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Bounded Toeplitz and Hankel products
on weighted Bergman spaces of the unit ball

by Małgorzata Michalska, Maria Nowak
and Paweł Sobolewski (Lublin)

Abstract. We prove a sufficient condition for products of Toeplitz operators TfTḡ,
where f, g are square integrable holomorphic functions in the unit ball in Cn, to be bounded
on the weighted Bergman space. This condition slightly improves the result obtained by
K. Stroethoff and D. Zheng. The analogous condition for boundedness of products of
Hankel operators HfH∗

g is also given.

1. Introduction. Let dυ(z) denote the Lebesgue measure on the unit
ball B in Cn normalized so that

	
B dυ = 1. For α > −1 let

dυα(z) = cα(1− |z|2)αdυ(z),

where cα = Γ (n+ 1 + α)/(n!Γ (α+ 1)), denote the weighted Lebesgue mea-
sure on the unit ball. The Bergman space A2

α is the Hilbert space consisting
of holomorphic functions on B for which

‖f‖ = ‖f‖α =
(�

B
|f(z)|2 dυα(z)

)1/2
<∞.

Let Pα denote the orthogonal projection from L2(B, dυα) onto A2
α. For f ∈

L2(B, dυα), the Toeplitz operator Tf and the Hankel operator Hf with symbol
f are defined densely on the space A2

α by Tf (h) = Pα(fh) and Hf (h) =
fh−Pα(fh), respectively. The Bergman space A2

α has the reproducing kernel
K

(α)
w given by

K(α)
w (z) =

1
(1− 〈z, w〉)n+α+1

, z, w ∈ B;

so for h ∈ A2
α we have

h(w) = 〈h,K(α)
w 〉α =

�

B

h(z)
(1− 〈w, z〉)n+α+1

dυα(z),
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and for f ∈ L2(B, dυα),

Pαf(w) = 〈f,K(α)
w 〉α =

�

B

f(z)
(1− 〈w, z〉)n+α+1

dυα(z).

We will denote the normalized reproducing kernel for A2
α by

k(α)
w (z) =

(1− |w|2)(n+α+1)/2

(1− 〈z, w〉)n+α+1
, z, w ∈ B.

In their recent papers [7] and [8] K. Stroethoff and D. Zheng studied the
products of Toeplitz operators TfTḡ, where f, g ∈ A2

α, densely defined on A2
α.

To state their results we need the following notation. For w ∈ B let ϕw be
the automorphism of B of the form

ϕw(z) =
w − Pw(z)− swQw(z)

1− 〈z, w〉
,

where sw = (1−|w|)1/2, Pw(z) = 〈z,w〉
|w|2 w if w 6= 0, P0(z) = 0 andQw = I−Pw

(see, e.g., [4], [10] for definition and properties of the automorphism group
of B).

For u ∈ L1(B, dυα) and w ∈ B define

B[u](w) = B(α)[u](w) =
�

B
u ◦ ϕw(z) dυα(z) =

�

B
u(z)|k(α)

w (z)|2 dυα(z).

Stroethoff and Zheng obtained the following results for the Toeplitz products.

Theorem 1.1 ([7], [8]). Let −1 < α < ∞, and let f and g be in A2
α. If

TfTḡ is bounded on A2
α, then

sup
w∈B

B[|f |2](w)B[|g|2](w) <∞.

Theorem 1.2 ([7], [8]). Let −1 < α < ∞, and let f and g be in A2
α. If

for ε > 0,
sup
w∈B

B[|f |2+ε](w)B[|g|2+ε](w) <∞,

then TfTḡ is bounded on A2
α.

In their earlier paper Stroethoff and Zheng [6] also studied the product of
Hankel operators HfH

∗
g , f, g ∈ L2(D, dA), densely defined on (A2)⊥ in the

setting of the unit disk. Recently, the analogous result for the unit ball has
been obtained by Lu and Liu in [2]. More exactly they proved the following.

Theorem 1.3 ([2], [6]). Let −1 < α < ∞, and let f and g be in
L2(B, dυα). If HfH

∗
g is bounded, then

sup
w∈B
‖f ◦ ϕw − Pα(f ◦ ϕw)‖ ‖g ◦ ϕw − Pα(g ◦ ϕw)‖ <∞.
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Theorem 1.4 ([2], [6]). Let −1 < α < ∞, and let f and g be in
L2(B, dυα). If there is ε > 0 such that

sup
w∈B
‖f ◦ ϕw − Pα(f ◦ ϕw)‖2+ε‖g ◦ ϕw − Pα(g ◦ ϕw)‖2+ε <∞,

then HfH
∗
g is bounded.

The above-cited results are analogous to those obtained earlier for the
Hardy space H2 (e.g., [1], [5], [9]).

Also we mention that generalizations of Theorems 1.1 and 1.2 have been
obtained by J. Miao in [3].

In this paper we give a sufficient condition for boundedness of Toeplitz
products which is slightly weaker than that given in Theorem 1.2. We also
obtain a similar condition for Hankel products in the setting of the unit ball
that is slightly weaker than Theorem 1.4.

2. Results. For ε > 0, w ∈ B and u ∈ L1(B, dυα), set

Bε[u](w) = B(α)
ε [u](w) =

�

B
u ◦ ϕw(z) log1+ε

(
1

1− |z|

)
dυα(z).

We will prove the following.

Theorem 2.1. Let −1 < α <∞, and let f, g ∈ A2
α. If there is an ε > 0

such that
sup
w∈B

Bε[|f |2](w)Bε[|g|2](w) <∞,

then the Toeplitz product TfTḡ is bounded on A2
α.

Theorem 2.2. Let −1 < α < ∞, and let f, g ∈ L2(B, dυα). If there is
an ε > 0 such that

sup
w∈B

∥∥∥∥[f ◦ ϕw − Pα(f ◦ ϕw)] log(1+ε)/2

(
1

1− |z|

)∥∥∥∥
×
∥∥∥∥[g ◦ ϕw − Pα(g ◦ ϕw)] log(1+ε)/2

(
1

1− |z|

)∥∥∥∥ <∞,
then the operator HfH

∗
g is bounded on (A2

α)⊥.

For a multi-index ν = (ν1, . . . , νn) such that |ν| = ν1 + · · ·+ νn = m and
f holomorphic in B define

Dνf =
∂fm

∂zν1
1 . . . ∂zνn

n
.

In the proofs of the above stated theorems we will use the following
lemma.

Lemma 2.3. Assume that −1 < α < ∞, n ≥ 2, ε > 0 and ν is a
multi-index such that |ν| = m. Then
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(a) for every f, h ∈ A2
α and w ∈ B,

|(DνTf̄ )h(w)| ≤ C{Bε[|f |2](w)}1/2

(1− |w|2)(n+m+α+1)/2

×
{�

B

|h(z)|2

|1− 〈w, z〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

,

(b) for g ∈ L2(B, dυα), u ∈ (A2
α)⊥ and w ∈ B,

|(DνH∗gu)(w)| ≤ C

(1− |w|2)(n+m+α+1)/2

×
∥∥∥∥(g ◦ ϕw − Pα(g ◦ ϕw)) log(1+ε)/2

(
1

1− |z|

)∥∥∥∥
×
{�

B

|u(z)|2

|1− 〈w, z〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

.

Proof. (a) Since for any multi-index ν with |ν| = m we have

(DνTf̄h)(w) =
Γ (n+m+ α+ 1)
Γ (n+ α+ 1)

�

B

zνf(z)h(z)
(1− 〈w, z〉)n+m+α+1

dυα(z),

by the Cauchy–Schwarz inequality we get

|(DνTf̄h)(w)| ≤ C

(1− |w|2)(n+α+1)/2

×
{�

B

|f(z)|2(1− |w|2)n+α+1

|1− 〈w, z〉|2n+2α+2+m
log1+ε

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

×
{�

B

|h(z)|2

|1− 〈w, z〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

=
C{Bε[|f |2](w)}1/2

(1− |w|2)(n+m+α+1)/2

{�

B

|h(z)|2

|1− 〈w, z〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

,

where the last equality follows from the change-of-variable formula.
(b) Since

h(z) =
zνPα(g ◦ ϕw) ◦ ϕw(z)
(1− 〈z, w〉)n+m+α+1

∈ A2
α,

for u ∈ (A2
α)⊥ we have

〈u, h〉α(w) =
�

B

u(z)zνPα(g ◦ ϕw) ◦ ϕw(z)
(1− 〈w, z〉)n+m+α+1

dυα(z) ≡ 0.
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Consequently,

|(DνH∗gu)(w)| = |(DνPα(ḡu)(w)− 〈u, h〉α(w)|

=
∣∣∣∣Γ (n+m+ α+ 1)

Γ (n+ α+ 1)

�

B

zνg(z)u(z)
(1− 〈w, z〉)n+m+α+1

dυα(z)− 〈u, h〉α(w)
∣∣∣∣

≤ C

(1− |w|2)(n+α+1)/2

{�

B

|u(z)|2

|1− 〈w, z〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

×
{�

B

|g(z)− (Pα(g ◦ ϕw) ◦ ϕw)(z)|2(1− |w|2)n+α+1

|1− 〈w, z〉|2n+2α+2+m

× log1+ε

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

=
C

(1− |w|2)(n+m+α+1)/2

∥∥∥∥(g ◦ ϕw − Pα(g ◦ ϕw)) log(1+ε)/2

(
1

1− |z|

)∥∥∥∥
×
{�

B

|u(z)|2

|1− 〈w, z〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

.

In the case when n = 1 the unit ball is the unit disk D of the complex
plane. In this setting one can prove the following analogous result.

Lemma 2.4. Let −1 < α <∞ and ε > 0. Then

(a) for every f, h ∈ A2
α and w ∈ D,

|(Tf̄h)′(w)| ≤ C{Bε[|f |2](w)}1/2

(1− |w|2)(α+2)/2

×
{�

D

|h(z)|2

|1− z̄w|2
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

,

(b) for g ∈ L2(D, dυα) , u ∈ (A2
α)⊥ and w ∈ D,

|(H∗gu)′(w)| ≤ C

(1− |w|2)(α+2)/2

∥∥∥∥(g ◦ ϕw − Pα(g ◦ ϕw)) log(1+ε)/2

(
1

1− |z|

)∥∥∥∥
×
{�

D

|u(z)|2

|1− z̄w|2
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

.

Proof of Theorem 2.1. Clearly, we can assume that 0 < ε < 1. We will
show that for u, v ∈ A2

α,

|〈TfTḡu, v〉α| ≤ C‖u‖ ‖v‖.
We assume first that n ≥ 2. By formula (4.11) in [8] for any positive integer
m there exist complex numbers aj , j = 1, . . . , 2m− 1, and bj , j = 1, . . . ,m,
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such that the above inner product can be written as I + II + III, where

I =
Γ (α+ 1)

Γ (α+ 2m+ 1)

∑
|ν|=m

�

B
(1− |w|2)2m(DνTḡu)(w)(DνTf̄v)(w) dυα(w),

II =
2m−1∑
j=1

aj
∑
|ν|=m

�

B
(1− |w|2)2m+j(DνTḡu)(w)(DνTf̄v)(w) dυα(w),

III =
m∑
j=1

bj
�

B
(1− |w|2)2m+j−1(Tḡu)(w)(Tf̄v)(w) dυα(w).

If we assume that m ≥ n + 1, then by (a) in Lemma 2.3 and the Cauchy–
Schwarz inequality, we obtain

|II| ≤ C|I| ≤ C
�

B

{Bε[|f |2](w)}1/2

(1− |w|2)n+1−m+α

×
{�

B

|u(z)|2

|1− 〈z, w〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

× {Bε[|g|2](w)}1/2

×
{�

B

|v(z)|2

|1− 〈z, w〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

dυα(w)

≤ C sup
w∈B
{Bε[|f |2](w)Bε[|g|2](w)}1/2

×
{�

B

�

B

|u(z)|2

|1− 〈z, w〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z) dυ(w)

}1/2

×
{�

B

�

B

|v(z)|2

|1− 〈z, w〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z) dυ(w)

}1/2

.

Now we will show that if m < n+ 2, then

I1 =
�

B

�

B

|u(z)|2

|1− 〈z, w〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z) dυ(w) ≤ C‖u‖22.

Fubini’s theorem and the change of variable w′ = ϕz(w) give

I1 =
�

B

�

B

|u(z)|2

|1− 〈z, w〉|m
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z) dυ(w)

=
�

B
|u(z)|2(1− |z|2)n+1−m

×
�

B

1
|1− 〈z, w′〉|2n+2−m log−(1+ε)

(
1

1− |w′|

)
dυ(w′) dυα(z)
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=
�

B
|u(z)|2(1− |z|2)n+1−m

(
2n

1�

0

r2n−1 log−(1+ε)

(
1

1− r

)
×

�

S

1
|1− 〈rζ, z〉|2n+2−m dσ(ζ) dr

)
dυα(z).

By Theorem 1.12 in [10],
�

S

1
|1− 〈rζ, z〉|2n+2−m dσ(ζ) ≤ C

(1− r|z|)n+2−m ≤
C

(1− |z|)n+1−m
1

1− r
.

Thus

I1 ≤ C
�

B
|u(z)|2 dυα(z)

1�

0

log−(1+ε)

(
1

1− r

)
r

1− r
dr.

To see that the last integral converges for 0 < ε < 1, one can write
1�

0

log−(1+ε)

(
1

1− r

)
r

1− r
dr =

1�

0

t−1−ε(1− e−t) dt+
+∞�

1

t−1−ε(1− e−t) dt.

To obtain the same estimate for |III| it is enough to observe that

|(Tf̄u)(w)| =
∣∣∣∣�
B

f(z)u(z)
(1− 〈z, w〉)n+α+1

dυα(z)
∣∣∣∣ ≤ �

B

|f(z)| |u(z)|
|1− 〈z, w〉|n+α+1

dυα(z)

=
�

B

|f(z)| |u(z)|
|1− 〈z, w〉|(n+2α+1)/2|1− 〈z, w〉|(n+1)/2

× log(1+ε)/2

(
1

1− |ϕw(z)|

)
log−(1+ε)/2

(
1

1− |ϕw(z)|

)
dυα(z)

≤ 1
(1− |w|2)(n+α+1)/2

{�

B

|f(z)|2(1− |w|2)n+α+1|1− 〈z, w〉|n+1

|1− 〈z, w〉|2n+2α+2

× log(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

×
{�

B

|u(z)|2

|1− 〈z, w〉|n+1
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

≤ C{Bε|f |2(w)}1/2

(1− |w|2)(n+α+1)/2

{�

B

|u(z)|2

|1− 〈z, w〉|n+1
log−(1+ε)

(
1

1− |ϕw(z)|

)
dυα(z)

}1/2

.

In the case n = 1, by formula (3.5) in [7] the inner product 〈TfTḡu, v〉α
is equal to I + II + III, where

I =
α+ 3
α+ 1

�

D
(1− |w|2)2(Tḡu)(w)(Tf̄v)(w) dυα(w),
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II =
1

(α+ 1)(α+ 2)

�

D
(1− |w|2)2(T ′ḡu)(w)(T ′

f̄
v)(w) dυα(w),

III =
1

(α+ 1)(α+ 3)

�

D
(1− |w|2)3(T ′ḡu)(w)(T ′

f̄
v)(w) dυα(w).

In view of Lemma 2.4 one can proceed analogously.

In view of part (b) in Lemmas 2.3 and 2.4, Theorem 2.2 can be proved
in much the same way.

It follows from the next lemma that Theorem 2.1 contains Theorem 1.1.

Lemma 2.5. Let −1 < α <∞ and let f, g ∈ A2
α. Then for ε > 0 and for

w ∈ B,

Bε[|f |2](w)Bε[|g|2](w) ≤ C ·B[|f |2+ε](w)B[|g|2+ε](w).

Proof. Let −1 < α < ∞, ε > 0 and w ∈ B. By Hölder’s inequality we
get

Bε[|f |2](w) =
�

B
|f(z)|2 log1+ε

(
1

1− |ϕw(z)|

)
(1− |w|2)n+α+1

|1− 〈w, z〉|2n+2α+2
dυα(z)

≤
{�

B
|f(z)|2+ε (1− |w|2)n+α+1

|1− 〈w, z〉|2n+2α+2
dυα(z)

}2/(2+ε)

×
{�

B
log(1+ε)(2+ε)/ε

(
1

1− |ϕw(z)|

)
(1− |w|2)n+α+1

|1− 〈w, z〉|2n+2α+2
dυα(z)

}ε/(2+ε)

= {B[|f |2+ε](w)}2/(2+ε)

{�

B
log(1+ε)(2+ε)/ε

(
1

1− |z|

)
dυα(z)

}ε/(2+ε)

.

Since the last integral is convergent, our claim follows.

Similarly one can prove that Theorem 2.2 contains Theorem 1.4.
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