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Noguchi-type convergence-extension theorems
for (n, d)-sets

by Do Duc Thai (Hanoi), Nguyen Thi Tuyet Mai (Thainguyen) and
Nguyen Thai Son (Hochiminh City)

Abstract. We introduce the notion of (n, d)-sets and show several Noguchi-type
convergence-extension theorems for (n, d)-sets.

1. Introduction. The theorem of Noguchi referred to in the title of this
paper can be stated as follows (see [19] or [21]):

Let M be relatively compact hyperbolically imbedded into Y . Let X be
a complex manifold and A a complex hypersurface of X with only normal
crossings.

If {fj : X \ A → M}∞j=1 is a sequence of holomorphic mappings which
converges uniformly on compact subsets of X \A to a holomorphic mapping
f : X \ A → M , then {f j}∞j=1 converges uniformly on compact subsets of
X to f , where f j : X → Y and f : X → Y are the unique holomorphic
extensions of fj and f over X.

The above theorem of Noguchi opened a new perspective in studying
problems of extending holomorphic mappings, namely to study Noguchi-
type convergence-extension theorems. More precisely, a “Noguchi-type
convergence-extension theorem” means a theorem analogous to the theorem
of Noguchi on extending holomorphic mappings, which would keep the local
uniform convergence. Much attention has been given to the Noguchi theorem
from the viewpoint of hyperbolic complex analysis and several Noguchi-type
convergence-extension theorems for analytic hypersurfaces of complex man-
ifolds have been obtained by various authors (see [19], [15]–[17]). It is much
to be regretted, therefore, that while a substantial amount of information
has been amassed concerning the Noguchi-type convergence-extension theo-

2000 Mathematics Subject Classification: Primary 32H05, 32H15; Secondary 32M05,
32M99.

Key words and phrases: (n, d)-set, complex space having the (n, d)-EP.

[189]



190 Do Duc Thai et al.

rems for analytic hypersurfaces through the years, the present knowledge of
these theorems for subsets of more general type remains extremely meagre.

For the convenient presentation, we give the following

Definition 1. Let d be a real number such that 0 < d ≤ 1 and ∆ be
the open unit disc in C. A subset S of ∆n is said to be an (n, d)-set in ∆n

if the following are satisfied:

(i) The (2n − 2 + d)-dimensional Hausdorff measure H2n−2+d(S) of S
is 0.

(ii) For every subset {i1, . . . , ik} ⊂ {1, . . . , n} (i1 < . . . < ik, 1 ≤ k ≤
n − 1) and for every w = (wi1 , . . . , wik) ∈ ∆k, either Sw = ∆n−k or
H2n−2k−2+d(Sw) = 0, where

Sw = {z = (z1, . . . , zi1−1, zi1+1, . . . , zik−1, zik+1, . . . , zn) ∈ ∆n−k;

(w, z) = (z1, . . . , zi1−1, wi1 , zi1+1, . . . , zik−1, wik , zik+1, . . . , zn) ∈ S}.
Example: Every complete pluripolar subset of ∆n is an (n, d)-set. Recall

that a subset S of ∆n is said to be complete pluripolar if there exists a
plurisubharmonic function ϕ on ∆n such that S = {ϕ = −∞} (see [3]).

Definition 2. Let X be a complex space. We say that X has the (n, d)-
convergence-extension property (briefly X has the (n, d)-EP) if the following
holds.

Let S be any closed (n, d)-set in ∆n. Let fj : ∆n \ S → X, j = 1, 2, . . . ,
be holomorphic mappings which converge uniformly on compact subsets of
∆n \ S to a holomorphic mapping f : ∆n \ S → X. Then there are unique
holomorphic extensions f j : ∆n → X of fj and f : ∆n → X of f over ∆n,
and {f j}∞j=1 converges uniformly on compact subsets of ∆n to f .

Our main aim in this paper is to present some classes of complex spaces
which have the (n, d)-EP. Namely, we are going to prove the following

Theorem 1. Let X be a complex space and d be a real number such that
0 < d ≤ 1. Then X has the (n, d)-EP if and only if X has the (1, d)-EP.

Proposition 2. Let Ω be a strictly hyperconvex domain in CN . Then
Ω has the (n, d)-EP for any n ≥ 1 and any 0 < d ≤ 1.

Proposition 3. Let X be a complex space and d be a real number such
that 0 < d < 1. Let Ωϕ(X) = {(x, λ) ∈ X×C; |λ| < e−ϕ(x)}, where ϕ : X →
[−∞,∞) is upper semicontinuous on X. Then Ωϕ(X) has the (n, d)-EP iff
X has the (n, d)-EP , ϕ ∈ PSH(X) and ϕ(x) > −∞ for all x ∈ X.

Finally, the proof of Theorem 1 is based on the ideas of [27], and that of
Proposition 3 on the ideas of [28].
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2. Basic notions and auxiliary results. In this article, we shall make
use of properties of complex spaces as discussed in the book of Gunning–
Rossi [10].

2.1. Let X be a complex space. We say that X has the Hartogs ex-
tension property (briefly X has the (HEP)) if every holomorphic mapping
from a Riemann domain Ω over a Stein manifold into X can be extended
holomorphically to Ω̂, the envelope of holomorphy of Ω.

Let H2(r) = {(z1, z2) ∈ ∆2; |z1| < r or |z2| > 1− r} (0 < r < 1) denote
the 2-dimensional Hartogs domain. It is well known ([24] or [14]) that X
has the (HEP) iff every holomorphic mapping f : H2(r) → X extends
holomorphically over ∆2.

The class of complex spaces having the (HEP) is large. It contains taut
complex spaces [8], complex Lie groups [1], complete hermitian complex
manifolds with non-positive holomorphic sectional curvature [24]. In partic-
ular, Ivashkovich [14] showed that a holomorphically convex Kähler mani-
fold has the (HEP) iff it contains no rational curves. This was generalized
to holomorphically convex Kähler spaces by D. D. Thai [26].

2.2. Modifying the definition of disc-convexity (see [19] or [24]), we say
that a complex space X is weakly disc-convex if every sequence {fn} ⊂
H(∆,X) converges in H(∆,X) whenever the sequence {fn|∆∗} ⊂ H(∆∗,X)
converges in H(∆∗,X). Here, H(X,Y ) denotes the space of holomorphic
mappings from a complex space X into a complex space Y equipped with
the compact-open topology, and ∆∗ = ∆ \ {0}.

2.3. Let G be an open subset of Cn. A function ϕ : G → [−∞,∞) is
called plurisubharmonic if

(i) ϕ is upper semicontinuous and it is not identically −∞ on any con-
nected component of G.

(ii) For every z0 ∈ G and a ∈ Cn, a 6= 0, and for every map τ : C→ Cn of
the form τ(z) = z0 +az, the function ϕ◦τ is, on every connected component
of τ−1(G) (which is a domain in C), either −∞ or subharmonic.

Concerning arbitrary complex spaces we make the following definition.
A plurisubharmonic function on a complex space X is a function ϕ : X →
[−∞,∞) having the following property. For every x ∈ X there exists an
open neighbourhood U of x and a biholomorphic map h : U → V onto a
closed complex subspace V of some domain G ⊂ Cm and a plurisubharmonic
function ϕ̃ : G→ [−∞,∞) such that ϕ|U = ϕ̃◦h (see Peternell [22, p. 225]).
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Some remarks should be made at this point. First, the definition of
plurisubharmonicity does not depend on the choice of local charts. Second,
Fornæss and Narasimhan proved [7] that an upper semicontinuous function
ϕ : X → [−∞,∞), not identically −∞ on any connected component of the
complex space X, is plurisubharmonic iff ϕ◦f is either subharmonic or −∞
for all holomorphic maps f : ∆→ X.

2.4. (i) Let Z be an open set in Cn and S ⊂ Z a subset. We say that S
is polar if for any x0 ∈ S there are an open neighbourhood U of x0 in Z and
a subharmonic function ϕ : U → [−∞,∞) such that S ∩ U ⊂ {ϕ = −∞} .

(ii) Let Z be an open set in Cn and S ⊂ Z a subset. We say that
S is pluripolar if for any x0 ∈ S there are an open neighbourhood U of
x0 in Z and a plurisubharmonic function ϕ : U → [−∞,∞) such that
S ∩ U ⊂ {ϕ = −∞}. If n = 1, then S is polar.

Note that there are polar (or pluripolar) subsets of ∆n which are not
(n, d)-sets: for instance, the subset (∆ \ {0})× {0} of ∆2.

On the other hand, it is well known [20] that for every d > 0 there exists
a Cantor subset S ⊂ [0, 1] such that Hd(S) = 0 and Hδ(S) > 0 for any
0 < δ < d. This implies that S is a (1, d)-set but S is not polar.

2.5. Let S be an (n, d)-set in ∆n. Assume that {i1, . . . , ik} ⊂ {1, . . . , n}
(i1 < . . . < ik, 1 ≤ k ≤ n − 1) and ω = (ωi1 , . . . , ωik) ∈ ∆k are such that
H2n−2k−2+d(Sω) = 0. Then Sω is an (n− k, d)-set in ∆n−k.

Indeed, this can be deduced immediately from

(Sω)ω
′

= {z ∈ ∆n−k−p; (ω′, z) ∈ Sω}
= {z ∈ ∆n−k−p; (ω, ω′, z) ∈ S} = S(ω,ω′).

2.6. The countable union of (n, d)-sets Sj , j = 1, 2, . . . , in ∆n is also an
(n, d)-set in ∆n.

This is an immediate consequence of the equality
( ∞⋃

j=1

Sj

)ω
=
∞⋃

j=1

Sωj .

2.7. Let X be a complex space. It is easy to see that X has the (n, d)-EP
iff the restriction R : H(∆n,X) → H(∆n \ S,X) is a homeomorphism for
every closed (n, d)-set S in ∆n.

2.8. Let X be a complex space and K be a compact subset of X. The
plurisubharmonically convex hull of K (in X) is the set

K̂PSH(X) = {x ∈ X;u(x) ≤ supu(K) for all u ∈ PSH(X)},
where PSH(X) is the set of all plurisubharmonic functions on X.

The complex space X is said to be pseudoconvex if for each compact
subset K of X, K̂PSH(X) is compact in X.
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2.9. (i) Let Ω ⊂ Cn be a domain and u : Ω → R be a C2-function. The
Levi form of u at z ∈ Ω is the Hermitian form

L(u)(z)(a) =
n∑

i,j=1

∂2u

∂zi∂zj
(z)aiaj , a = (a1, . . . , an) ∈ Cn.

The function u is said to be strictly plurisubharmonic in Ω if L(u)(z)(a) > 0
for all z ∈ Ω and a ∈ Cn \ {0}.

(ii) A bounded domain Ω ⊂ Cn is said to be strictly pseudoconvex if it
is of the form Ω = {z ∈ Cn; %(z) < 0} and d% 6= 0 on ∂Ω, where % is a
C2-function on a neighbourhood of Ω and % is strictly plurisubharmonic in
a neighbourhood of ∂Ω.

2.10. (i) A domain D ⊂ Cn is called hyperconvex if there exists a con-
tinuous plurisubharmonic exhaustion function % : D → (−∞, 0).

(ii) A bounded domain D ⊂ Cn is said to be strictly hyperconvex if there
exists a bounded domain Ω and a function % ∈ C(Ω, (−∞, 1)) ∩ PSH(Ω)
such that D = {z ∈ Ω; %(z) < 0}, % is exhaustive for Ω and for all real
numbers c ∈ [0, 1], the open set {z ∈ Ω; %(z) < c} is connected.

It is easy to see the following implications for any bounded domain in Cn:

strictly pseudoconvex ⇒ strictly hyperconvex

⇒ hyperconvex ⇒ pseudoconvex.

The converse implications are not true in general (see [4], [5], [6], [18]).

3. Proof of Theorem 1. We need the following

Lemma 1 (see [24]). Let X be a complex space. If X is weakly disc-
convex , then X has the (HEP).

Proof of Theorem 1. (⇒) Let S be a closed (1, d)-set in the open unit
disc ∆. Put S̃ = S × ∆n−1. It is easy to see that S̃ is a closed (n, d)-set
in ∆n. Assume that f : ∆ \S → X is a holomorphic mapping. Consider the
holomorphic mapping f̃ : ∆n \ S̃ → X given by f̃(z1, z2) = f(z1). By the
hypothesis, f̃ extends holomorphically to F̃ over ∆n. Then F (z1) = F̃ (z1, 0)
extends f over ∆.

Assume that a sequence {fj}∞j=1 ⊂ H(∆ \ S,X) converges uniformly
to a mapping f0 ∈ H(∆ \ S,X) in H(∆ \ S,X). It is easy to see that the
sequence {f̃j}∞j=1 ⊂ H(∆n\S̃,X) converges to a mapping f̃0 ∈ H(∆n\S̃,X)

in H(∆n \ S̃,X). By the hypothesis, the sequence {F̃j}∞j=1 ⊂ H(∆n,X)

of holomorphic extensions converges to the holomorphic extension F̃0 ∈
H(∆n,X) in H(∆n,X). Therefore, the sequence {Fj}∞j=1 ⊂ H(∆,X) also
converges to F0 ∈ H(∆,X) in H(∆,X).
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(⇐) The proof is by induction on the dimension n.

(i) First observe that X is weakly disc-convex. By Lemma 1, X has the
(HEP).

(ii) Given n ≥ 2. For every closed (n, d)-set S in an open set ∆n, we put

S′ = {z ∈ ∆n−1; {z} ×∆ ⊂ S}, S′′ = {w ∈ ∆; ∆n−1 × {w} ⊂ S}.
Then S′ and S′′ are closed in ∆n−1 and ∆, respectively.

We claim that S′ is an (n− 1, d)-set in ∆n−1 and S′′ is a (1, d)-set in ∆.
Indeed, by the hypothesis H2n−2+d(S) = 0, from the inclusion (S′×∆)∪

(∆n−1×S′′) ⊂ S it follows that H2(n−1)−2+d(S′) = 0 and Hd(S′′) = 0. Thus
S′′ is a (1, d)-set in ∆. Given now w ∈ ∆k (1 ≤ k ≤ n− 2), since

(S′)w = {z ∈ ∆n−1−k; (w, z) ∈ S′}(∗)
= {z ∈ ∆n−1−k; {(w, z)} ×∆ ⊂ S}

we have (S′)w ×∆ ⊂ Sw. This shows that if H2n−2k−2+d(Sw) = 0, then

H2(n−k−1)−2+d((S
′)w) = 0.

If Sw = ∆n−k then from (∗) we have (S′)w = ∆n−k−1. Thus S′ is an
(n− 1, d)-set in ∆n−1.

On the other hand, Sw = {z ∈ ∆n−1; (w, z) ∈ S} is a closed (n−1, d)-set
in ∆n−1 for every w ∈ ∆ \ S′′, and Sz = {w ∈ ∆; (z, w) ∈ S} is a closed
(1, d)-set in ∆ for every z ∈ ∆n−1 \ S′ (see 2.5).

(iii) Now assume that f is a holomorphic mapping from (∆n−1×∆) \ S
into X. For each w 6∈ S′′, consider the holomorphic mapping fw : ∆n−1 \
Sw → X given by fw(z) = f(z, w) for all z ∈ ∆n−1 \ Sw. By the inductive
hypothesis, fw extends to a mapping f̃w ∈ H(∆n−1,X). Similarly for each
z 6∈ S′, the holomorphic mapping fz : ∆ \Sz → X given by fz(w) = f(z, w)
for all w ∈ ∆ \ Sz extends to a mapping f̃z ∈ H(∆,X). Thus we can define
the mappings

f1 : (∆n−1 \ S′)×∆→ X by f1(z, w) = f̃z(w),

f2 : ∆n−1 × (∆ \ S′′)→ X by f2(z, w) = f̃w(z).

We now prove that f1 is continuous on (∆n−1 \S′)×∆. Indeed, assume
that {(zk, wk)} ⊂ (∆n−1\S′)×∆ and (zk, wk)→ (z0, w0) ∈ (∆n−1\S′)×∆.
Put P = (

⋃∞
k=1 S

zk
)
∪ Sz0 . Then P is a closed (1, d)-set in ∆. Since {fzk}

converges to fz0 in H(∆\P,X), by the inductive hypothesis {f̃zk} converges
to f̃z0 in H(∆,X). Hence f̃zk(wk) = f1(zk, wk) → f̃z0(w0) = f1(z0, w0).
Thus f1 is continuous on (∆n−1 \ S′)×∆.

Similarly, f2 is continuous on ∆n−1 × (∆ \ S′′).
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Since (∆n−1 ×∆) \ S is dense in (∆n−1 \ S′)× (∆ \ S′′) and f1 = f2 on
(∆n−1 ×∆) \ S, we have f1 = f2 on (∆n−1 \ S′)× (∆ \ S′′).

This implies that the mapping f1 satisfies the following: (f1)z = f̃z ∈
H(∆,X) for all z ∈ ∆n−1 \ S′ and (f1)w = f̃w|∆n−1\S′ ∈ H(∆n−1 \ S′,X)
for all w ∈ ∆\S′′, where (f1)z and (f1)w are given by (f1)z(w) = (f1)w(z) =
f1(z, w). By a theorem of Shiffman [25], f1 is holomorphic. Similarly, f2 is
also holomorphic.

We define the holomorphic mapping f : ((∆n−1 \ S′) × ∆) ∪ (∆n−1 ×
(∆ \ S′′))→ X by f |(∆n−1\S′)×∆ = f1 and f |∆n−1×(∆\S′′) = f2.

On the other hand, since H2(n−1)−2+d(S′) = Hd(S′′) = 0, by [25], we
have

[((∆n−1 \ S′)×∆) ∪ (∆n−1 × (∆ \ S′′))]̂= ∆n.

It follows that f extends to a holomorphic mapping f̂ : ∆n → X, i.e. f̂ is a
holomorphic extension of f over ∆n.

(iv) Now assume that the sequence {fk} ⊂ H((∆n−1 ×∆) \ S,X) con-
verges uniformly to f ∈ H((∆n−1×∆) \S,X). We must prove that f̂k → f̂
in H(∆n−1 ×∆,X).

First of all, by the inductive hypothesis, we have

H(∆n,X) ∼= H(∆,H(∆n−1,X)) ∼= H(∆,H(∆n−1 \ S′,X))
∼= H((∆n−1 \ S′)×∆,X).

Note that the first identification φ1 : H(∆n,X) → H(∆,H(∆n−1,X)) is
given by φ1(h)(w) : z 7→ h(z, w), the second φ2 : H(∆,H(∆n−1,X)) →
H(∆,H(∆n−1 \ S′,X)) by φ2(h)(w) = h(w)|∆n−1\S′ , and the third φ3 :
H(∆,H(∆n−1\S′,X))→ H((∆n−1\S′)×∆,X) by φ3(h) : (∆n−1 \ S′)×∆
3 (z, w) 7→ h(w)(z).

Thus in order to prove the above assertion, it suffices to show that f̂k → f̂
in H((∆n−1 \ S′)×∆,X), i.e. we must prove that if {zk} ⊂ ∆n−1 \ S′ and
{wk} ⊂ ∆ are such that zk → z0 ∈ ∆n−1 \ S′ and wk → w0 ∈ ∆ then
f̂k(zk, wk)→ f̂(z0, w0).

Indeed, as before, we consider the following holomorphic mappings:

fk,zk : ∆ \ Szk → X, w 7→ fk(zk, w),

fz0 : ∆ \ Sz0 → X, w 7→ f(z0, w),

f̂k,zk : ∆→ X, w 7→ f̂k(zk, w),

f̂z0 : ∆→ X, w 7→ f̂(z0, w).

Put P = (
⋃∞
k=1 S

zk)∪Sz0 . Then P is a closed (1, d)-set in ∆. Since fk,zk →
fz0 in H(∆ \ P,X), by the inductive hypothesis, we have f̂k,zk → f̂z0 in
H(∆,X). Thus f̂k,zk(wk) = f̂k(zk, wk)→ f̂z0(w0) = f̂(z0, w0).
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Remark 1. We now introduce some new notions.

(i) We say that a complex space X has the strong (n, d)-EP if the
restriction map R : H(∆n,X) → H(∆n \ S,X) is a homeomorphism for
any closed set S ⊂ ∆n which is of locally finite (2n − 2 + d)-dimensional
Hausdorff measure, where 0 < d ≤ 1. Unfortunately, we do not know
whether Theorem 1 remains true for the strong (n, d)-EP with 0 <
d ≤ 1.

(ii) We say that a complex space X has the n-PEP if the restriction map
R : H(∆n,X) → H(∆n \ S,X) is homeomorphic for any closed polar set
S ⊂ ∆n. Unfortunately, we also do not know whether Theorem 1 remains
true for the n-PEP.

(iii) We say that a complex space X has the n-PPEP if the restriction
map R : H(∆n,X)→ H(∆n\S,X) is homeomorphic for any closed pluripo-
lar set S ⊂ ∆n. In [27] the first named author proved Theorem 1 for the
n-PPEP.

4. Proof of Proposition 2. We need the following

Lemma 2. Let S be a closed subset of ∆ of Hausdorff measure H1(S)=0.
Then for every z0 ∈ S, there exists r > 0 such that

{z ∈ C; |z − z0| = r} ⊂ ∆ \ S.

Proof. Consider the function σ : C → [0,∞) given by σ(z) = |z − z0|.
Then H1(σ(S)) ≤ H1(S) = 0. It follows that R \ σ(S) is dense in R. Thus
there exists r > 0 such that {z ∈ C : |z − z0| = r} ⊂ ∆ \ S.

Lemma 3. Let S be a closed subset of ∆ with H1(S) = 0. Then every
function f holomorphic and uniformly bounded in ∆ \ S has a holomorphic
continuation into ∆.

Proof. The proof is given in [2, A 1.4, Thm., p. 299] (see also [9, Thm. 1.4,
p. 10 and Thm. 2.1, p. 64]). For the reader’s convenience we repeat the
details.

Since S is nowhere dense in ∆, it suffices to prove a local statement: f
has a holomorphic continuation into a neighbourhood of an arbitrary point
of S, which we take as the coordinate origin.

By Lemma 2, there is r ∈ (0, 1) such that the circle γ : |z| = r does not
intersect S, and consequently Sr=S ∩∆r is compact, where ∆r={|z| < r}
⊂ ∆.

Given z ∈ ∆r \ Sr, put δ = dist(z, Sr) > 0. Since H1(Sr) = 0, for every
ε ∈ (0, δ/2) there exists a finite covering of Sr by discs disjoint from γ with
total sum of radii < ε. The union of these discs is denoted by Vε, and we
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put Uε = ∆r \V ε. Then z ∈ Uε. Since f is holomorphic on the closure of Uε,
we have

f(z) =
1

2πi

( �

γ

f(ζ)
ζ − z dζ −

�

∂Vε

f(ζ)
ζ − z dζ

)

On the other hand, we have
∣∣∣∣

�

∂Vε

f(ζ)
ζ − z dζ

∣∣∣∣ ≤M · 2πε ·
1

δ − ε → 0 as ε→ 0, where M = sup
∆\S
|f |.

Thus the function f is represented on ∆r \Sr by the first integral only. But
this integral is holomorphic in the whole disc ∆r, hence it determines the
required holomorphic continuation of f into a neighbourhood of 0.

Proof of Proposition 2. Let Ω be a strictly hyperconvex domain in CN .
By Theorem 1, it suffices to show that Ω has the (1, d)-EP. The proof

will be divided into two steps: (i) we show that any holomorphic mapping
f : ∆ \ S → Ω extends to a holomorphic mapping f̂ : ∆→ Ω; (ii) we prove
the local uniform convergence of the sequence {f̂k}.

(i) Let f : ∆ \ S → Ω be any holomorphic mapping, where S is any
closed (1, d)-set of ∆. Put f = (f1, . . . , fN ). By Lemma 3, fj extends to
a holomorphic function f̂j on ∆. Then f̂ = (f̂1, . . . , f̂N ) ∈ H(∆,Ω). Let %
be a plurisubharmonic exhaustion function of Ω̃ such that Ω = {z ∈ Ω̃;
%(z) < 0}, where Ω̃ is a bounded neighbourhood of Ω in CN . Put h = % ◦ f̂ .
Then h is subharmonic on ∆. Since h is negative on ∆ \ S , it follows that
h ≤ 0 on ∆. Suppose that there exists z0 ∈ S such that f̂(z0) ∈ ∂Ω.
Then h(z0) = 0. The maximum principle implies h = 0 on ∆. This is a
contradiction, and hence f ∈ H(∆,Ω).

(ii) Let {fk} be a sequence in H(∆ \ S,Ω) which converges locally uni-
formly to f ∈ H(∆ \ S,Ω). Given x0 ∈ S, by Lemma 2, there exists a
neighbourhood V of x0 in ∆ such that ∂V ∩S = ∅. Since {f̂k|∂V } converges
uniformly to f̂ |∂V , the maximum principle implies the uniform convergence
of {f̂k|V } with limit f̂ |V . Thus f̂k → f̂ in H(∆,Ω).

5. Proof of Proposition 3. (⇐) Assume that X has the (n, d)-EP,
ϕ ∈ PSH(X) and ϕ(x) > −∞ for all x ∈ X. We must prove that Ωϕ(X)
has the (n, d)-EP.

By Theorem 1, it suffices to show that Ωϕ(X) has the (1, d)-EP. The
proof will be divided into two steps: (i) we show that any holomorphic
mapping f : ∆ \ S → Ωϕ(X) extends to a holomorphic mapping f̂ : ∆ →
Ωϕ(X); (ii) we prove the local uniform convergence of the sequence {f̂k}.
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(i) Let f = (f1, f2) : ∆ \ S → Ωϕ(X) be a holomorphic mapping,
where S is a closed (1, d)-set of ∆. By the hypothesis, f1 extends to a
holomorphic mapping f̂1 : ∆→ X. Let x0 ∈ ∆ be an arbitrary point. Since
(ϕ ◦ f̂1)(x0) > −∞, it follows from [13, Corollary 4.4.6, p. 98] that e−aϕ◦f̂1

is locally integrable at x0 for every a > 0.
We now recall the following result on extension:

Theorem [11, Theorem 1, (d)]. Suppose S is a closed subset of an open
set Z ⊂ Cn and f ∈ Hol(Z \ S). Let 2 ≤ p < ∞ and p′ be the conjugate
exponent (1/p+ 1/p′ = 1). If f ∈ Lploc(Z) and H2n−p′(S) is locally finite,
then f ∈ Hol(Z).

Take p > 2 such that (p− 2)/(p− 1) > d and take a neighbourhood U
of x0 in ∆ such that �

U

e−pϕ◦f̂1(x) dx <∞.

From the inequality |f2(x)|p < e−pϕ◦f̂1(x) for all x ∈ U \ S, we have f2 ∈
Lploc(∆). On the other hand, since

H2−p′(S) = H(p−2)/(p−1)(S) ≤ CHd(S) = 0,

by the above-mentioned result of Harvey–Polking, the holomorphic mapping
f2|U\S extends holomorphically over U . Thus f2 extends to a holomorphic
function f̂2 : ∆→ C. Define the holomorphic mapping

f̂ = (f̂1, f̂2) : ∆→ X × C.
It remains to check that f̂(∆) ⊂ Ωϕ(X), or equivalently,

log |f̂2(x)|+ ϕ(f̂1(x)) < 0 for all x ∈ ∆.
Given x0 ∈ S, by Lemma 2, there exists a neighbourhood V of x0 in ∆

such that ∂V ∩S = ∅. Applying the maximum principle to the subharmonic
function log |f̂2|+ ϕ(f̂1), we get log |f̂2(x0)|+ ϕ(f̂1(x0)) < 0.

(ii) Let {fk = (fk1 , f
k
2 )} be a sequence in H(∆ \ S,Ωϕ(X)) which con-

verges locally uniformly to f = (f1, f2) ∈ H(∆ \S,Ωϕ(X)). By the hypoth-
esis, f̂k1 → f̂1 in H(∆,X).

Given x0 ∈ S, choose a small enough neighbourhood V of f̂1(x0) in X
such that V is isomorphic to an analytic set in an open ball of Cm. Take
a relatively compact neighbourhood W of x0 in f̂−1

1 (V ). Let k0 be chosen
such that f̂k1 (W ) ⊂ V for every k ≥ k0. Then f̂k(W ) ⊂ π−1(V ) ⊂ V ×C for
every k ≥ k0, where π : Ωϕ(X) → X is the canonical projection. Without
loss of generality we may assume that V ×C ⊂ Cm×C. By Lemma 2, we can

choose a neighbourhood W̃ of x0 in W such that W̃ ⊂W and ∂W̃ ∩ S = ∅.
Since {f̂k|

∂W̃
} converges uniformly to f̂ |

∂W̃
, the maximum principle applied
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for all coordinates yields the uniform convergence of {f̂k|
W̃
} with limit f̂ |

W̃
.

Thus f̂k → f̂ in H(∆,Ωϕ(X)).

(⇒) Assume that Ωϕ(X) has the (n, d)-EP.

(i) Consider the holomorphic mapping θ : X → Ωϕ(X) given by θ(x) =
(x, 0) for each x ∈ X. Then θ is a biholomorphism from X onto θ(X). Since
θ(X) is a closed subspace of Ωϕ(X), θ(X) has the (n, d)-EP. Thus X has
the (n, d)-EP.

(ii) On the other hand, since Ωϕ(X) has the (n, d)-EP, by Theorem 1,
Ωϕ(X) has the (1, d)-EP, and hence Ωϕ(X) has the ∆∗-EP. Here a complex
space M is said to have the ∆∗-EP if every holomorphic mapping f : ∆∗

→ M extends holomorphically over ∆. Therefore Ωϕ(X) contains no com-
plex lines [26]. If ϕ(x0) = −∞ for some x0 ∈ X, then {x0} × C ⊂ Ωϕ(X).
This is impossible. Hence ϕ 6= −∞ on X.

(iii) We now show that ϕ is plurisubharmonic on X. Indeed, by a theorem
of Fornæss and Narasimhan [7], it suffices to check that ϕ◦σ is subharmonic
on ∆ for every holomorphic mapping σ : ∆ → X. Let g = (g1, g2) : ∆∗ →
Ωψ(∆) be an arbitrary holomorphic mapping, where ψ := ϕ◦σ. By the Rie-
mann extension theorem, g1 extends to a holomorphic mapping ĝ1 : ∆→∆.
Consider the holomorphic mapping

f := (σ ◦ g1, g2) : ∆∗ → Ωϕ(X).

By the hypothesis, f extends to a holomorphic mapping

f̂ := ( ̂σ ◦ g1, ĝ2) : ∆→ Ωϕ(X).

Since ̂σ ◦ g1 = σ ◦ ĝ1 on ∆∗, we have ̂σ ◦ g1 = σ ◦ ĝ1 on ∆. Then

|ĝ2(0)| < e−ϕ(σ̂◦g1(0)) = e−(ϕ◦σ)(ĝ1(0)) = e−ψ(ĝ1(0)).

This implies that ĝ := (ĝ1, ĝ2) : ∆→ Ωψ(∆) is a holomorphic extension of g.
Thus Ωψ(∆) has the ∆∗-EP. But a domain in Cn with the ∆∗-EP is weakly
disc-convex (simply extend the limit mapping and then apply the maximum
principle for all coordinates). Thus Ωψ(∆), which is an open subset in C2, is
weakly disc-convex. By Lemma 1, Ωψ(∆) has the (HEP). This implies the
pseudoconvexity of Ωψ(∆) [23] and consequently the subharmonicity of ψ.
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