi$ is continuous, it is bounded on each bounded subset of E, its derivative is a homeomorphism between E and its dual (see [Z, Theorem 26. A]), and the hypotheses on J of Theorem 2.1 are satisfied as well. Putting $u_0 = \theta_E$, where θ_E is the zero element of E, observe that Φ has at u_0 the only global minimum. Moreover, if $u \neq \theta_E$ then $\Phi(u) > 0$ by (\tilde{a}) and $\Phi(u_0) = J(u_0) = 0$. Now, we fix a number $\epsilon > 0$; in view of (\tilde{f}_0) and (\tilde{f}_1) there exist ρ_1, ρ_2 with $0 < \rho_1 < \rho_2$ such that

(2.1)
$$b(x)F(s) < \epsilon a(x)|s|^2$$

for a.e. $x \in \mathbb{R}^N$ and all $s \in \mathbb{R} \setminus ([-\rho_2, -\rho_1] \cup [\rho_1, \rho_2])$. Then, as F is bounded on $[-\rho_2, -\rho_1] \cup [\rho_1, \rho_2]$, we can choose $\mathcal{D} > 0$ and $2 < q < 2^*$ in such a way that

$$b(x)F(s) < \epsilon a(x)|s|^2 + \mathcal{D}|s|^q$$

for a.e. $x \in \mathbb{R}^N$ and all $s \in \mathbb{R}$. Thus, by continuous embedding,

$$\mathcal{F}(u) \le \epsilon \|u\|^2 + \mathcal{D}\kappa_q^q \|u\|^q$$

for all $u \in E$. Hence,

(2.2)
$$\limsup_{u \to 0} \frac{2\mathcal{F}(u)}{\|u\|^2} \le 2\epsilon.$$

Further, by (2.1) again, for each $u \in E \setminus \{\theta_E\}$, we obtain

$$\frac{\mathcal{F}(u)}{\|u\|^2} = \frac{\int_{(|u| \le \rho_2)} b(x) F(u(x)) \, dx}{\|u\|^2} + \frac{\int_{(|u| > \rho_2)} b(x) F(u(x)) \, dx}{\|u\|^2}$$
$$\leq \frac{\sup_{[-\rho_2, \rho_2]} F \int_{\mathbb{R}^N} b(x) \, dx}{\|u\|^2} + \epsilon.$$

So, we get

(2.3)
$$\limsup_{\|u\|\to+\infty} \frac{2\mathcal{F}(u)}{\|u\|^2} \le 2\epsilon.$$

Since ϵ is arbitrary, from (2.2) and (2.3) it follows that

$$\max\left\{\limsup_{\|u\|\to+\infty}\frac{2\mathcal{F}(u)}{\|u\|^2},\limsup_{u\to0}\frac{2\mathcal{F}(u)}{\|u\|^2}\right\} \le 0.$$

Thus, by using the notation of Theorem 2.1, we have $\alpha = 0$ and by our assumption $0 < \beta \leq +\infty$. Therefore, for $\gamma = 1/\beta$, the conclusion follows from Theorem 2.1 with $\Psi = \mathcal{G}$.

EXAMPLE 2.2. Let κ , h and ξ be arbitrary real positive. We choose $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(s) = \begin{cases} s|s|[4m|s| + 3n], & |s| \le \xi, \\ \kappa s e^{-h|s|}, & |s| \ge \xi, \end{cases}$$

where

$$m = m(\kappa, h, \xi) = -\frac{\kappa e^{-h\xi}(h\xi + 1)}{4\xi^2}, \quad n = n(\kappa, h, \xi) = \frac{\kappa e^{-h\xi}(2 + h\xi)}{3\xi}.$$

Then, we take as potentials $a(x) = |x|^2 + \ell$ with ℓ a positive constant and $b(x) = e^{-|x|^2}$, $x \in \mathbb{R}^N$. It follows easily that the assumptions $(\tilde{a}), (\tilde{b}), (\tilde{f}_0), (\tilde{f}_1)$ and (\tilde{f}_2) of Theorem 1.1 hold.

References

- [Ba] T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Comm. Contemp. Math. 4 (2001), 549–569.
- [BW] T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^N , Comm. Partial Differential Equations 20 (1995), 1725–1741.
- [B] G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003), 651–665.
- [K] A. Kristály, Multiple solutions of a sublinear Schrödinger equation, Nonlinear Differential Equations Appl. 14 (2007), 291–301.
- [R] B. Ricceri, A further three critical points theorem, Nonlinear Anal. 71 (2009), 4151–4157.
- [Z] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/B, Springer, 1985.

Danila Sandra Moschetto Department of Mathematics and Computer Science University of Catania Viale A. Doria, 6 95125 Catania, Italy E-mail: moschetto@dmi.unict.it

> Received 15.6.2009 and in final form 22.11.2009