
ANNALES

POLONICI MATHEMATICI

99.1 (2010)

Existence and multiplicity results for a nonlinear stationary
Schrödinger equation

by Danila Sandra Moschetto (Catania)

Abstract. We revisit Kristály’s result on the existence of weak solutions of the
Schrödinger equation of the form

−∆u+ a(x)u = λb(x)f(u), x ∈ RN , u ∈ H1(RN ),

where λ is a positive parameter, a and b are positive functions, while f : R → R is
sublinear at infinity and superlinear at the origin. In particular, by using Ricceri’s recent
three critical points theorem, we show that, under the same hypotheses, a much more
precise conclusion can be obtained.

1. Introduction and statement of the main result. Sufficient con-
ditions which ensure the multiplicity of weak solutions for nonlinear station-
ary Schrödinger-like equations have recently been proposed in the literature.
In particular, Kristály [K] considers the Schrödinger equation of the form

(Pλ) −∆u+ a(x)u = λb(x)f(u), x ∈ RN , u ∈ H1(RN ),

with a positive parameter λ. He assumes that the potentials a and b satisfy
the following conditions:

(ã) a ∈ L∞loc(RN ), ess infRN a > 0 and for any M > 0 and any r > 0,

mes({x ∈ Br(y) : a(x) ≤M})→ 0 as |y| → +∞
where “mes” stands for the Lebesgue measure and Br(y) denotes
the open ball in RN with center y and radius r > 0.

(̃b) b ∈ L1(RN ) ∩ L∞(RN ), b ≥ 0 and

sup
R>0

ess inf
|x|≤R

b(x) > 0.

(f̃0) f ∈ C0(R) and there exist C > 0 and q ∈ ]0, 1[ such that

|f(s)| ≤ C|s|q for each s ∈ R.
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(f̃1) f(s) = o(|s|) as s→ 0.
(f̃2) sups∈R F (s) > 0 where F (s) =

	s
0 f(t) dt.

Following the suggestions of Bartsch and Wang ([BW]), due to (ã), Kristály
defines the Hilbert space

E =
{
u ∈ H1(RN ) :

�

RN

a(x)u2 dx < +∞
}

endowed with the inner product

(u, v)E =
�

RN

(∇u · ∇v + a(x)uv) dx for u, v,∈ E

and consequently with the induced norm which we denote by ‖ · ‖. The
condition (ã) implies that the space E can be continuously embedded into
L`(RN ) whenever 2 ≤ ` ≤ 2∗ and the embedding is compact when 2 ≤
` < 2∗ (see [Ba]). Here, 2∗ denotes the critical Sobolev exponent, i.e., 2∗ =
2N/(N − 2) for N ≥ 3 and 2∗ = +∞ for N = 1, 2. By applying a result
established by Bonanno [B], Kristály has proved in [K] that (Pλ) admits
at least two solutions in E , provided that λ belongs to a suitable open
interval. The aim of the present paper is to significantly improve Kristály’s
result, showing that, essentially under the same hypotheses, a more exact
conclusion can be reached. Denoting by A the class of all Carathéodory
functions g : RN × R→ R such that the functional

G(u) =
�

RN

(u(x)�
0

g(x, t) dt
)
dx

belongs to C1(E ) and has compact derivative, our main result reads as
follows:

Theorem 1.1. Assume (ã), (̃b), (f̃0), (f̃1), and (f̃2). Then, setting

γ =
1
2

inf
{

‖u‖2	
RN b(x)F (u(x)) dx

: u ∈ E,
�

RN

b(x)F (u(x)) dx > 0
}
,

for each compact interval [c, d] ⊂ ]γ,+∞[ there exists a number r > 0 with
the following property: for every λ ∈ [c, d] and every g ∈ A there exists δ > 0
such that, for each µ ∈ [0, δ], the problem

(Pλ,µ) −∆u+ a(x)u = λb(x)f(u) + µg(x, u), x ∈ RN , u ∈ H1(RN ),

has at least three weak solutions whose norms in E are less than r.

Remark. This result covers, as a particular case, the problem studied
by Kristály [K]. Here, we prove it by a different method and we provide
further information both on the size and location of the set containing the
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parameter λ and the location of the possible weak solutions of the problem
at issue.

2. Proof of Theorem 1.1. First, we recall a theorem from [R] which
is the basic tool in the proof of our result. In the following, if X is a real
Banach space, the symbolWX denotes the class of all functionals I : X → R
having the following property: if {un} is a sequence in X converging weakly
to u ∈ X and lim infn→+∞ I(un) ≤ I(u), then {un} has a subsequence
converging strongly to u.

Theorem 2.1 ([R, Theorem 2]). Let X be a separable and reflexive real
Banach space; Φ : X → R a coercive, sequentially weakly lower semicontin-
uous C1 functional, belonging to WX , bounded on each bounded subset of X
and whose derivative admits a continuous inverse on X∗; and J : X → R
a C1 functional with compact derivative. Assume that Φ has a strict local
minimum at x0 with Φ(x0) = J(x0) = 0. Finally, setting

α = max
{

0, lim sup
‖x‖→+∞

J(x)
Φ(x)

, lim sup
x→x0

J(x)
Φ(x)

}
,

β = sup
x∈Φ−1(]0,+∞[)

J(x)
Φ(x)

assume that α < β. Then, for each compact interval [c, d] ⊂ ]1/β, 1/α[ (with
the conventions 1

0 = +∞, 1
+∞ = 0) there exists r > 0 with the following

property: for every λ ∈ [c, d] and every C1 functional Ψ : X → R with
compact derivative, there exists δ > 0 such that, for each µ ∈ [0, δ], the
equation

Φ′(x) = λJ ′(x) + µΨ ′(x)

has at least three solutions whose norms are less than r.

To use this theorem in our particular case, we begin by defining the
functional F : E → R as

F(u) =
�

RN

b(x)F (u(x)) dx

for each u ∈ E . Standard arguments based on the hypothesis (ã) and on
the fact that E is continuously embedded in L`(RN ) when 2 ≤ ` ≤ 2∗ show
that the functional F is well defined, it is of class C1, and satisfies

F ′(u)(v) =
�

RN

b(x)f(u(x))v(x) dx for all u, v ∈ E.

Moreover, since the embedding E ↪→ L`(RN ) is compact for 2 ≤ ` < 2∗, F ′
is a compact operator. In the following, we denote by κ` > 0 the Sobolev
embedding constant for E ↪→ L`(RN ) where ` ∈ [2, 2∗]. Finally, for any
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λ > 0 and µ ≥ 0 we define the functional H : E → R by

H(u) =
1
2
‖u‖2 − λF(u)− µG(u) for all u ∈ E.

Obviously, the weak solutions of the problem (Pλ,µ) are the critical points
of H.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We apply Theorem 2.1 for X = E, Φ(u) = 1
2‖u‖

2

and J = F . Note that Φ is a coercive, sequentially weakly lower semi-
continuous C1 functional which belongs to WE . The latter assertion is a
classical result, since the space E is uniformly convex and Φ(u) = h(‖u‖)
with h(t) = 1

2 t
2 : [0,+∞[→ R, which is a continuous and strictly increasing

function. Because Φ is continuous, it is bounded on each bounded subset
of E , its derivative is a homeomorphism between E and its dual (see [Z,
Theorem 26. A]), and the hypotheses on J of Theorem 2.1 are satisfied as
well. Putting u0 = θE , where θE is the zero element of E, observe that Φ
has at u0 the only global minimum. Moreover, if u 6= θE then Φ(u) > 0 by
(ã) and Φ(u0) = J(u0) = 0. Now, we fix a number ε > 0; in view of (f̃0) and
(f̃1) there exist ρ1, ρ2 with 0 < ρ1 < ρ2 such that

b(x)F (s) < εa(x)|s|2(2.1)

for a.e. x ∈ RN and all s ∈ R\ ([−ρ2,−ρ1]∪ [ρ1, ρ2]). Then, as F is bounded
on [−ρ2,−ρ1] ∪ [ρ1, ρ2], we can choose D > 0 and 2 < q < 2∗ in such a way
that

b(x)F (s) < εa(x)|s|2 +D|s|q

for a.e. x ∈ RN and all s ∈ R. Thus, by continuous embedding,

F(u) ≤ ε‖u‖2 +Dκqq‖u‖q

for all u ∈ E . Hence,

lim sup
u→0

2F(u)
‖u‖2

≤ 2ε.(2.2)

Further, by (2.1) again, for each u ∈ E \ {θE}, we obtain

F(u)
‖u‖2

=

	
(|u|≤ρ2) b(x)F (u(x)) dx

‖u‖2
+

	
(|u|>ρ2) b(x)F (u(x)) dx

‖u‖2

≤
sup[−ρ2,ρ2] F

	
RN b(x) dx

‖u‖2
+ ε.

So, we get

lim sup
‖u‖→+∞

2F(u)
‖u‖2

≤ 2ε.(2.3)
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Since ε is arbitrary, from (2.2) and (2.3) it follows that

max
{

lim sup
‖u‖→+∞

2F(u)
‖u‖2

, lim sup
u→0

2F(u)
‖u‖2

}
≤ 0.

Thus, by using the notation of Theorem 2.1, we have α = 0 and by our
assumption 0 < β ≤ +∞. Therefore, for γ = 1/β, the conclusion follows
from Theorem 2.1 with Ψ = G.

Example 2.2. Let κ, h and ξ be arbitrary real positive. We choose
f : R→ R defined by

f(s) =

{
s|s|[4m|s|+ 3n], |s| ≤ ξ,
κse−h|s|, |s| ≥ ξ,

where

m = m(κ, h, ξ) = −κe
−hξ(hξ + 1)

4ξ2
, n = n(κ, h, ξ) =

κe−hξ(2 + hξ)
3ξ

.

Then, we take as potentials a(x) = |x|2 + ` with ` a positive constant and
b(x) = e−|x|

2
, x ∈ RN . It follows easily that the assumptions (ã), (̃b), (f̃0),

(f̃1) and (f̃2) of Theorem 1.1 hold.
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[K] A. Kristály, Multiple solutions of a sublinear Schrödinger equation, Nonlinear Dif-
ferential Equations Appl. 14 (2007), 291–301.

[R] B. Ricceri, A further three critical points theorem, Nonlinear Anal. 71 (2009),
4151–4157.

[Z] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/B, Springer,
1985.

Danila Sandra Moschetto
Department of Mathematics and Computer Science
University of Catania
Viale A. Doria, 6
95125 Catania, Italy
E-mail: moschetto@dmi.unict.it

Received 15.6.2009
and in final form 22.11.2009 (2034)

http://dx.doi.org/10.1080/03605309508821149
http://dx.doi.org/10.1016/S0362-546X(03)00092-0
http://dx.doi.org/10.1007/s00030-007-5032-1
http://dx.doi.org/10.1016/j.na.2009.02.074



	Introduction and statement of the main result
	Proof of Theorem 1.1

