On "special" fibred coordinates for general and classical connections

by Włodzimierz M. Mikulski (Kraków)

Abstract. Using a general connection Γ on a fibred manifold $p: Y \to M$ and a torsion free classical linear connection ∇ on M, we distinguish some "special" fibred coordinate systems on Y, and then we construct a general connection $\widetilde{\mathcal{F}}(\Gamma, \nabla)$ on Fp: $FY \to FM$ for any vector bundle functor $F: \mathcal{M}f \to \mathcal{VB}$ of finite order.

1. Introduction. A general connection on a fibred manifold $Y \to M$ is a section $\Gamma: Y \to J^1 Y$ of the first jet prolongation $J^1 Y \to Y$ of $Y \to M$, which can be (equivalently) considered as the corresponding lifting map Γ : $Y \times_M TM \to TY$. If $p: Y \to M$ is a vector bundle and $\Gamma: Y \to J^1 Y$ is a vector bundle map, then Γ is called a *linear general connection* on $p: Y \to M$. A linear general connection $\Gamma: TM \to J^1TM$ on the tangent bundle $p: TM \to M$ of M is called a *classical linear connection* on M, which can be (equivalently) considered as its corresponding covariant derivative ∇ . A classical linear connection ∇ on M is called *torsion free* if its torsion tensor is zero. More information on connections can be found in the fundamental monograph [KMS].

The present short note is devoted to studying prolongation of connections. In Section 2, given a general connection Γ on a fibred manifold $p: Y \to M$ and a torsion free classical linear connection ∇ on M, we distinguish some "special" so called (Γ, ∇) -quasi-normal fibred coordinate systems on Y. In fact, we essentially strengthen [M3, Lemma 2]. In Section 3, applying these (Γ, ∇) -quasi-normal fibred coordinate systems, we construct a general connection $\widetilde{\mathcal{F}}(\Gamma, \nabla)$ on $Fp: FY \to FM$ for any vector bundle functor $F: \mathcal{M}f \to \mathcal{VB}$ (the concept of bundle functors can be found in [KMS]).

We recall that in [S], J. Slovák constructed a general connection $\mathcal{F}(\Gamma)$ on $Fp : FY \to FM$ from a general connection Γ on a fibred manifold $p : Y \to M$ for any product-preserving bundle functor $F : \mathcal{M}f \to \mathcal{FM}$. In

Key words and phrases: jets, general connections, natural operators.

²⁰¹⁰ Mathematics Subject Classification: 58A05, 58A20, 58A32.

[M1] (see also [M4]), we proved that if a vector bundle functor $F: \mathcal{M}f \to \mathcal{VB}$ (or a bundle functor $F: \mathcal{M}f \to \mathcal{FM}$ with the point property) is not productpreserving then there is no canonical construction of a general connection on $Fp: FY \to FM$ from a general connection Γ on a fibred manifold $p: Y \to M$. Consequently, we see that an auxiliary torsion free classical linear connection ∇ on M is unavoidable to construct a general connection on $Fp: FY \to FM$ from a general connection on $p: Y \to M$. We also recall that in [M2], given a general connection Γ on a fibred manifold p: $Y \to M$ and a p-projectable torsion free classical linear connection $\widetilde{\nabla}$ on Y, we constructed a general connection $A^F(\Gamma, \widetilde{\nabla})$ on $Fp: FY \to FM$ for any vector bundle functor $F: \mathcal{M}f \to \mathcal{VB}$ of finite order. Of course, torsion free classical linear connections on M are "simpler" objects than p-projectable torsion free classical linear construction $\widetilde{\mathcal{F}}(\Gamma, \nabla)$ (presented in this note) is "more economic" than $A^F(\Gamma, \widetilde{\nabla})$ from [M2].

All manifolds and maps we consider are assumed to be (\mathcal{C}^{∞}) smooth.

2. On quasi-normal fibred coordinate systems. Just as in [M3], let $\Phi_r: J_0^{r-1}(T^*\mathbb{R}^m \otimes \mathbb{R}^n) \to J_0^r(\mathbb{R}^m, \mathbb{R}^n)_0$

be the usual symmetrization

$$\bigoplus_{q=0}^{r-1} S^q T_0^* \mathbb{R}^m \otimes T_0^* \mathbb{R}^m \otimes \mathbb{R}^n \to \bigoplus_{q=0}^{r-1} S^{q+1} T_0^* \mathbb{R}^m \otimes \mathbb{R}^n$$

modulo the obvious (GL(m)-invariant) identifications

$$J_0^{r-1}(T^*\mathbb{R}^m \otimes \mathbb{R}^n) = \bigoplus_{q=0}^{r-1} S^q T_0^*\mathbb{R}^m \otimes T_0^*\mathbb{R}^m \otimes \mathbb{R}^n$$

and

$$\bigoplus_{q=0}^{r-1} S^{q+1} T_0^* \mathbb{R}^m \otimes \mathbb{R}^n = J_0^r (\mathbb{R}^m, \mathbb{R}^n)_0.$$

In other words, $\Phi_r : J_0^{r-1}(T^*\mathbb{R}^m \otimes \mathbb{R}^n) \to J_0^r(\mathbb{R}^m, \mathbb{R}^n)_0$ is the linear map such that

$$\Phi_r(j_0^{r-1}((x^{i_1}\dots x^{i_q}dx^j)e_k)) = \frac{1}{q+1}j_0^r(x^{i_1}\dots x^{i_q}x^je_k)$$

for any $i_1, \ldots, i_q, j = 1, \ldots, m, q = 0, \ldots, r-1$ and $k = 1, \ldots, n$, where e_k is the usual canonical basis in \mathbb{R}^n and x^1, \ldots, x^m are the usual coordinates on \mathbb{R}^m . Then

$$\Phi_r(j_0^{r-1}(d\sigma)) = j_0^r(\sigma)$$

for any $\sigma : \mathbb{R}^m \to \mathbb{R}^n$ with $\sigma(0) = 0$. Clearly, Φ_r is GL(m)-invariant and linear.

Let m, n, r be positive integers, $\Gamma : Y \to J^1 Y$ be a general connection on a fibred manifold $p : Y \to M$ with $\dim(m) = M$ and $\dim(Y) = m + n$, ∇ be a torsion free classical linear connection on M and $y_0 \in Y$ be a point with $x_0 = p(y_0) \in M$.

DEFINITION 2.1. A (Γ, ∇, y_0, r) -quasi-normal coordinate system on Y is a fibred chart ψ on Y with $\psi(y_0) = (0,0) \in \mathbb{R}^m \times \mathbb{R}^n$ covering a ∇ -normal coordinate system ψ on M with centre x_0 such that

(2.1)
$$\Phi_r\left(j_0^{r-1}\left(\sum_{|\alpha|+|\beta|\leq r-1}\sum_{j=1}^m\sum_{k=1}^n\Gamma_{j\alpha\beta}^kx^\alpha dx^j\otimes e_k\right)\right)=0$$

for any $\beta \in (\mathbb{N} \cup \{0\})^n$ with $|\beta| \leq r - 1$, where

(2.2)
$$j_0^{r-1} \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{|\alpha|+|\beta| \le r-1} \sum_{j=1}^m \sum_{k=1}^n \Gamma_{j\alpha\beta}^k x^\alpha y^\beta dx^j \otimes \frac{\partial}{\partial y^k} \right)$$

is the coordinate expression of $j_{(0,0)}^{r-1}(\psi_*\Gamma)$ and $x^1, \ldots, x^m, y^1, \ldots, y^n$ are the usual coordinates on $\mathbb{R}^m \times \mathbb{R}^n$.

We prove the following result, which is essentially stronger than the one in [M3, Lemma 2].

PROPOSITION 2.2. Let $m, n, r, p : Y \to M, \Gamma : Y \to J^1Y, \nabla, y_0 \in Y, x_0 = p(y_0) \in M$ be as above.

(a) There exists a (Γ, ∇, y_0, r) -quasi-normal fibred coordinate system ψ .

(b) If ψ^1 is another (Γ, ∇, y_0, r) -quasi-normal coordinate system on Y then

(2.3)
$$j_{y_0}^r \psi^1 = j_{y_0}^r ((A \times H) \circ \psi)$$

for a map $A \in GL(m)$ and a diffeomorphism $H : \mathbb{R}^n \to \mathbb{R}^n$ preserving 0.

Proof. (a) Because of the existence of ∇ -normal coordinate systems and the fact that J^1Y is the orbit of $j_0^1(0)$ under the action of the pseudogroup of local fibred diffeomorphisms, we may assume that $Y = \mathbb{R}^m \times \mathbb{R}^n$, $M = \mathbb{R}^m$, $p = \text{pr}_1 : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$ is the obvious projection, $y_0 = (0,0)$, $\mathrm{id}_{\mathbb{R}^m}$ is a ∇ -normal coordinate system with centre 0, formula (2.2) is the coordinate expression of $j_{(0,0)}^{r-1}\Gamma$ for any r, and $\Gamma_{j(0)(0)}^k = 0$ for $k = 1, \ldots, n$ and $j = 1, \ldots, m$.

We will proceed by induction on r.

The case r = 1 is trivial because $\Gamma_{i(0)(0)}^k = 0$.

Now, we assume that there exists a $(\Gamma, \nabla, (0, 0), r-1)$ -quasi-normal fibred coordinate system, $r \geq 2$. Replacing Γ by the image of Γ under this fibred chart (this $(\Gamma, \nabla(0, 0), r-1)$ -quasi-normal fibred coordinate system), we can assume that $\mathrm{id}_{\mathbb{R}^m \times \mathbb{R}^n}$ is a $(\Gamma, \nabla, (0, 0), r-1)$ -quasi-normal fibred coordinate

system. Next, for any $\beta \in (\mathbb{N} \cup \{0\})^n$ with $|\beta| \leq r - 1$, let $\sigma_\beta = (\sigma_\beta^k)_{k=1}^n$: $\mathbb{R}^m \to \mathbb{R}^n$ be a map with $\sigma_\beta(0) = 0$ such that

$$j_0^r(\sigma_\beta) = \varPhi_r\Big(j_0^{r-1}\Big(\sum_{|\alpha|+|\beta|=r-1}\sum_{j=1}^m\sum_{k=1}^n\Gamma_{j\alpha\beta}^kx^\alpha dx^j\otimes e_k\Big)\Big).$$

Define $\psi : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^n$ by

$$\psi(x,y) = \left(x, y - \sum_{|\beta| \le r-1} y^{\beta} \sigma_{\beta}(x)\right).$$

It is easy to see that $j_{(0,0)}^{r-1}\psi = id$. We prove that ψ is a $(\Gamma, \nabla, (0,0), r)$ -quasinormal fibred coordinate system. We see that ψ preserves

$$j_{(0,0)}^{r-1} \left(\sum_{|\alpha|+|\beta| \le r-1} \sum_{j=1}^m \sum_{k=1}^n \Gamma_{j\alpha\beta}^k x^{\alpha} y^{\beta} \, dx^j \otimes \frac{\partial}{\partial y^k} \right)$$

because $j_{(0,0)}^{r-1}\psi = \mathrm{id}, \underline{\psi} = \mathrm{id}$ and $\Gamma_{j(0)(0)}^k = 0$. Moreover, ψ sends $j_{(0,0)}^{r-1} \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i}\right)$ to

$$j_{(0,0)}^{r-1}\left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} - \sum_{|\beta| \le r-1} \sum_{k=1}^n \sum_{i=1}^m \frac{\partial \sigma_{\beta}^k}{\partial x^i}(x) y^{\beta} dx^i \otimes \frac{\partial}{\partial y^k}\right).$$

Then expressing $j_{(0,0)}^{r-1}(\psi_*\Gamma)$ by (2.2) with $\tilde{\Gamma}^k_{j\alpha\beta}$ instead of $\Gamma^k_{j\alpha\beta}$ we see that

$$\begin{split} \varPhi_r \Big(j_0^{r-1} \Big(\sum_{|\alpha|+|\beta| \le r-1} \sum_{j=1}^m \sum_{k=1}^n \tilde{\Gamma}_{j\alpha\beta}^k x^{\alpha} dx^j \otimes e_k \Big) \Big) \\ &= \varPhi_r \Big(j_0^{r-1} \Big(\sum_{|\alpha|+|\beta| \le r-1} \sum_{j=1}^m \sum_{k=1}^n \Gamma_{j\alpha\beta}^k x^{\alpha} dx^j \otimes e_k \Big) \Big) - \varPhi_r(j_{(0,0)}^{r-1} (d\sigma_\beta)) \\ &= j_0^r(\sigma_\beta) - j_0^r(\sigma_\beta) = 0. \end{split}$$

for any $\beta \in (\mathbb{N} \cup \{0\})^n$ with $|\beta| \leq r-1$ (as $\Phi_r(j_0^{r-1}(\sum_{|\alpha|+|\beta| \leq r-2} \Gamma_{j\alpha\beta}^k x^{\alpha} dx^j \otimes e_k)) = 0$ since $\mathrm{id}_{\mathbb{R}^m \times \mathbb{R}^n}$ is $(\Gamma, \nabla, (0, 0), r-1)$ -adapted).

(b) Replacing Γ by $\psi_*\Gamma$ we may assume that $\mathrm{id}_{\mathbb{R}^m \times \mathbb{R}^n}$ is a $(\Gamma, \nabla, (0, 0), r)$ -quasi-normal fibred coordinate system. Next, we will proceed by induction on r.

The case r = 1 is clear.

Now, let ψ^1 be a $(\Gamma, \nabla, (0, 0), r)$ -quasi-normal fibred coordinate system. Then (clearly) it is a $(\Gamma, \nabla, (0, 0), r-1)$ -quasi-normal fibred coordinate system. Hence by the inductive assumption, $j_{(0,0)}^{r-1}\psi^1 = j_{(0,0)}^{r-1}(A \times \tilde{H})$ for some $A \in \operatorname{GL}(m)$ and some $\tilde{H} : \mathbb{R}^n \to \mathbb{R}^n$. Clearly, $A \times \tilde{H}$ is a $(\Gamma, \nabla, (0, 0), r)$ -quasi-normal coordinate system. Then replacing Γ by $(A \times \tilde{H})_*\Gamma$ we may assume $j_{(0,0)}^{r-1}\psi^1 = \text{id. Next, replacing } \Gamma$ by $(\text{id}_{\mathbb{R}^m} \times \overline{H})_*\Gamma$, where $\overline{H}(y) = \tilde{\psi}^1(0,y)$, $\psi^1(x,y) = (x, \tilde{\psi}^1(x,y))$, we may assume $j_{(0,0)}^{r-1}\psi^1 = \text{id and}$

$$\psi^{1}(x,y) = \left(x, y - \sum_{|\beta| \le r-1} y^{\beta} \sigma_{\beta}(x)\right),$$

where $\sigma_{\beta} : \mathbb{R}^m \to \mathbb{R}^n$, $\sigma_{\beta}(0) = 0$. Then (quite similarly to the inductive step in the proof of (a)) expressing $j_{(0,0)}^{r-1}(\psi_*^1\Gamma)$ by (2.2) with $\tilde{\Gamma}_{j\alpha\beta}^k$ instead of $\Gamma_{j\alpha\beta}^k$ we get

$$0 = \Phi_r \left(j_0^{r-1} \left(\sum_{|\alpha|+|\beta| \le r-1} \sum_{j=1}^m \sum_{k=1}^n \tilde{\Gamma}_{j\alpha\beta}^k x^\alpha dx^j \otimes e_k \right) \right) = 0 - j_0^r(\sigma_\beta)$$

for any $\beta \in (\mathbb{N} \cup \{0\})^n$ with $|\beta| \le r - 1$. So, $j_{(0,0)}^r \psi^1 = \mathrm{id}$.

3. An application to prolongation of connections. We are going to apply the result from the previous section to prolongation of connections. We start with the following lemma.

LEMMA 3.1. Let $F : \mathcal{M}f \to \mathcal{VB}$ be a vector bundle functor. Let $\mathrm{pr}_1 : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m$ be the trivial bundle (the obvious projection).

(a) The fibred manifold $F \operatorname{pr}_1 : F(\mathbb{R}^m \times \mathbb{R}^n) \to F\mathbb{R}^m$ is isomorphic to the trivial bundle $\operatorname{Pr}_1 : (\mathbb{R}^m \times F_0\mathbb{R}^m) \times (\mathbb{R}^n \times \ker(F_{(0,0)}\operatorname{pr}_1)) \to \mathbb{R}^m \times F_0\mathbb{R}^m$ (the obvious projection). An isomorphism $\Phi : (\mathbb{R}^m \times F_0\mathbb{R}^m) \times (\mathbb{R}^n \times \ker(F_{(0,0)}\operatorname{pr}_1)) \to F(\mathbb{R}^m \times \mathbb{R}^n)$ is given by

$$\Phi((x,X),(y,Y)) = F\tau_{(x,y)}(F_0i(X) + Y)$$

for any $x \in \mathbb{R}^m$, $X \in F_0 \mathbb{R}^m$, $y \in \mathbb{R}^n$, $Y \in \ker(F_{(0,0)} \operatorname{pr}_1)$, where $i : \mathbb{R}^m \to \mathbb{R}^m \times \mathbb{R}^n$ is given by i(x) = (x, 0) and $\tau_{(x,y)} : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^n$ is the translation by (x, y). The inverse isomorphism is given by

$$\Phi^{-1}(v) = ((x, X), (y, Y))$$

for $v \in F_{(x,y)}(\mathbb{R}^m \times \mathbb{R}^n)$, $(x,y) \in \mathbb{R}^m \times \mathbb{R}^n$, where $X = F\tau_{-x}(F\operatorname{pr}_1(v)) \in F_0\mathbb{R}^m$ and $Y = F\tau_{-(x,y)}(v) - F_0i(X) \in \ker(F_{(0,0)}\operatorname{pr}_1)$.

(b) Let $H : \mathbb{R}^n \to \mathbb{R}^n$ be a local diffeomorphism. Then (under the above isomorphism)

$$F(\mathrm{id}_{\mathbb{R}^m} \times H)((x, X), (y, Y)) = ((x, X), H(y, Y))$$

for any $((x, X), (y, Y)) \in F(\mathbb{R}^m \times \mathbb{R}^n)$, where $\tilde{H} : \mathbb{R}^n \times \ker(F_{(0,0)} \operatorname{pr}_1) \to \mathbb{R}^n \times \ker(F_{(0,0)} \operatorname{pr}_1)$ is given by

$$\tilde{H}(y,Y) = (H(y), F_{(0,0)}(\mathrm{id}_{\mathbb{R}^m} \times (\tau_{-H(y)} \circ H \circ \tau_y))(Y)).$$

(c) Let $A \in GL(m)$. Then

$$F(A \times \mathrm{id}_{\mathbb{R}^n})((x, X), (y, Y)) = (A_1(x, X), A_2(y, Y))$$

for any $((x, X), (y, Y)) \in F(\mathbb{R}^m \times \mathbb{R}^n)$, where $A_1 : \mathbb{R}^m \times F_0\mathbb{R}^m \to \mathbb{R}^m \times F_0\mathbb{R}^n$ is given by $A_1(x, X) = (A(x), F_0A(X))$ and $A_2 : \mathbb{R}^n \times \ker(F_{(0,0)} \operatorname{pr}_1) \to \mathbb{R}^n \times \ker(F_{(0,0)} \operatorname{pr}_1)$ is given by $A_2(y, Y) = (y, F_{(0,0)}(A \times \operatorname{id}_{\mathbb{R}^n})(Y)).$

Proof. The proof is standard.

We now present the following example of prolongation of connections.

EXAMPLE 3.2. Let $F: \mathcal{M}f \to \mathcal{VB}$ be a vector bundle functor of order r. Consider a general connection Γ on a fibred manifold $p: Y \to M$ and a torsion free classical linear connection ∇ on M. Write $\dim(M) = m$ and $\dim(Y) = m + n$. We construct a general connection $\widetilde{\mathcal{F}}(\Gamma, \nabla)$ on $Fp: FY \to FM$ as follows. Let $u_0 \in F_{y_0}Y, y_0 \in Y$. Let ψ be a $(\Gamma, \nabla, y_0, r + 1)$ -quasinormal fibred coordinate system (see Proposition 2.2(a)). We put

$$\widetilde{\mathcal{F}}(\Gamma, \nabla)(u_0) := J^1(F\psi^{-1})(\Theta(F\psi(u_0))),$$

where Θ denotes the trivial general connection on the trivial bundle F pr₁: $F(\mathbb{R}^m \times \mathbb{R}^n) \to F\mathbb{R}^m$ (modulo the isomorphism from Lemma 3.1(a)). Suppose ψ^1 is another $(\Gamma, \nabla, y_0, r+1)$ -quasi-normal fibred coordinate system. Then (by Proposition 2.2(b)) $j_{y_0}^{r+1}(\psi^1) = j_{y_0}^{r+1}((A \times H) \circ \psi)$ for some $A \in GL(m)$ and some local diffeomorphism $H : \mathbb{R}^n \to \mathbb{R}^n$. But Θ is invariant with respect to $F(A \times H)$ because of Lemma 3.1(b)–(c). Hence

$$J^{1}(F((\psi^{1})^{-1}))(\Theta(F(\psi^{1})(u_{0}))) = J^{1}(F\psi^{-1})(\Theta(F\psi(u_{0})))$$

i.e. $\widetilde{\mathcal{F}}(\Gamma, \nabla)$ is correctly defined. As we can choose a family of $(\Gamma, \nabla, y_0, r+1)$ quasi-normal fibred coordinate systems to be smooth in y_0 (it is sufficient to analyse the proof of Proposition 2.2(a)), $\widetilde{\mathcal{F}}(\Gamma, \nabla)$ is a smooth general connection on $Fp: FY \to FM$.

4. A final remark. It seems that our quasi-normal fibred coordinate systems from Proposition 2.2 may be used in the classification problems of natural operators $A(\Gamma, \nabla)$ on pairs (Γ, ∇) of connections. Indeed, according to the general theorem on natural operators [KMS], such natural operators are in bijection with $G_{m,n}^r$ -invariant maps of respective type. Now, passing to quasi-normal fibred coordinate systems, we see that natural operators $A(\Gamma, \nabla)$ are in bijection with $\operatorname{GL}(m) \times G_n^r$ -invariant maps. So, Proposition 2.2 gives a very strict reduction for natural operators on pairs (Γ, ∇) of connections. We hope that (for example) we may benefit from the above reduction and find all natural operators A constructing general connections $A(\Gamma, \nabla)$ on $J^2Y \to M$ from general connections Γ on $Y \to M$ by means of torsion free classical linear connections ∇ on M. We note that a reduction for gauge natural operators on pairs (Γ, ∇) of principal and classical linear connections has been described in [DM], [JV]. Some "special" principal coordinate systems for principal and classical connections have been described in [H], [DM], [K].

References

- [DM] M. Doupovec and W. M. Mikulski, Reduction theorems for principal and classical connections, Acta Math. Sinica (Engl. Ser.) 26 (2010), 169–184.
- [H] G. W. Horndeski, Replacement theorems for concomitants of gauge fields, Utilitas Math. 19 (1981), 215–246.
- [K] I. Kolář, On the gauge version of exponential map, Rep. Math. Phys. 65 (2010), 241–246.
- [KMS] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
- [JV] J. Janyška and J. Vondra, Natural principal connections on the principal gauge prolongation of a principal bundle, Rep. Math. Phys. 64 (2009), 395–415.
- [M1] W. M. Mikulski, Non-existence of some canonical constructions on connections, Comment. Math. Univ. Carolin. 44 (2003), 691–695.
- [M2] —, On the existence of prolongations of connections by bundle functors, Extracta Math. 22 (2007), 297–314.
- [M3] —, On prolongation of connections, Ann. Polon. Math. 97 (2010), 101–121.
- [M4] —, Bundle functors with the point property which admit prolongation of connections, ibid. 97 (2010), 253–256.
- [S] J. Slovák, Prolongations of connections and sprays with respect to Weil functors, Rend Circ. Mat. Palermo (2) Suppl. 14 (1987), 143–155.

Włodzimierz M. Mikulski Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland E-mail: Włodzimierz.Mikulski@im.uj.edu.pl

> Received 30.11.2009 and in final form 15.12.2009

(2120)