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New versions of curvature and torsion formulas
for the complete lifting of a

linear connection to Weil bundles

by A. Ntyam and J. Wouafo Kamga (Yaoundé)

Abstract. New versions of Slovák’s formulas expressing the covariant derivative and
curvature of the linear connection TAΓ are presented.

1. Introduction. Let TA be a Weil functor and consider a linear con-
nection Γ on a vector bundle (E,M, π); one defines (see [3] or [7]) the linear
connection TAΓ on (TAE, TAM,TAπ) by

TAΓ = κE ◦ TAΓ ◦ (κ−1
M ×TAM idTAE) : TTAM ×TAM TAE → TTAE,

where κ : TAT → TTA is the canonical flow natural equivalence.
The main results of this paper are Propositions 6 and 7 giving new

versions of formulas expressing the covariant derivative and curvature of
TAΓ . In the case E = TM , we obtain some results of [2] and [1] (Corollaries 3
and 4).

2. Weil functor

2.1. Weil algebra

Definition 1. A Weil algebra is a finite-dimensional quotient of the
algebra of germs Ep = C∞0 (Rp,R) (p ∈ N∗).

We denote by Mp the maximal ideal of Ep.
Example 1. (1) R is a Weil algebra since it is canonically isomorphic

to the quotient Ep/Mp.
(2) Jr0 (Rp,R) = Ep/Mr+1

p is a Weil algebra.

2.2. Covariant description of a Weil functor TA :Mf → FM. We write
Mf for the category of differentiable manifolds and mappings of class C∞;
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furthermore, FM is the category of fibered manifolds and fibered manifold
morphisms.

LetA=Ep/I be a Weil algebra and consider a manifoldM . In C∞(Rp,M)
one defines an equivalence relationR by: ϕRψ if and only if ϕ(0) = ψ(0) = x
and for any [h]x ∈ C∞x (M,R), [h]x ◦ [ψ]0 − [h]x ◦ [ϕ]0 ∈ I.

The equivalence class of ϕ is denoted by jAϕ and is called the A-velocity
at 0 of ϕ; the class jAϕ depends only on the germ of ϕ at 0. The quotient
C∞(Rp,M)/R is denoted by TAM .

The mapping πA,M : TAM →M , jAϕ 7→ ϕ(0), defines a bundle structure
on TAM and for any differentiable mapping f : M → N , one defines a bundle
morphism TAf : TAM → TAN (over f) by TAf(jA(ϕ)) = jA(f ◦ ϕ).

The correspondence TA : Mf → FM is a product preserving bundle
functor (see [3]).

Example 2. If A = Jr0 (Rp,R), then TA is equivalent to the functor T rp
of (p, r)-velocities, and if A = Ep/M2

p, then TA = T , the tangent bundle
functor.

2.3. The canonical flow-natural equivalence. Let TA, TB be two Weil
functors. Our purpose here is to make explicit a natural equivalence

κ : TA ◦ TB → TB ◦ TA.
Lemma 1 ([3]). Let M be a manifold. For any ζ = jAϕ ∈ TATBM , there

is a differentiable mapping Φ : Rp × Rq → M such that ϕ(z) = jBΦz in a
neighbourhood of 0 ∈ Rp.

By this lemma, one defines κ : TA ◦ TB → TB ◦ TA as follows:

κM (ζ) = jBη,

where η : Rq → TAM , t 7→ jAΦ
t. It is a well-defined natural equivalence. In

particular, for TB = T , we obtain the canonical flow-natural equivalence.

3. Prolongations of tensor fields of type (1, s). In this section, A
is a Weil algebra, i.e. Ep/I with Mp ⊃ I ⊃Mr+1

p and r minimal; VB is the
category of vector bundles and vector bundle homomorphisms. The module
of differentiable sections of a vector bundle (E,M, π) is denoted here by
Sec(M,E).

3.1. The functor TA : VB → VB. It is defined as follows:

TA(E,M, π) = (TAE, TAM,TAπ), TA(f, f) = (TAf, TAf)(1)

see ([2] and [4]).

3.2. Natural transformations χα : TA → TA. Consider a vector bundle
(E,M, π). For any multi-index α ∈ Np such that |α| ≤ r, we put

(χα)E(jAf) = jA(zαf),(2)
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where f : Rp→E is C∞ and zαf : Rp→E, z 7→ zαf(z) ∈ Eπ(f(0)). One
defines in this way some natural transformations χα : TA → TA, since each
(χα)E is a vector bundle morphism over idTAM .

Proposition 1. For any multi-index α ∈ Np such that |α| ≤ r, the
diagram

TATE TATE

TTAE TTAE

κE
��

(χα)TE //

κE
��T ((χα)E) //

is commutative, where κ : TAT → TTA is the canonical flow-natural equiv-
alence.

3.3. Prolongation of tensor fields of type (1, 0). Consider a VB-object
(E,M, π) and a differentiable section S : M → E. One defines the following
prolongations of S on (TAE, TAM,TAπ):

(3) S(0) =TAS (since (χ0)E =idTAE), S(α) =(χα)E ◦ TAS, 1≤ |α| ≤ r,
where χα is the natural transformation (2). If |α| > r, then S(α) := 0TAE .

Let ϕ : π−1(U) → U × Rn be a local trivialisation of E and εj(x) =
ϕ−1(x, ej), 1 ≤ j ≤ n, a basis of sections of E over U associated to ϕ
(here (ej), 1 ≤ j ≤ n, is the usual basis of Rn). Using the identification
TA(U × Rn) ∼= TAU × TARn, one defines a family of sections

(εj,α), |α| ≤ r, 1 ≤ j ≤ n,
of TAE over TAU by

εj,α(x̃) = TAϕ
−1(x̃, ejα),(4)

where ejα = jA(zαej). Then

ε
(α)
j = εj,α, 1 ≤ j ≤ n and |α| ≤ r,

and we deduce

Proposition 2. The S(α), |α| ≤ r, and S ∈ Sec(M,E) generate the
C∞(TAM)-module Sec(TAM,TAE).

3.4. Prolongation of vector fields. Let TA be a Weil functor and κ :
TA ◦ T → T ◦ TA the canonical flow-natural equivalence. If X is a vector
field on M , one defines

(
p+r
r

)
vector fields on TAM by

Xc = κM ◦ TAX, X(α) = κM ◦ (χα)TM ◦ TAX for 1 ≤ |α| ≤ r.(5)

Proposition 3. Let TA be a Weil functor and M a manifold.

(i) The vector fields X(α) for |α| ≤ r and X ∈ X(M) generate X(TAM)
over C∞(TAM).
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(ii) For any X,Y ∈ X(M), we have

[X(α), Y (β)] =
{

[X,Y ](α+β) if 0 ≤ |α+ β| ≤ r,
0 if |α+ β| > r.

Proof. This is a modification of some result of [2].

3.5. Natural transformations χα : TA ◦ ⊗1
s → ⊗1

s ◦ TA. They are defined
as follows:

(χα)E(jAϕ)(jAη1, . . . , jAηs) = (χα)E(jA(ϕ ∗ (η1, . . . , ηs)))(6)

for any vector bundle E, where ϕ : Rp → ⊗1
sE, η1, . . . , ηs : Rp→E are C∞

and

ϕ ∗ (η1, . . . , ηs) : Rp → E, z 7→ ϕ(z)(η1(z), . . . , ηs(z)).

3.6. Prolongation of tensor fields of type (1, s). Let ϕ be a tensor field
of type (1, s) on E. We put

ϕ(α) = (χα)E ◦ TAϕ, 0 ≤ |α| ≤ r;(7)

then ϕ(α) is a tensor field of type (1, s) on TAE. In particular if E = TM ,
we put

ϕ(α) = (⊗1
sκM ) ◦ (χα)TM ◦ TAϕ, 0 ≤ |α| ≤ r;(8)

then ϕ(α) is a tensor field of type (1, s) on TAM .

Proposition 4. Let ϕ be a tensor field on E of type (1, s); then ϕ(α),
0 ≤ |α| ≤ r, is the unique tensor field on (TAE, TAM,TAπ) of type (1, s)
such that

ϕ(α)(S(α1)
1 , . . . , S(αs)

s ) = (ϕ(S1, . . . , Ss))(α+α1+...+αs)(9)

for any S1, . . . , Ss∈Sec(M,E) and α1, . . . , αs∈Np with 0≤|α1|, . . . , |αs|≤r.

Proof. ϕ(α) is unique by Proposition 2; moreover

ϕ(α)(S(α1)
1 , . . . , S(αs)

s )(jAη)

= ϕ(α)(jAη)(S(α1)
1 (jAη), . . . , S(αs)

s (jAη))

= (χα)E(jA(ϕ ◦ η))(S(α1)
1 (jAη), . . . , S(αs)

s (jAη)) by (7)

= (χα)E(jA(ϕ ◦ η))(jA(zα1S1 ◦ η), . . . , jA(zαsSs ◦ η)) by (2), (3)

= (χα)E(jA((ϕ ◦ η) ∗ (zα1S1 ◦ η, . . . , zαsSs ◦ η))) by (6)

= (χα)E(jA(zα1+...+αs(ϕ ◦ η) ∗ (S1 ◦ η, . . . , Ss ◦ η)))
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= jA(zα+α1+...+αs(ϕ ◦ η) ∗ (S1 ◦ η, . . . , Ss ◦ η)) by (2)

= jA(zα+α1+...+αsϕ(S1, . . . , Ss) ◦ η)

= (χα+α1+...+αs)E(jA(ϕ(S1, . . . , Ss) ◦ η)) by (2)

= (χα+α1+...+αs)E(TAϕ(S1, . . . , Ss)(jAη))

= (ϕ(S1, . . . , Ss))(α+α1+...+αs)(jAη).

Corollary 1. Let ϕ be a tensor field on M of type (1, s); then ϕ(α), 0 ≤
|α| ≤ r, is the unique tensor field on TAM of type (1, s) such that

ϕ(α)(X(α1)
1 , . . . ,X(αs)

s ) = (ϕ(X1, . . . ,Xs))(α+α1+...αs)(10)

for any X1, . . . ,Xs∈X(M) and α1, . . . , αs∈Np satisfying 0≤|α1|, . . . , |αs|≤r.
3.7. Prolongations of sections of the vector bundle

∧s T ∗M ⊗
(⊗1

1E) over M

3.7.1. Canonical morphisms χα,E : TA(
∧s T ∗M⊗(⊗1

1E))→ ∧s T ∗TAM
⊗ (⊗1

1TAE). Let (E,M, π) be a vector bundle. One defines some vector
bundle morphisms over TAM ,

χα,E : TA(
∧sT ∗M ⊗ (⊗1

1E))→ ∧sT ∗TAM ⊗ (⊗1
1TAE), 0 ≤ |α| ≤ r,

with natural transformations

χα : TA ◦ ⊗1
1 → ⊗1

1 ◦ TA, 0 ≤ |α| ≤ r,
by

χα,E(jAΦ)(κM (jAϕ1), . . . , κM (jAϕs)) = (χα)E(jA(Φ∗(ϕ1, . . . , ϕs))),(11)

where Φ : Rp → ∧sT ∗M ⊗ (⊗1
1E), ϕi : Rp → TM, 1 ≤ i ≤ s, are C∞ and

Φ ∗ (ϕ1, . . . , ϕs) : Rp → ⊗1
1E, z 7→ Φ(u)(ϕ1(z), . . . , ϕs(z)).

3.7.2. Prolongation of sections. Let (E,M, π) be a vector bundle and
R an E∗ ⊗ E-valued differential form on M of degree s. One defines a
(TAE)∗ ⊗ TAE-valued differential form R(α) on TAM of degree s by

R(α) = χα,E ◦ TAR, 0 ≤ |α| ≤ r.(12)

Remark 1. Assume that E = TM . We put

R(α) =
∧s idT ∗TAM ⊗(⊗1

1κM ) ◦ χα,TM ◦ TAR(13)

=
∧s idT ∗TAM ⊗(⊗1

1κM ) ◦R(α).

This is a T ∗TAM ⊗ TTAM -valued differential form on TAM of degree s.
We denote R(0) by Rc and call it the canonical lift (or complete lift) of R
to TAM .
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Proposition 5. R(α) is the unique (TAE)∗ ⊗ TAE-valued differential
form on TAM of degree s such that

R(α)(X(β1)
1 , . . . ,X(βs)

s )S(γ) = (R(X1, . . . ,Xs)S)(α+β1+...+βs+γ)

for any X1, . . . ,Xs∈X(M), S∈Sec(M,E) and any multi-indices β1, . . . , βs,
γ ∈ Np satisfying 0 ≤ |β1|, . . . , |βs|, |γ| ≤ r.

Proof. We just deal with the case s = 2. Put

K = χα,E(jA(R ◦ η))(κM(jA(uβ1X1 ◦ η)), κM(jA(uβ2X2 ◦ η)))S(γ)(jAη);
then

(R(α)(X(β1)
1 ,X

(β2)
2 )S(γ))(jAη)

= R(α)(jAη)(X(β1)
1 (jAη),X(β2)

2 (jAη))S(γ)(jAη)

= K by (2), (5)

= (χα)E(jA(R ◦ η ∗ (zβ1X1 ◦ η, zβ2X2 ◦ η)))(jA(zγS ◦ η)) by (11)

= (χα)E(jA((R ◦ η ∗ (zβ1X1 ◦ η, zβ2X2 ◦ η)) ∗ zγS ◦ η)) by (6)

= (χα)E(jA(zβ1+β2+γR(X1,X2)S ◦ η))

= (χα)E((χβ1+β2+γ)E(jA(R(X1,X2)S ◦ η)))

= (χα+β1+β2+γ)E ◦ TA(R(X1,X2)S)(jAη)

= (R(X1,X2)S)(α+β1+β2+γ)

for any jAη ∈ TAM . The uniqueness of R(α) follows from Proposition 3.

Corollary 2. Let R be an s-differential form on TAM with values in
T ∗M ⊗TM . Then R(α) is the unique T ∗TAM ⊗TTAM -differential form on
TAM of degree s such that

R(α)(X(β1)
1 , . . . ,X(βs)

s )Y (γ) = (R(X1, . . . ,Xs)Y )(α+β1+...βs+γ)

for any X1, . . . ,Xs, Y ∈ X(M) and any multi-indices β1, . . . βs, γ ∈ Np sat-
isfying 0 ≤ |β1|, . . . , |βs|, |γ| ≤ r.

4. Main results. We denote by Φ the vertical projection and by K the
connector of a linear connection Γ on a vector bundle (E,M, π).

Proposition 6. Let Γ be a linear connection on a vector bundle
(E,M, π), ∇ the covariant derivative associated to Γ and ∇̃ the covariant
derivative associated to TAΓ . Then TAΓ is the unique linear connection on
(TAE, TAM,TAπ) such that

∇̃X(α)S(β) =
{

(∇XS)(α+β), α, β ∈ Np, 0 ≤ |α+ β| ≤ r,
0, α, β ∈ Np, |α+ β| > r,

where S ∈ Sec(M,E) and X ∈ X(M).
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Proof. TAΓ is unique by Propositions 2 and 3(i); moreover

∇̃X(α)S(β) = TAK ◦ κ−1
E ◦ T (S(β)) ◦X(α)

= TAK ◦ κ−1
E ◦ T (S(β)) ◦ κM ◦ (χα)TM ◦ TAX by (5)

= TAK ◦ κ−1
E ◦ T ((χβ)E ◦ TAS) ◦ κM ◦ (χα)TM ◦ TAX by (3)

= TAK ◦ κ−1
E ◦ T ((χβ)E) ◦ T (TAS) ◦ κM ◦ (χα)TM ◦TAX

= TAK ◦ κ−1
E ◦ T ((χβ)E) ◦ κE ◦ TA(TS)◦ (χα)TM ◦TAX

by the definition of κ

= TAK ◦ (χβ)TE ◦ TA(TS) ◦ (χα)TM ◦ TAX by Proposition 1

= TAK ◦ (χβ)TE ◦ (χα)TE ◦ TA(TS) ◦ TAX
= (χβ)E ◦ TAK ◦ (χα)TE ◦ TA(TS) ◦ TAX
= (χβ)E ◦ (χα)E ◦ TAK ◦ TA(TS) ◦ TAX
= (χα+β)E ◦ TA(∇XS).

Proposition 7. Let R∇ be the curvature tensor of a linear connection
Γ on (E,M, π) and ∇̃ the covariant derivative associated to TAΓ . Then the
curvature tensor R∇̃ of ∇̃ satisfies

R∇̃ = (R∇)(0).

Proof. Since R∇̃(X,Y )S = ∇̃X∇̃Y S−∇̃Y ∇̃XS−∇̃[X,Y ]S for any X,Y ∈
X(TAM) and S ∈ Sec(TAM,TAE), we apply Propositions 3(ii) and 6 to show
that R∇̃ satisfies the conclusion of Proposition 5.

Remark. In particular, let Γ be a linear connection on M (i.e. E =
TM); one can define a linear connection Γ c on TAM by

Γ c = TκM ◦ TAΓ ◦ (idTTAM ×TAMκ−1
M ),

which is called the canonical lift (or complete lift) of Γ to TAM . The re-
striction of Γ c to P 1M ⊂ T 1

mM (the frame bundle of M), m = dimM , was
studied in [1].

Corollary 3. Let Γ be a linear connection on M , ∇ the covariant
derivative associated to Γ, Γ c the canonical lift of Γ to TAM , and ∇c the co-
variant derivative associated to Γ c. Then Γ c is the unique linear connection
on TAM satisfying the identities

∇c
X(α)Y

(β) =
{

(∇XY )(α+β), α, β ∈ Np, 0 ≤ |α+ β| ≤ r,
0, α, β ∈ Np, |α+ β| > r,

where X,Y ∈ X(M).
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Corollary 4. Let T∇ and R∇ be the torsion and curvature tensors,
respectively , of a linear connection Γ on M , and let ∇c be the covariant
derivative of Γ c. Then the torsion T∇c and curvature R∇c tensors of ∇c are
the canonical lifts of T∇ and R∇ respectively , that is,

T∇c = (T∇)c, R∇c = (R∇)c.
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