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Forced oscillation of third order nonlinear
dynamic equations on time scales

by Baoguo Jia (Guangzhou)

Abstract. Consider the third order nonlinear dynamic equation

(∗) x∆∆∆(t) + p(t)f(x) = g(t),

on a time scale T which is unbounded above. The function f ∈ C(R,R) is assumed to
satisfy xf(x) > 0 for x 6= 0 and be nondecreasing. We study the oscillatory behaviour of
solutions of (∗). As an application, we find that the nonlinear difference equation

∆3x(n) + nα|x|γsgn(n) = (−1)nnc,

where α ≥ −1, γ > 0, c > 3, is oscillatory.

1. Introduction. Consider the third order nonlinear dynamic equation

(1.1) x∆∆∆(t) + p(t)f(x) = g(t),

and the second order nonlinear dynamic equation

(1.2) x∆∆(t) + p(t)f(x) = g(t),

on a time scale T which is unbounded above, and where p(t), g(t) are real-
valued, right-dense continuous functions on T and p(t) is nonnegative but
not eventually zero for large t. The function f ∈ C(R,R) is assumed to
satisfy xf(x) > 0 for x 6= 0 and be nondecreasing.

When T = R, the dynamic equation (1.2) is the second order nonlinear
differential equation

(1.3) x′′(t) + p(t)f(x) = g(t).

In [5], James Wong studied the oscillatory behaviour of (1.3) and ob-
tained the following

Theorem 1.1. Assume that:

(i) There exists an h ∈ C2[0,∞) such that h′′(t) = g(t) and h(t) is
oscillatory, i.e., it has unbounded zeros.
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(ii) h(t) satisfies
∞�

0

p(t)f(h+(t)) dt = −
∞�

0

p(t)f(h−(t)) dt = +∞

where h+(t) = max{h(t), 0} and h−(t) = min{h(t), 0}.

Then (1.3) is oscillatory.

In this paper, we extend this theorem to third order dynamic equations
on time scales and as an application, we show that the nonlinear difference
equation

(1.4) ∆3x(n) + nα|x|γsgn(x) = (−1)nnc, γ > 0,

is oscillatory, where α ≥ −1, c > 3. This equation is the discrete analog of
the differential equation x′′′(t) + tα|x|γsgn(n) = tc sin t.

For completeness we recall some basic results for dynamic equations and
the calculus on time scales (see [1] and [2]). Let T be a time scale (i.e., a
closed nonempty subset of R) with sup T =∞. The forward jump operator
is defined by

σ(t) = inf{s ∈ T : s > t},

and the backward jump operator is defined by

ρ(t) = sup{s ∈ T : s < t},

where sup ∅ = inf T. If σ(t) > t, we say t is right-scattered, while if ρ(t) < t
we say t is left-scattered. If σ(t) = t we say t is right-dense, while if ρ(t) = t
and t 6= inf T we say t is left-dense. The graininess function µ for a time
scale T is defined by

µ(t) = σ(t)− t,

and for any function f : T → R the notation fσ(t) stands for f(σ(t)). We
say that x : T→ R is differentiable at t ∈ T provided

x∆(t) := lim
s→t

x(t)− x(s)
t− s

exists when σ(t) = t (here by s→ t it is understood that s approaches t in
the time scale), and when x is continuous at t and σ(t) > t,

x∆(t) :=
x(σ(t))− x(t)

µ(t)
.

Note that if T = R, then the delta derivative is just the standard derivative,
and when T = Z the delta derivative is just the forward difference operator.
Hence our results contain the discrete and continuous cases as special cases
and generalize these results to arbitrary time scales.
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2. Lemma and main theorem

Lemma 2.1. Suppose that there exists an h∈C3(T,R) such that h∆∆∆(t)
= g(t) and h(t) is oscillatory. Let x(t) be a solution of (1.1). Write x(t) =
y(t) + h(t).

(i) If x(t) > 0 for large t, then

y(t) > 0, y∆∆(t) > 0 and y∆∆∆(t) ≤ 0, for large t.

(ii) If x(t) < 0 for large t, then

y(t) < 0, y∆∆(t) < 0 and y∆∆∆(t) ≥ 0, for large t.

Remark. Under the hypothesis of Lemma 2.1, (1.1) can be rewritten
as a homogeneous dynamic equation

y∆∆∆(t) + p(t)f(y(t) + h(t)) = 0.

Proof. (i) Suppose that x(t) > 0 for large t. Since p(t) ≥ 0, from (1.1)
we note that y∆∆∆(t) ≤ 0 for large t. Hence y∆∆(t) is decreasing for large t.
We claim that y∆∆(t) ≥ 0 for large t. Assume not; then there is a large t1
such that y∆∆(t1) < 0.

Since y∆∆∆(t) ≤ 0, we have y∆∆(t) ≤ y∆∆(t1) < 0 for t ≥ t1. By
the Mean Value Theorem (see Theorem 1.14 of [2]), we have y∆(t) → −∞
as t → ∞. So y(t) → −∞ as t → ∞. But this together with h(t) being
oscillatory contradicts the assumption that x(t) > 0 for large t.

In the following, we show that y∆∆(t) is eventually positive, i.e., y∆∆(t)
> 0 for large t. Suppose that y∆∆(t2) = 0 for some large t2. As y∆∆∆(t) ≤ 0
and y∆∆(t) ≥ 0, this means that y∆∆(t) ≡ 0. Returning to (1.1), this would
imply p(t) ≡ 0 for large t, contradicting the assumption.

So y∆(t) > 0 or y∆(t) < 0 for large t. Therefore y(t) > 0 or y(t) < 0 for
large t.

Since h(t) is oscillatory and x(t) > 0, we have y(t) > 0.
Similarly, (ii) also holds.

Theorem 2.2. Let h(t) =
	t
t0
{
	s
t0

[
	τ
t0
g(u)∆u]∆τ}∆s. Assume that h(t)

is oscillatory and satisfies
∞�

t0

p(t)f(h+(t))∆t = +∞,(2.1)

∞�

t0

p(t)f(h−(t))∆t = −∞,(2.2)

where h+(t) = max{h(t), 0} and h−(t) = min{h(t), 0}. Then (1.1) is oscil-
latory.
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Proof. Assume that the solution x(t) of (1.1) is nonoscillatory. Without
loss of generality we can assume that x(t) > 0 for large t. Let x(t) = y(t)
+ h(t). By Theorem 1.74 of [1], we have h∆∆∆(t) = g(t). From (1.1),

(2.3) y∆∆∆(t) + p(t)f(y(t) + h(t)) = 0.

From Lemma 2.1, we have y(t) > 0, y∆∆(t) > 0 and y∆∆∆(t) ≤ 0, t ∈
[t1,∞), for some t1 ∈ T. Integrating (2.3), we obtain

(2.4) y∆∆(t)− y∆∆(t1) +
t�

t1

p(s)f(y(s) + h(s))∆s = 0.

Since y∆∆∆(t) ≤ 0, limt→∞ y
∆∆(t) exists and is finite; hence the integral in

(2.4) converges as t→∞.
We note that for all t ≥ t1, y(t) + h(t) > h+(t). To see this, we write

y(t) + h(t) = y + h+(t) + h−(t) and observe that

(i) for h+(t) = 0, y(t) + h(t) = y(t) + h−(t) = x(t) > 0 = h+(t),
(ii) for h−(t) = 0, y(t) + h(t) = y(t) + h+(t) > h+(t), since y(t) > 0.

Since f(x) is nondecreasing, we have f(y(t) + h(t)) ≥ f(h+(t)). Note
that p(t) ≥ 0. We now estimate as follows:

(2.5)
t�

t1

p(s)f(h+(s))∆s ≤
t�

t1

p(s)f(y(s) + h(s))∆s <∞.

By applying (2.1) to (2.5), we obtain the desired contradiction.

Consider the nth order nonlinear dynamic equation

(2.6) x∆n
(t) + p(t)f(x) = g(t)

on a time scale T which is unbounded above, and where p(t), g(t) are real-
valued, right-dense continuous functions on T and p(t) is nonnegative but not
eventually zero for large t, f(x) is a continuous and nondecreasing function
of x ∈ (−∞,∞), and xf(x) > 0 for x 6= 0.

Similar to Lemma 2.1, we have

Lemma 2.3. Suppose that there exists an h ∈ Cn(T,R) such that h∆n
(t)

= g(t) and h(t) is oscillatory. Let x(t) be a solution of (1.1) and write
x(t) = y(t) + h(t).

(i) If x(t) > 0 for large t, then

y(t) > 0, y∆n−1
(t) > 0 and y∆n

(t) ≤ 0, for large t.

(ii) If x(t) < 0 for large t, then

y(t) < 0, y∆n−1
(t) < 0 and y∆n

(t) ≥ 0, for large t.

Using Lemma 2.3, we can generalize Theorem 2.2 to the nth order dy-
namic equation (2.6).
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Theorem 2.4. Let h(t) =
	t
t0

	τ1
t0
· · ·

	τn−1

t0
g(τn)∆τn∆τn−1 · · ·∆τ1. As-

sume that h(t) is oscillatory and satisfies
∞�

t0

p(t)f(h+(t))∆t = +∞,
∞�

t0

p(t)f(h−(t))∆t = −∞,

where h+(t) = max{h(t), 0} and h−(t) = min{h(t), 0}. Then (2.6) is oscil-
latory.

3. Example

Example 3.1. Consider the third order difference equation

(3.1) ∆3x(n) + p(n)|x|γsgn(n) = g(n), γ > 0,

where p(n) = nα, α ≥ −1, g(n) = (−1)nnc, c > 3.
We need the following interesting lemma.

Lemma 3.2. For each real number c > 3, we have

(3.2) lim
m→∞

∑m
i=1 i

c − mc+1

c+1 −
mc

2 −
c

12m
c−1

mc−3
=
−c(c− 1)(c− 2)

720
.

Proof. By Taylor’s formula, we have

(3.3)
(

1 +
1
m

)a
= 1 +

a

m
+
a(a− 1)

2m2
+
a(a− 1)(a− 2)

6m3

+
a(a− 1)(a− 2)(a− 3)

24m4
+
a(a− 1)(a− 2)(a− 3)(a− 4)

120m5
+ o

(
1
m5

)
for any real number a. For c > 3, by (3.3) and the Stolz–Cesàro Theorem
(see Theorem 1.120 of [1] or Lemma 3.2 of [4]), it is easy to see that

(3.4) lim
m→∞

∑m
i=1 i

c − mc+1

c+1 −
mc

2 −
c

12m
c−1

mc−3

= lim
m→∞

(m+ 1)c − (m+1)c+1

c+1 − (m+1)c

2 − c(m+1)c−1

12 + mc+1

c+1 + mc

2 + cmc−1

12

(m+ 1)c−3 −mc−3

= lim
m→∞

m3

2 (1 + 1
m)c − m4

c+1(1 + 1
m)c+1 − cm2

12 (1 + 1
m)c−1 + m4

c+1 + m3

2 + cm2

12

(1 + 1
m)c−3 − 1

.

By (3.3), we have(
1 +

1
m

)c
= 1 +

c

m
+
c(c− 1)

2m2
+
c(c− 1)(c− 2)

6m3
(3.5)

+
c(c− 1)(c− 2)(c− 3)

24m4
+ o

(
1
m4

)
,
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(3.6)
(

1 +
1
m

)c+1

= 1 +
c+ 1
m

+
(c+ 1)c

2m2
+

(c+ 1)c(c− 1)
6m3

+
(c+ 1)c(c− 1)(c− 2)

24m4
+

(c+ 1)c(c− 1)(c− 2)(c− 3)
120m5

+ o

(
1
m5

)
,

(3.7)
(

1 +
1
m

)c−1

= 1 +
c− 1
m

+
(c− 1)(c− 2)

2m2
+

(c− 1)(c− 2)(c− 3)
6m3

+ o

(
1
m3

)
.

Using (3.5)–(3.7) in (3.4), it follows that (3.2) holds.

Let C1 := −c(c− 1)(c− 2)/720. Given 0 < ε < 1, for large m, we have
the inequalities

m∑
i=1

ic <
mc+1

c+ 1
+
mc

2
+
cmc−1

12
+ (C1 + ε)mc−3,(3.8)

m∑
i=1

ic >
mc+1

c+ 1
+
mc

2
+
cmc−1

12
+ (C1 − ε)mc−3.(3.9)

Therefore for t = m, by integrating by parts we have

h(t) =
t�

1

s�

1

τ�

1

g(u)∆u∆τ∆s(3.10)

= t

t�

1

[ τ�
1

p(u)∆u
]
∆τ −

t�

1

σ(s)
[ s�

1

g(u)∆u
]
∆s

= t2
t�

1

p(u)∆u− t
t�

1

σ(τ)p(τ)∆τ

−
t�

1

σ(τ)∆τ
t�

1

p(u)∆u+
t�

1

[ σ(s)�

1

σ(τ)∆τ
]
g(s)∆s

=
(
m2

2
− 3m

2
+ 1
)m−1∑

i=1

(−1)iic −
(
m− 3

2

)m−1∑
i=1

(−1)iic+1

+
1
2

m−1∑
i=1

(−1)iic+2.

Letting m = 2k, we get
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(3.11) h(2k)

= (2k2 − 3k + 1)
2k−1∑
i=1

(−1)iic −
(

2k − 3
2

) 2k−1∑
i=1

(−1)iic+1 +
1
2

2k−1∑
i=1

(−1)iic+2

= (2k2 − 3k + 1)
2k−2∑
i=1

(−1)iic −
(

2k − 3
2

) 2k−2∑
i=1

(−1)iic+1 +
1
2

2k−2∑
i=1

(−1)iic+2

since the terms corresponding to i = 2k − 1 cancel. From (3.8) and (3.9), it
is easy to see that

(3.12)
2k−2∑
i=1

(−1)iic = −
2k−2∑
i=1

ic + 21+c
k−1∑
i=1

ic

≤ −
[

(2k − 2)c+1

c+ 1
+

(2k − 2)c

2
+
c(2k − 2)c−1

12
+ (C1 − ε)(2k − 2)c−3

]
+ 21+c

[
(k − 1)c+1

c+ 1
+

(k − 1)c

2
+
c(k − 1)c−1

12
+ (C1 + ε)(k − 1)c−3

]
=

(2k − 2)c

2
+
c(2k − 2)c−1

4
+ [C1(24 − 1) + ε(24 + 1)](2k − 2)c−3

and
2k−2∑
i=1

(−1)iic ≥ (2k − 2)c

2
+
c(2k − 2)c−1

4
(3.13)

+ [C1(24 − 1)− ε(24 + 1)](2k − 2)c−3.

From (3.11)–(3.13), we get

h(2k) ≤ (2k2 − 3k + 1)
[

(2k − 2)c

2
+
c(2k − 2)c−1

4

+ [C1(24 − 1) + ε(24 + 1)](2k − 2)c−3

]
−
(

2k − 3
2

)[
(2k − 2)c+1

2
+

(c+ 1)(2k − 2)c

4

+ [C1(24 − 1)− ε(24 + 1)](2k − 2)c−2

]
+

1
2

[
(2k − 2)c+2

2
+

(c+ 2)(2k − 2)c+1

4

+ [C1(24 − 1) + ε(24 + 1)](2k − 2)c−1

]
= (2k − 2)c

[
−1

8
+O

(
1
k

)]
.
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Take 0 < A < 1/8. Then

(3.14) h(2k) ≤ −A(2k − 2)c for large k.

Letting m = 2k + 1, from (3.10), (3.12) and (3.13) we get

(3.15) h(2k + 1)

= (2k2 − k)
2k∑
i=1

(−1)iic −
(

2k − 1
2

) 2k∑
i=1

(−1)iic+1 +
1
2

2k∑
i=1

(−1)iic+2

≥ (2k2 − k)
[

(2k)c

2
+
c(2k)c−1

4
+ [C1(24 − 1)− ε(24 + 1)](2k)c−3

]
−
(

2k − 1
2

)[
(2k)c+1

2
+

(c+ 1)(2k)c

4
+ [C1(24 − 1) + ε(24 + 1)](2k)c−2

]
+

1
2

[
(2k)c+2

2
+

(c+ 2)(2k)c+1

4
+ [C1(24 − 1)− ε(24 + 1)](2k)c−1

]
= (2k)c

[
1
8

+O

(
1
k

)]
.

Take 0 < B < 1/8. Then

(3.16) h(2k + 1) ≥ B(2k)c for large k.

From (3.14) and (3.16), we deduce that for large k,

h+(2k) = 0, h+(2k + 1) ≥ B(2k)c,
h−(2k) ≤ −A(2k − 2)c, h−(2k + 1) = 0.

So picking a large K, we have (note that α+ cγ ≥ α ≥ −1)

∞�

K

p(s)f(h+(s))∆s ≥
∞∑
k=K

(2k + 1)αBγ(2k)cγ = +∞,

∞�

K

p(s)f(h−(s))∆s ≤ −
∞∑
k=K

(2k)αAγ(2k − 2)cγ = −∞.

From (3.14) and (3.16), we conclude that h(t) is oscillatory. Therefore by
Theorem 2.2, all solutions of equation (3.1) are oscillatory.
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Remark. When c = 3, using the formulas
n∑
i=1

i3 =
1
4
n2(n+ 1)2,

n∑
i=4

i4 =
1
30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1),

n∑
i=5

i5 =
1
12
n2(n+ 1)2(2n2 + 2n− 1),

by (3.11), (3.15) and a complicated calculation, we can get

h(2k) = 51k3 − 55
2
k2 − 3

2
k, h(2k + 1) = k3 − 7

2
k2 − 1

2
k.

It is easy to see that h(m) does not satisfy the assumption of Theorem 2.2.
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