New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles

by A. NTYAM and J. WOUAFO KAMGA (Yaoundé)

Abstract. New versions of Slovák's formulas expressing the covariant derivative and curvature of the linear connection $\mathcal{T}_A \Gamma$ are presented.

1. Introduction. Let T_A be a Weil functor and consider a linear connection Γ on a vector bundle (E, M, π) ; one defines (see [3] or [7]) the linear connection $\mathcal{T}_A\Gamma$ on $(T_AE, T_AM, T_A\pi)$ by

$$\mathcal{T}_A \Gamma = \kappa_E \circ T_A \Gamma \circ (\kappa_M^{-1} \times_{T_A M} \operatorname{id}_{T_A E}) : TT_A M \times_{T_A M} T_A E \to TT_A E,$$

where $\kappa: T_A T \to TT_A$ is the canonical flow natural equivalence.

The main results of this paper are Propositions 6 and 7 giving new versions of formulas expressing the covariant derivative and curvature of $\mathcal{T}_A \Gamma$. In the case E = TM, we obtain some results of [2] and [1] (Corollaries 3 and 4).

2. Weil functor

2.1. Weil algebra

DEFINITION 1. A Weil algebra is a finite-dimensional quotient of the algebra of germs $\mathcal{E}_p = C_0^{\infty}(\mathbb{R}^p, \mathbb{R}) \ (p \in \mathbb{N}^*).$

We denote by \mathcal{M}_p the maximal ideal of \mathcal{E}_p .

EXAMPLE 1. (1) \mathbb{R} is a Weil algebra since it is canonically isomorphic to the quotient $\mathcal{E}_p/\mathcal{M}_p$.

(2) $J_0^r(\mathbb{R}^p, \mathbb{R}) = \mathcal{E}_p / \mathcal{M}_p^{r+1}$ is a Weil algebra.

2.2. Covariant description of a Weil functor $T_A : \mathcal{M}f \to \mathcal{F}\mathcal{M}$. We write $\mathcal{M}f$ for the category of differentiable manifolds and mappings of class C^{∞} ;

²⁰⁰⁰ Mathematics Subject Classification: 58A05, 58A32.

Key words and phrases: Weil bundle, tensor field, linear connection, prolongations.

furthermore, \mathcal{FM} is the category of fibered manifolds and fibered manifold morphisms.

Let $A = \mathcal{E}_p/I$ be a Weil algebra and consider a manifold M. In $C^{\infty}(\mathbb{R}^p, M)$ one defines an equivalence relation \mathcal{R} by: $\varphi \mathcal{R} \psi$ if and only if $\varphi(0) = \psi(0) = x$ and for any $[h]_x \in C_x^{\infty}(M, \mathbb{R}), \ [h]_x \circ [\psi]_0 - [h]_x \circ [\varphi]_0 \in I$.

The equivalence class of φ is denoted by $j_A \varphi$ and is called the *A*-velocity at 0 of φ ; the class $j_A \varphi$ depends only on the germ of φ at 0. The quotient $C^{\infty}(\mathbb{R}^p, M)/\mathcal{R}$ is denoted by $T_A M$.

The mapping $\pi_{A,M}: T_AM \to M, j_A\varphi \mapsto \varphi(0)$, defines a bundle structure on T_AM and for any differentiable mapping $f: M \to N$, one defines a bundle morphism $T_Af: T_AM \to T_AN$ (over f) by $T_Af(j_A(\varphi)) = j_A(f \circ \varphi)$.

The correspondence $T_A : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is a product preserving bundle functor (see [3]).

EXAMPLE 2. If $A = J_0^r(\mathbb{R}^p, \mathbb{R})$, then T_A is equivalent to the functor T_p^r of (p, r)-velocities, and if $A = \mathcal{E}_p/\mathcal{M}_p^2$, then $T_A = T$, the tangent bundle functor.

2.3. The canonical flow-natural equivalence. Let T_A, T_B be two Weil functors. Our purpose here is to make explicit a natural equivalence

$$\kappa: T_A \circ T_B \to T_B \circ T_A.$$

LEMMA 1 ([3]). Let M be a manifold. For any $\zeta = j_A \varphi \in T_A T_B M$, there is a differentiable mapping $\Phi : \mathbb{R}^p \times \mathbb{R}^q \to M$ such that $\varphi(z) = j_B \Phi_z$ in a neighbourhood of $0 \in \mathbb{R}^p$.

By this lemma, one defines $\kappa: T_A \circ T_B \to T_B \circ T_A$ as follows:

$$\kappa_M(\zeta) = j_B \eta,$$

where $\eta : \mathbb{R}^q \to T_A M$, $t \mapsto j_A \Phi^t$. It is a well-defined natural equivalence. In particular, for $T_B = T$, we obtain the canonical flow-natural equivalence.

3. Prolongations of tensor fields of type (1, s). In this section, A is a Weil algebra, i.e. \mathcal{E}_p/I with $\mathcal{M}_p \supset I \supset \mathcal{M}_p^{r+1}$ and r minimal; \mathcal{VB} is the category of vector bundles and vector bundle homomorphisms. The module of differentiable sections of a vector bundle (E, M, π) is denoted here by $\mathcal{S}ec(M, E)$.

3.1. The functor $T_A : \mathcal{VB} \to \mathcal{VB}$. It is defined as follows:

(1) $T_A(E, M, \pi) = (T_A E, T_A M, T_A \pi), \quad T_A(\overline{f}, f) = (T_A \overline{f}, T_A f)$ see ([2] and [4]).

3.2. Natural transformations $\chi_{\alpha} : T_A \to T_A$. Consider a vector bundle (E, M, π) . For any multi-index $\alpha \in \mathbb{N}^p$ such that $|\alpha| \leq r$, we put

(2)
$$(\chi_{\alpha})_E(j_A f) = j_A(z^{\alpha} f),$$

where $f : \mathbb{R}^p \to E$ is C^{∞} and $z^{\alpha}f : \mathbb{R}^p \to E$, $z \mapsto z^{\alpha}f(z) \in E_{\pi(f(0))}$. One defines in this way some natural transformations $\chi_{\alpha} : T_A \to T_A$, since each $(\chi_{\alpha})_E$ is a vector bundle morphism over id_{T_AM} .

PROPOSITION 1. For any multi-index $\alpha \in \mathbb{N}^p$ such that $|\alpha| \leq r$, the diagram

$$\begin{array}{c|c} T_A TE & \xrightarrow{(\chi_\alpha)_{TE}} T_A TE \\ & & & \downarrow \\ & & & \downarrow \\ \kappa_E \\ TT_A E & \xrightarrow{T((\chi_\alpha)_E)} TT_A E \end{array}$$

is commutative, where $\kappa : T_A T \to TT_A$ is the canonical flow-natural equivalence.

3.3. Prolongation of tensor fields of type (1,0). Consider a \mathcal{VB} -object (E, M, π) and a differentiable section $S : M \to E$. One defines the following prolongations of S on $(T_A E, T_A M, T_A \pi)$:

(3)
$$S^{(0)} = T_A S$$
 (since $(\chi_0)_E = \operatorname{id}_{T_A E}$), $S^{(\alpha)} = (\chi_\alpha)_E \circ T_A S$, $1 \le |\alpha| \le r$,

where χ_{α} is the natural transformation (2). If $|\alpha| > r$, then $S^{(\alpha)} := 0_{T_A E}$.

Let $\varphi : \pi^{-1}(U) \to U \times \mathbb{R}^n$ be a local trivialisation of E and $\varepsilon_j(x) = \varphi^{-1}(x, e_j), 1 \leq j \leq n$, a basis of sections of E over U associated to φ (here $(e_j), 1 \leq j \leq n$, is the usual basis of \mathbb{R}^n). Using the identification $T_A(U \times \mathbb{R}^n) \cong T_A U \times T_A \mathbb{R}^n$, one defines a family of sections

$$(\varepsilon_{j,\alpha}), \quad |\alpha| \le r, \ 1 \le j \le n,$$

 $\varepsilon_{i,\alpha}(\widetilde{x}) = T_A \varphi^{-1}(\widetilde{x}, e_{i\alpha}),$

of $T_A E$ over $T_A U$ by (4)

where $e_{j\alpha} = j_A(z^{\alpha}e_j)$. Then

 $\varepsilon_{j}^{(\alpha)} = \varepsilon_{j,\alpha}, \quad 1 \leq j \leq n \text{ and } |\alpha| \leq r,$

and we deduce

PROPOSITION 2. The $S^{(\alpha)}$, $|\alpha| \leq r$, and $S \in Sec(M, E)$ generate the $C^{\infty}(T_AM)$ -module $Sec(T_AM, T_AE)$.

3.4. Prolongation of vector fields. Let T_A be a Weil functor and κ : $T_A \circ T \to T \circ T_A$ the canonical flow-natural equivalence. If X is a vector field on M, one defines $\binom{p+r}{r}$ vector fields on $T_A M$ by

(5)
$$X^{c} = \kappa_{M} \circ T_{A}X, \quad X^{(\alpha)} = \kappa_{M} \circ (\chi_{\alpha})_{TM} \circ T_{A}X \text{ for } 1 \le |\alpha| \le r.$$

PROPOSITION 3. Let T_A be a Weil functor and M a manifold.

(i) The vector fields $X^{(\alpha)}$ for $|\alpha| \leq r$ and $X \in \mathfrak{X}(M)$ generate $\mathfrak{X}(T_A M)$ over $C^{\infty}(T_A M)$. (ii) For any $X, Y \in \mathfrak{X}(M)$, we have

$$[X^{(\alpha)}, Y^{(\beta)}] = \begin{cases} [X, Y]^{(\alpha+\beta)} & \text{if } 0 \le |\alpha+\beta| \le r, \\ 0 & \text{if } |\alpha+\beta| > r. \end{cases}$$

Proof. This is a modification of some result of [2].

3.5. Natural transformations $\overline{\chi}_{\alpha} : T_A \circ \otimes_s^1 \to \otimes_s^1 \circ T_A$. They are defined as follows:

(6)
$$(\overline{\chi}_{\alpha})_{E}(j_{A}\varphi)(j_{A}\eta_{1},\ldots,j_{A}\eta_{s}) = (\chi_{\alpha})_{E}(j_{A}(\varphi*(\eta_{1},\ldots,\eta_{s})))$$

for any vector bundle E, where $\varphi : \mathbb{R}^p \to \otimes_s^1 E$, $\eta_1, \ldots, \eta_s : \mathbb{R}^p \to E$ are C^{∞} and

$$\varphi * (\eta_1, \dots, \eta_s) : \mathbb{R}^p \to E, \quad z \mapsto \varphi(z)(\eta_1(z), \dots, \eta_s(z)).$$

3.6. Prolongation of tensor fields of type (1, s). Let φ be a tensor field of type (1, s) on E. We put

(7)
$$\varphi^{(\alpha)} = (\overline{\chi}_{\alpha})_E \circ T_A \varphi, \quad 0 \le |\alpha| \le r;$$

then $\varphi^{(\alpha)}$ is a tensor field of type (1, s) on $T_A E$. In particular if E = TM, we put

(8)
$$\overline{\varphi}^{(\alpha)} = (\otimes_s^1 \kappa_M) \circ (\overline{\chi}_{\alpha})_{TM} \circ T_A \varphi, \quad 0 \le |\alpha| \le r;$$

then $\overline{\varphi}^{(\alpha)}$ is a tensor field of type (1, s) on $T_A M$.

PROPOSITION 4. Let φ be a tensor field on E of type (1, s); then $\varphi^{(\alpha)}$, $0 \leq |\alpha| \leq r$, is the unique tensor field on $(T_A E, T_A M, T_A \pi)$ of type (1, s) such that

(9)
$$\varphi^{(\alpha)}(S_1^{(\alpha_1)},\ldots,S_s^{(\alpha_s)}) = (\varphi(S_1,\ldots,S_s))^{(\alpha+\alpha_1+\ldots+\alpha_s)}$$

Proof. $\varphi^{(\alpha)}$ is unique by Proposition 2; moreover

for any $S_1, \ldots, S_s \in \mathcal{S}ec(M, E)$ and $\alpha_1, \ldots, \alpha_s \in \mathbb{N}^p$ with $0 \leq |\alpha_1|, \ldots, |\alpha_s| \leq r$.

$$\begin{split} \varphi^{(\alpha)}(S_1^{(\alpha_1)},\ldots,S_s^{(\alpha_s)})(j_A\eta) \\ &= \varphi^{(\alpha)}(j_A\eta)(S_1^{(\alpha_1)}(j_A\eta),\ldots,S_s^{(\alpha_s)}(j_A\eta)) \\ &= (\overline{\chi}_{\alpha})_E(j_A(\varphi \circ \eta))(S_1^{(\alpha_1)}(j_A\eta),\ldots,S_s^{(\alpha_s)}(j_A\eta)) \qquad \text{by (7)} \\ &= (\overline{\chi}_{\alpha})_E(j_A(\varphi \circ \eta))(j_A(z^{\alpha_1}S_1 \circ \eta),\ldots,j_A(z^{\alpha_s}S_s \circ \eta)) \qquad \text{by (2), (3)} \\ &= (\chi_{\alpha})_E(j_A((\varphi \circ \eta) * (z^{\alpha_1}S_1 \circ \eta,\ldots,z^{\alpha_s}S_s \circ \eta))) \qquad \text{by (6)} \\ &= (\chi_{\alpha})_E(j_A(z^{\alpha_1+\ldots+\alpha_s}(\varphi \circ \eta) * (S_1 \circ \eta,\ldots,S_s \circ \eta))) \end{split}$$

236

New versions of curvature and torsion formulas

$$= j_A(z^{\alpha+\alpha_1+\ldots+\alpha_s}(\varphi \circ \eta) * (S_1 \circ \eta, \ldots, S_s \circ \eta)) \quad \text{by (2)}$$

$$= j_A(z^{\alpha+\alpha_1+\ldots+\alpha_s}\varphi(S_1, \ldots, S_s) \circ \eta)$$

$$= (\chi_{\alpha+\alpha_1+\ldots+\alpha_s})_E(j_A(\varphi(S_1, \ldots, S_s) \circ \eta)) \quad \text{by (2)}$$

$$= (\chi_{\alpha+\alpha_1+\ldots+\alpha_s})_E(T_A\varphi(S_1, \ldots, S_s)(j_A\eta))$$

$$= (\varphi(S_1, \ldots, S_s))^{(\alpha+\alpha_1+\ldots+\alpha_s)}(j_A\eta). \bullet$$

COROLLARY 1. Let φ be a tensor field on M of type (1, s); then $\overline{\varphi}^{(\alpha)}$, $0 \leq |\alpha| \leq r$, is the unique tensor field on $T_A M$ of type (1, s) such that

(10)
$$\overline{\varphi}^{(\alpha)}(X_1^{(\alpha_1)},\ldots,X_s^{(\alpha_s)}) = (\varphi(X_1,\ldots,X_s))^{(\alpha+\alpha_1+\ldots\alpha_s)}$$

for any $X_1, \ldots, X_s \in \mathfrak{X}(M)$ and $\alpha_1, \ldots, \alpha_s \in \mathbb{N}^p$ satisfying $0 \leq |\alpha_1|, \ldots, |\alpha_s| \leq r$.

3.7. Prolongations of sections of the vector bundle $\bigwedge^s T^*M \otimes (\otimes_1^1 E)$ over M

3.7.1. Canonical morphisms $\chi_{\alpha,E} : T_A(\bigwedge^s T^*M \otimes (\otimes_1^1 E)) \to \bigwedge^s T^*T_AM \otimes (\otimes_1^1 T_A E)$. Let (E, M, π) be a vector bundle. One defines some vector bundle morphisms over T_AM ,

$$\chi_{\alpha,E}: T_A(\bigwedge^s T^*M \otimes (\otimes_1^1 E)) \to \bigwedge^s T^*T_AM \otimes (\otimes_1^1 T_AE), \quad 0 \le |\alpha| \le r,$$

with natural transformations

$$\overline{\chi}_{\alpha}: T_A \circ \otimes_1^1 \to \otimes_1^1 \circ T_A, \quad 0 \le |\alpha| \le r,$$

by

(11)
$$\chi_{\alpha,E}(j_A\Phi)(\kappa_M(j_A\varphi_1),\ldots,\kappa_M(j_A\varphi_s)) = (\overline{\chi}_{\alpha})_E(j_A(\Phi*(\varphi_1,\ldots,\varphi_s))),$$

where $\Phi: \mathbb{R}^p \to \bigwedge^s T^*M \otimes (\otimes_1^1 E), \ \varphi_i: \mathbb{R}^p \to TM, \ 1 \le i \le s, \text{ are } C^{\infty} \text{ and}$
 $\Phi*(\varphi_1,\ldots,\varphi_s): \mathbb{R}^p \to \otimes_1^1 E, \quad z \mapsto \Phi(u)(\varphi_1(z),\ldots,\varphi_s(z)).$

3.7.2. Prolongation of sections. Let (E, M, π) be a vector bundle and R an $E^* \otimes E$ -valued differential form on M of degree s. One defines a $(T_A E)^* \otimes T_A E$ -valued differential form $R^{(\alpha)}$ on $T_A M$ of degree s by

(12)
$$R^{(\alpha)} = \chi_{\alpha,E} \circ T_A R, \quad 0 \le |\alpha| \le r.$$

REMARK 1. Assume that E = TM. We put

(13)
$$\overline{R}^{(\alpha)} = \bigwedge^{s} \operatorname{id}_{T^{*}T_{A}M} \otimes (\otimes_{1}^{1} \kappa_{M}) \circ \chi_{\alpha, TM} \circ T_{A}R$$
$$= \bigwedge^{s} \operatorname{id}_{T^{*}T_{A}M} \otimes (\otimes_{1}^{1} \kappa_{M}) \circ R^{(\alpha)}.$$

This is a $T^*T_AM \otimes TT_AM$ -valued differential form on T_AM of degree s. We denote $\overline{R}^{(0)}$ by R^c and call it the *canonical lift* (or *complete lift*) of R to T_AM . PROPOSITION 5. $R^{(\alpha)}$ is the unique $(T_A E)^* \otimes T_A E$ -valued differential form on $T_A M$ of degree s such that

$$R^{(\alpha)}(X_1^{(\beta_1)}, \dots, X_s^{(\beta_s)})S^{(\gamma)} = (R(X_1, \dots, X_s)S)^{(\alpha+\beta_1+\dots+\beta_s+\gamma)}$$

for any $X_1, \ldots, X_s \in \mathfrak{X}(M)$, $S \in \mathcal{S}ec(M, E)$ and any multi-indices β_1, \ldots, β_s , $\gamma \in \mathbb{N}^p$ satisfying $0 \leq |\beta_1|, \ldots, |\beta_s|, |\gamma| \leq r$.

Proof. We just deal with the case s = 2. Put

 $K = \chi_{\alpha,E}(j_A(R \circ \eta))(\kappa_M(j_A(u^{\beta_1}X_1 \circ \eta)), \kappa_M(j_A(u^{\beta_2}X_2 \circ \eta)))S^{(\gamma)}(j_A\eta);$ then

$$\begin{split} & (R^{(\alpha)}(X_1^{(\beta_1)}, X_2^{(\beta_2)})S^{(\gamma)})(j_A\eta) \\ &= R^{(\alpha)}(j_A\eta)(X_1^{(\beta_1)}(j_A\eta), X_2^{(\beta_2)}(j_A\eta))S^{(\gamma)}(j_A\eta) \\ &= K & \text{by } (2), (5) \\ &= (\overline{\chi}_{\alpha})_E(j_A(R \circ \eta * (z^{\beta_1}X_1 \circ \eta, z^{\beta_2}X_2 \circ \eta)))(j_A(z^{\gamma}S \circ \eta)) & \text{by } (11) \\ &= (\chi_{\alpha})_E(j_A((R \circ \eta * (z^{\beta_1}X_1 \circ \eta, z^{\beta_2}X_2 \circ \eta)) * z^{\gamma}S \circ \eta)) & \text{by } (6) \\ &= (\chi_{\alpha})_E(j_A(z^{\beta_1+\beta_2+\gamma}R(X_1, X_2)S \circ \eta)) \\ &= (\chi_{\alpha+\beta_1+\beta_2+\gamma})_E(j_A(R(X_1, X_2)S \circ \eta))) \\ &= (R(X_1, X_2)S)^{(\alpha+\beta_1+\beta_2+\gamma)} \end{split}$$

for any $j_A \eta \in T_A M$. The uniqueness of $R^{(\alpha)}$ follows from Proposition 3.

COROLLARY 2. Let R be an s-differential form on T_AM with values in $T^*M \otimes TM$. Then $\overline{R}^{(\alpha)}$ is the unique $T^*T_AM \otimes TT_AM$ -differential form on T_AM of degree s such that

$$\overline{R}^{(\alpha)}(X_1^{(\beta_1)},\ldots,X_s^{(\beta_s)})Y^{(\gamma)} = (R(X_1,\ldots,X_s)Y)^{(\alpha+\beta_1+\ldots\beta_s+\gamma)}$$

for any $X_1, \ldots, X_s, Y \in \mathfrak{X}(M)$ and any multi-indices $\beta_1, \ldots, \beta_s, \gamma \in \mathbb{N}^p$ satisfying $0 \leq |\beta_1|, \ldots, |\beta_s|, |\gamma| \leq r$.

4. Main results. We denote by Φ the vertical projection and by K the connector of a linear connection Γ on a vector bundle (E, M, π) .

PROPOSITION 6. Let Γ be a linear connection on a vector bundle (E, M, π) , ∇ the covariant derivative associated to Γ and $\widetilde{\nabla}$ the covariant derivative associated to $\mathcal{T}_A\Gamma$. Then $\mathcal{T}_A\Gamma$ is the unique linear connection on $(T_AE, T_AM, T_A\pi)$ such that

$$\widetilde{\nabla}_{X^{(\alpha)}} S^{(\beta)} = \begin{cases} (\nabla_X S)^{(\alpha+\beta)}, & \alpha, \beta \in \mathbb{N}^p, \ 0 \le |\alpha+\beta| \le r, \\ 0, & \alpha, \beta \in \mathbb{N}^p, \ |\alpha+\beta| > r, \end{cases}$$

where $S \in \mathcal{S}ec(M, E)$ and $X \in \mathfrak{X}(M)$.

Proof.
$$\mathcal{T}_A \Gamma$$
 is unique by Propositions 2 and 3(i); moreover

$$\widetilde{\nabla}_{X^{(\alpha)}} S^{(\beta)} = T_A K \circ \kappa_E^{-1} \circ T(S^{(\beta)}) \circ X^{(\alpha)}$$

$$= T_A K \circ \kappa_E^{-1} \circ T(S^{(\beta)}) \circ \kappa_M \circ (\chi_\alpha)_{TM} \circ T_A X \qquad \text{by (5)}$$

$$= T_A K \circ \kappa_E^{-1} \circ T((\chi_\beta)_E \circ T_A S) \circ \kappa_M \circ (\chi_\alpha)_{TM} \circ T_A X \qquad \text{by (3)}$$

$$= T_A K \circ \kappa_E^{-1} \circ T((\chi_\beta)_E) \circ T(T_A S) \circ \kappa_M \circ (\chi_\alpha)_{TM} \circ T_A X$$

$$= T_A K \circ \kappa_E^{-1} \circ T((\chi_\beta)_E) \circ \kappa_E \circ T_A(TS) \circ (\chi_\alpha)_{TM} \circ T_A X \qquad \text{by the definition of } \kappa$$

$$= T_A K \circ (\chi_\beta)_{TE} \circ T_A(TS) \circ (\chi_\alpha)_{TM} \circ T_A X \qquad \text{by Proposition 1}$$

$$= T_A K \circ (\chi_\beta)_{TE} \circ (\chi_\alpha)_{TE} \circ T_A(TS) \circ T_A X$$

$$= (\chi_\beta)_E \circ T_A K \circ (\chi_\alpha)_{TE} \circ T_A(TS) \circ T_A X$$

$$= (\chi_\beta)_E \circ (\chi_\alpha)_E \circ T_A K \circ T_A(TS) \circ T_A X$$

$$= (\chi_\beta)_E \circ (\chi_\alpha)_E \circ T_A K \circ T_A(TS) \circ T_A X$$

PROPOSITION 7. Let R_{∇} be the curvature tensor of a linear connection Γ on (E, M, π) and $\widetilde{\nabla}$ the covariant derivative associated to $\mathcal{T}_A \Gamma$. Then the curvature tensor $R_{\widetilde{\nabla}}$ of $\widetilde{\nabla}$ satisfies

$$R_{\widetilde{\nabla}} = (R_{\nabla})^{(0)}.$$

Proof. Since $R_{\widetilde{\nabla}}(\overline{X}, \overline{Y})\overline{S} = \widetilde{\nabla}_{\overline{X}}\widetilde{\nabla}_{\overline{Y}}\overline{S} - \widetilde{\nabla}_{\overline{Y}}\widetilde{\nabla}_{\overline{X}}\overline{S} - \widetilde{\nabla}_{[\overline{X},\overline{Y}]}\overline{S}$ for any $\overline{X}, \overline{Y} \in \mathfrak{X}(T_AM)$ and $\overline{S} \in \mathcal{S}ec(T_AM, T_AE)$, we apply Propositions 3(ii) and 6 to show that $R_{\widetilde{\nabla}}$ satisfies the conclusion of Proposition 5. \blacksquare

REMARK. In particular, let Γ be a linear connection on M (i.e. E = TM); one can define a linear connection Γ^{c} on $T_{A}M$ by

$$\Gamma^{c} = T\kappa_{M} \circ \mathcal{T}_{A}\Gamma \circ (\mathrm{id}_{TT_{A}M} \times_{T_{A}M} \kappa_{M}^{-1}),$$

which is called the *canonical lift* (or *complete lift*) of Γ to T_AM . The restriction of Γ^c to $P^1M \subset T_m^1M$ (the frame bundle of M), $m = \dim M$, was studied in [1].

COROLLARY 3. Let Γ be a linear connection on M, ∇ the covariant derivative associated to Γ , Γ^{c} the canonical lift of Γ to $T_{A}M$, and ∇^{c} the covariant derivative associated to Γ^{c} . Then Γ^{c} is the unique linear connection on $T_{A}M$ satisfying the identities

$$\nabla_{X^{(\alpha)}}^{c} Y^{(\beta)} = \begin{cases} (\nabla_X Y)^{(\alpha+\beta)}, & \alpha, \beta \in \mathbb{N}^p, \ 0 \le |\alpha+\beta| \le r, \\ 0, & \alpha, \beta \in \mathbb{N}^p, \ |\alpha+\beta| > r, \end{cases}$$

where $X, Y \in \mathfrak{X}(M)$.

COROLLARY 4. Let T_{∇} and R_{∇} be the torsion and curvature tensors, respectively, of a linear connection Γ on M, and let ∇^c be the covariant derivative of Γ^c . Then the torsion T_{∇^c} and curvature R_{∇^c} tensors of ∇^c are the canonical lifts of T_{∇} and R_{∇} respectively, that is,

 $T_{\nabla^{c}} = (T_{\nabla})^{c}, \quad R_{\nabla^{c}} = (R_{\nabla})^{c}.$

References

- L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, Kluwer, 1989.
- [2] J. Gancarzewicz, W. M. Mikulski and Z. Pogoda, Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1–14.
- [3] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- W. M. Mikulski, Product preserving gauge bundle functors on vector bundles, Colloq. Math. 90 (2001), 277–285.
- K. P. Mok, Complete lifts of tensor fields and connections to the frame bundle, Proc. London Math. Soc. (3) 38 (1979), 72–88.
- [6] D. J. Saunders, *The Geometry of Jet Bundles*, Cambridge Univ. Press, 1989.
- J. Slovák, Prolongations of connections and sprays with respect to Weil functors, Rend. Circ. Mat. Palermo Suppl. 14 (1987), 143–155.

École Normale Supérieure Université de Yaoundé 1 B.P. 47 Yaoundé, Cameroun E-mail: achillentyam@yahoo.fr Faculté des Sciences Université de Yaoundé 1 B.P. 812 Yaoundé, Cameroun E-mail: wouafo@uycdc.uninet.cm

Reçu par la Rédaction le 14.10.2002 Révisé le 5.2.2003 et le 24.3.2003 (1371)