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A class of functions containing
polyharmonic functions in R”

by V. ANANDAM and M. DAMLAKHI (Riyadh)

Abstract. Some properties of the functions of the form v(z) = > 1" |z|*hi(x) in R™,
n > 2, where each h; is a harmonic function defined outside a compact set, are obtained
using the harmonic measures.

1. Introduction. Let {2 be a clamped plate with an external load den-
sity f(z), z € £2. If 012 is regular for the Dirichlet problem, the solution
u(x) corresponding to the conditions of elasticity given by A%u(x) = f(x)
on 2, w = 0 = Ju/On on 02, has a representation (Nicolesco [16, p. 40])
u(z) = §, Ga(z,y) f(y) dy. However, the calculation of G5(z,y) correspond-
ing to a given {2 is not simple.

This note, among other results, shows that in the particular case of {2
being in the form of a star domain with centre 0 and the equation A%u = f
being reduced to the condition Au(z) = G(x) + |z| ' H(x) where G and
H are harmonic functions on {2, continuous on {2, we can express u as
u(z) = |z|?h2(z) + |z|h1(z) + ho(x) where h;(z) are harmonic functions
on (2. This suggests the study of the properties of functions of the form
u(z) = 31" |z[*hi(z) in a star domain (2 with centre 0 in R", n > 2, which
include the polyharmonic functions of finite order on (2.

In another context, when u(z) = > i~ |z|"h;(x) is defined on the whole
of R", n > 2, where each h; is harmonic on R", Nakai and Tada ([15,
Theorem 3]) give a necessary and sufficient condition on u so that each h;
is a harmonic polynomial, by using the Fourier expansion method. In this
note we obtain some complementary results for such functions u, by using
harmonic measures.

2. Functions in the class H*(R"™). We begin with the following defi-
nition.

2000 Mathematics Subject Classification: Primary 31B30.
Key words and phrases: harmonic measure, polyharmonic functions, Liouville theorem.

[241]



242 V. Anandam and M. Damlakhi

DEFINITION 2.1. Let {2 be a star domain with centre 0 in R™, n > 2.
A continuous function u(z) defined on 2 is said to be in the class H™(2)
if it is of the form u(z) = > "  |z|*h;(x) where h;, 0 < i < m, are harmonic
on £2. Write H*(£2) = {U,,,~o H™(£2).

We remark that if u(x) is a polyharmonic function of order m on {2 (that
is, u € C?™(£2) and A™u = 0), then the Almansi representation of u (see
Aronszajn et al. [8, Proposition 1.3]) is of the form u(z) = Z;'Z_ol |z|*h; ()
where h;(x) are uniquely determined harmonic functions on (2. Hence u €
H?>m=2(0), H°(£2) being the class of all harmonic functions on 2.

In this section, we obtain some Liouville-type theorems for functions in
H*(R™). For a given continuous function f on R", let D, f stand for the
Dirichlet solution in |z| < r with boundary value f(x) on |z| = r.

THEOREM 2.2. Let ue H*(R™). Let a; be a sequence of real numbers in-
creasing to co. Let w be a nonempty open set and e be a polar set in R™. If

. . Da.u(z)
liminf ———~=
j—oo @y

=0

for every z € w\ e, then w is harmonic on R™.

Proof. Let u(z) = Y., |z|*hi(x). Then, for fixed z € w \ e and large j,
Dg,u(z) =>1", aé-h,;(z). Hence the assumption on Dy, u as j — oo implies
that h;(z) = 0 for 1 < i < m. Since z is arbitrary in w \ e, h; vanishes on
w \ e, which implies that h; = 0 for 1 < i < m. Consequently, u(z) = ho(x)
is harmonic on R".

COROLLARY 1 (see [15, Proposition 1]). Letu=Y .- |z|*h;(x) € H*(R™).
If u(z) — 0 when |z| — oo, in particular if w =0, then each h; = 0.

Proof. As in the proof of Theorem 2.2 we can show that h; = 0 for
1 <i<m and u = hg on R™. Since © — 0 at infinity, hg = 0.

COROLLARY 2. Letu € H*(R™). Let M(r,|u|) denote the mean value of
|u(z)| on |x| = r. Suppose M(r,|u|) = o(r) as r — oco. Then u is a constant.

Proof. Write D,u(z) = §u(z) do’(x) where o] is the harmonic measure
on |z| = 7. Recall

dol(x) =r""

where do,.(x) is the measure on |z| = r, invariant with respect to the rota-
tions of |z| = r and such that o,(Jz| = r) = 1. Suppose now |z| <1 < r
= |z|. Then

r2 — |22 2

T—2r = =1
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so that

n

Du(2)] < [ Ju(@)| 7 doy ().

(r—1)
Consequently, for large r, |D,u(z)| < 2M(r,|u|) so that lim, . Dyu(z)/r
= 0 for |z| < 1. Then by the above theorem, we conclude that u is harmonic
on R™; this, together with the condition that M(r,|u|) = o(r), implies that
u is a constant. (See [6, Corollary 3.3] for an indication of different proofs
of this result.)

COROLLARY 3. Let u € H*(R™) be such that for a superharmonic func-
tion s on R™, |u| < s. Then u is a constant.

Proof. We write s = p+ ¢ where p > 0 is a potential on R (p = 0 is the
only potential on R?) and ¢ > 0 is a constant. Since M (r,p) — 0 as r — oo,
M(r, |u|]) = o(r). Hence by Corollary 2, u is harmonic on R™ and |u| < p+c,
which implies that |u| < ¢ on R™ so that u is a constant.

REMARK. The above Corollary 3 expresses the classical Liouville-Picard
theorem for the class H*(R™). In fact, in its standard form this theorem
states that if w € H°(R") and u > 0, then it is a constant; this can be
generalized as follows: If u € H*(R"™) is a positive superharmonic function,
then u is a constant. This generalization is a consequence of the above
Corollary 3. However, if we leave out the condition that u is superharmonic,
we have from Armitage [7] or Futamura-Kishi-Mizuta [13] or Nakai-Tada
[15] the following: If w € H™(R™) is positive, then u is a polynomial of
degree at most m. More generally, let u(z) = > I" |z|"h;(z) and suppose
lim inf|;| o0 u(z)/|2]* > 0 for some s > m. Then for each 4, h; is a harmonic
polynomial of degree less than s — 4. For as in [6, Lemma 2.1] we can find
a locally integrable function ¢(z) on R™ such that u(xz) > ¢(z) outside a
compact set K and M(r, |¢|) = o(r®) as r — oco. Since u > —|p| on R \ K,
M(r,u™) = o(r®) asr — oo; also M (r,u) = O(r™). Hence M (r, |u|) = o(r®).
Consequently, each h; is a harmonic polynomial of degree less than s —i. In
particular, if liminf ;. u(z)/|z| > 0 then u is a constant.

3. H* functions on a star domain. Let {2 denote a star domain in R"”,
n > 2, with centre 0. Then, as in Definition 2.1, H™({2) denotes the class of
functions of the form u(z) = Y .~ |«|*h;(x) where h; are harmonic on 2. We
shall use the operator AP, with integer p > 1, in the sense of distributions.

LEMMA 3.1. Ifu € C* (), let f(z) = |z|*u(z) where a > 2p—n. Then
AP(|z|*u(z)) is locally integrable on 2.

Proof. Since (0/0x)*|z|* is locally integrable on R” when a > |\| — n,
the lemma is evident. We need the following expression of AP f(x) for later
use.
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For |z| =r >0, let g = AP f in the classical sense.
Since

ou
aﬂfi
we have Af = 7% 2u; where u; € C??~2 (note that u; is harmonic if u is).
Proceeding thus, we find A7 f = r®= 2y, for 1 < j < p, where u; € C*~2,
Let g(z) = |z|* ?Pu,(z) for |z| > 0 and g(0) = limsup,_,, g(z). Then g(z)
is u.s.c. on {2 and since oo — 2p + n > 0, g(x) is locally integrable on {2 and
AP f = g on {2 in the sense of distributions.

Af = ala+n —2)r* 2u+ 2ar* 2 Z x;

+ r%Au,

REMARK. Let h be harmonic on (2. Then from the above proof (replac-
ing u by h) we see that if @ > 2p — n, then AP(|z|*h(z)) = |z|* 2P H(z)
where H(z) is harmonic on (2.

PROPOSITION 3.2. Let u € H*(£2) and 2p < n. Then APu is locally
integrable on (2.

Proof. Let uw =Y _." |z|*h;(x). Then for any i > 1, i > 2p — n so that
AP(|z|*h;(z)) is locally integrable on §2; for i = 0, A(hg) = 0. Hence APu is
locally integrable on 2.

CONSEQUENCE. The above proposition, in particular, states that if u €
H*(R™), n > 2, then Au is locally integrable on R™. This leads to an in-
tegral representation of v in R™. For that, recall that given any positive
Radon measure p on an open set w in R™, n > 2, Brelot [12] shows that a
subharmonic function s can be constructed on w with associated measure pu
in the local Riesz representation.

Now, for u € H*(R™), n > 2, since Au is locally integrable, d\(x) =
Audz can be treated as defining the difference of two positive Radon mea-
sures on R™. Hence w is the difference of two subharmonic functions on R".
Then we can define the order of u and the order of A as in Arsove [9] (see
also [4]). If the order of A is finite, a correspondingly modified form of the
logarithmic kernel (if n = 2) or the Newtonian kernel (if n > 3) can be used
to represent u as an integral up to an additive harmonic function which is
a harmonic polynomial if the order of u is finite (see Arsove [9], and [4,
Theorems 11 and 12]; see also Mizuta [14]).

LEMMA 3.3. Let H be a harmonic function on 2. Ifn+a —2 >0 and
ifa+2i#0 fori, 0 <i<p-—1, then there exists a harmonic function h
on 2 such that AP(|z|*t2P=2h(z)) = |z|* 2H (x).

Proof. We prove the lemma for the case p = 1 by adapting the method
given in Aronszajn et al. [8, p. 5]. The general case follows by induction. Sup-
pose a harmonic function h exists on {2 such that A(|z|*h(z)) = |z|* 2 H ().
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Then, treating h as a function of r, we should have
oh
A(r®h) = a(n + a — 2)r* " 2h + 2ar*! o

Then

oh
a(n—I—a—Z)h—l—QarE:H on {2.

This can be written as

A ntra-2)/2p1 _ H (a2
[r h] r
dr 20

outside 0. Since at the origin, r("*+*=2)/2p = 0, we should have

- el
H(nta 2)/2h(r, w) :S%Q( + 4)/2H(,Q, w) do,
0

where x = (r,w) is represented by the spherical polar coordinates. Set
o =tr. Then
1
1
h(x) = — |t D2 H(ta) dt;
2c0 0

here Ah = 0 since H is harmonic. Consequently, given the harmonic function
H on £2, if we define h(x) by the formula above, then h(x) is harmonic on (2,
satisfying the condition A(|z|“h(z)) = |z|* 2H (z).

THEOREM 3.4. A continuous function u on 2 is in H™(§2) if and only
if for any integer p, 2 < 2p < n, there ewrists a function v € H™ 1(£2) such
that APu(z) = |x|1=2Pv(x) in the sense of distributions.

Proof. (1) Let u = >"1" |z|*h; € H™(£2). We shall now use the Remark
following Lemma 3.1 to calculate APu(x).

If p=1, then Au= ZZBZ |z|' H; +|x|~tv; where H; (0 < i < m—2) and
vy are harmonic functions on 2. Hence Au = |:1:|*1[Z?:02 2| H; + 0] =
|z|~1s1(x) where s; € H™1($2).

If p =2, then n > 4 and in this case A(|z|~tv1) = |x|73vy where vq is
harmonic on (2. This leads to the equation A%u = A(Au) = 7 * [z H] +
||~ v + |2| 73ve on 2, where H] (0 < i < m —4), v and vy are harmonic
on 2. This simplifies to the form A2u = |z|~3sy(x) where so € H™1(2).

This process by induction leads to the result that if 2 < 2p < n, then
APy = |z|~(P=Vs (x) where s, € H™(£2).

(2) Conversely, suppose that u is a continuous function on {2 such that for
any integer p, 2 < 2p < n, we have APy = |z|~2P~Vy where v € H™1(12).
Then, in particular for p = 1, by Lemma 3.3 we have

m—1 m—1
Au=z| o= o] |2l Hi = Jal T Hy = Al h).
i=0

1=0
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Hence u = (21161 |z|"1h;) + (a harmonic function on §2); in other words,
u € H™(2).

COROLLARY 1. Let u = Y. |z|'hi(x) € H™(£2). Suppose u is har-
monic on a neighbourhood of a point in 2. Then h; =0 for 1 < i < m.
In particular, if uw =0 on a nonempty open set in 2, then h; = 0 for all 1,
0<s<m.

Proof. Let u be harmonic on a nonempty open set w. Since u € H"({2),
there exists v,—1 € H™1(§2) such that Au = |z|71v,,_1(z) on 2. This
implies v,,,_1 = 0 on w. Now again by Theorem 3.4, there exists v,,_o €
H™2(2) such that Av,,_; = || "tv,,_2(x), which implies that v,, 5 = 0
on w. Proceeding thus, we obtain v; € H*(2), 0 < i < m — 1, such that
Aviyq = |z|7tv; on 2 and v; = 0 on w (taking v,, = u).

Since vy is harmonic on {2 and vg = 0 on w, vg = 0 on (2. This implies
v1 is harmonic on {2 and since v; = 0 on w, we have v; = 0 on (2. Thus
proceeding, we remark that v; =0 on {2 for 0 <7 <m — 1 so that Au =0
on {2; that is, u is harmonic on (2.

Then > |z|'h;(z) = u(x) — ho(x) is harmonic on £2. Choose a such
that {x : |z|] < a} C 2. Fix z € 2 so that |z|] < r < a. Let o, be the
harmonic measure on |z| = r. Then

m
> Vlal'hi(z) dol(x) = | (u — ho) do,
i=1

which implies that
Z rhi(z) = u(z) — ho(2).
i=1

Since r is arbitrary in the interval (|z|,a), we have h;(z) =0 for 1 <i<m
and u(z) — ho(z) = 0. Since h; and u are harmonic on {2 and z is arbitrary
except for the condition |z| < a, we conclude h; = 0 on {2 for 1 < i < m
and u = hg.

COROLLARY 2. Let ue H™(£2) and 2<2p<n. Suppose u is p-harmonic
(APu = 0) on a neighbourhood of a point in (2. Then u is p-harmonic on (2.

Proof. Suppose APu = 0 on a nonempty open set w. By Theorem 3.4,
there exists a function v € H™~1(£2) such that APu = |x|!~2Pv on (2. Hence
v = 0 on w and consequently, by Corollary 1, v = 0 on {2, which means that
u is p-harmonic on f2.

REMARK. We thank the referee for pointing out that in the proofs of
the above two corollaries, one can use the real analyticity of u outside the
origin, without having recourse to Theorem 3.4.



Polyharmonic functions 247

COROLLARY 3. Let uw € H™(S), where S = {z : |z| < 1} in R™, be such
that liminf,_.; M (r, |u|) = 0. Then u(x) = (1—|z|)v(x) wherev € H™1(S).

Proof. Let u(z) = > |z|'h;(z) € H™(S). Notice that by the above
Corollary 1, there exist uniquely determined harmonic functions u; on S
such that

u(e) = (1—|z))'ui(x) onS.
1=0

In particular,
m
=2_ui(@)
i=0

Fix z with |z] < 1/4. For |z| = r, 1/2 < r < 1, let dol(z) denote the
harmonic measure on |z| = r. Integrate u(x) with respect to do’(x) to get

(1= 1) () + o (L= P (2) + wo(2)] = | Juz) det ()] < €M, Ju)

for some constant C' since |z| < 1/4 and 1/2 < r < 1 (see the proof of
Corollary 2 to Theorem 2.2).

Let » — 1. Since liminf, ,; M(r,|u]) = 0 by hypothesis, we obtain
up(z) = 0 for |z| < 1/4. Hence uy = 0. Consequently, u(x) = (1 — |z|)v(x)
where

m—1
=3 (1= [z ui(z) € H"(S).
=0

NOTE. The above corollary easily includes the result: If u is p-harmonic
on S such that liminf,_; M(r, |u|) = 0, then u(x) = (1 — |z|?)v(z) where v
is polyharmonic on S of order < m — 1. This in itself is a generalization of
a result of Abkar and Hedenmalm [1, pp. 321-322] proved in the complex
plane using the Fourier series: If u(z) is biharmonic on the unit disc in the
complex plane and if M (r, |u|) = O(1—r) asr — 1, then u(z) = (1—|z|?)h(2)
for a harmonic function on the unit disc.

4. H* functions defined near infinity. It is not surprising that in
many respects, the functions in H?™ 2(R") behave near infinity like the
m-harmonic functions (that is, the solutions of A™wu = 0) on R™. In this
section, we study a class of continuous functions on R™ which are associated
near infinity with the functions in H?>™~2(R") and the fundamental solution
of A™ on R™. This class contains a significant collection of functions having
some nice regularity properties at infinity.

For m > 1, n > 2, let e}, denote the fundamental solution of A™ on R™.
We recall that
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o | |?m—n if 2m < n or 2m —n is odd > 0,
m |z|?m~ " log |z| if 2m — n is even > 0.

DEFINITION 4.1. A continuous function v defined outside a compact set
in R™ is said to be in the class H2™~2(R") if there exists u € H*™~2(R")such
that u — v = O(el},) near infinity.

m

PROPOSITION 4.2. Let h; (0 < i < m — 2) be arbitrary harmonic func-
tions defined outside a compact set in R™. Then

2m—2

v=Y |a|'hi(x) € HZ'*(R™).
=0

Proof. Recall that (see [2] or Axler et al. [10]) given a harmonic function
h outside a compact set in R™, there exists a harmonic function H on R"
and a constant « such that outside a compact set,

hz) = {H(a:) + alog|z|+ g(x) ifn=2,
H(z)+ g(x) ifn >3,
where g(z) is a harmonic function satisfying g(z) = O(|z|?>~™) near infinity.
Hence for each 7, 0 < i < 2m — 2, there exists a harmonic function H; on R”
such that |h; — H;| < A|z|>~™ if n > 3 and |hi—Hi—ozi log \mH <Aifn=2,
outside a compact set. Let u(x) = 2?272 |z|'H;(x). Then v € H?™2(R")
and near infinity u — v = O(e?,). Hence v € H2m~2(R").

COROLLARY. Let k be a compact set in a star domain 2 with centre 0.
Suppose u = Z?;no_z |z|*h;(x) where h; are harmonic on 2\ k. Then there
existt € H*™=2(0) and s € HZ2(R")NC(R™\k), s = O(e,) near infinity,

such that u=s—1t on 2\ k.

Proof. We know that for each i, there exist s; € HO(R" \ k) and ¢; €
H°($2) such that h; = s; —t; on 2\ k (Laurent decomposition for harmonic
functions, see [2] or Axler et al. [10, pp. 171-175]).

Let now

2m—2 2m—2

st(x) = ) |al'si(z) and t'(x) = ) |a|'ti(z).
i=0 1=0

Then u = s' —t! on 2\ k where by the above proposition s!(z) is in the
class H2m=2(R"), and t!'(z) € H?™ 2(§2). Since s! € H2Z" 2(R"), there
exists v € H?™~2(R") such that s' — v = O(e?,) near infinity. Write now
s=s! —wvand t =t — v to obtain the decomposition u = s —t on 2\ k as
stated in the Corollary.

PROPOSITION 4.3. If v is an m-harmonic function defined outside a
compact set in R™, then v € H2"2(R").
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Proof. For m = 1, the representation for a harmonic function A outside
a compact set (given in the proof of Proposition 4.2) leads to the result that
h e HL (R™).

Let us take the case m = 2. In this case, we start with the representation
for a biharmonic function b defined near infinity in the following form (see
[11, p. 19)):

(a+ a1z1 + agxe) log x| + Blz|? log |z| + B(x) + u(x) ifn =2,

b(z) = Blz| + B(x) 4+ u(x) if n =3,
Blog|z| 4+ B(z) + u(x) if n =4,
B(z) + u(x) if n > 5,

where B(z) is biharmonic on R” and u(x) is biharmonic bounded near infin-
ity. In the case of n > 5, we can show that |u(z)| < A|z|*~™ by specializing
the proof (1)=(2) of [11, Theorem 10]. Consequently, since B € H?(R")
and since b — B = O(e}) near infinity, we have b € H2 (R™).

Finally, for m > 2, we have a similar representation for an m-harmonic
function defined outside a compact set (details given in a forthcoming paper
[5]) which can be used to prove the proposition. The result referred to here
is as follows: Let u be m-harmonic outside a compact set in R™. Then there
exists an m-harmonic function v on R™ such that u—v = O(e}},) as |z| — oo.

THEOREM 4.4. Let v € H2"2(R"), n > 2m > 2. Suppose either one of
the following conditions is satisfied:

(1) There exists a superharmonic function s outside a compact set such
that |v| < s near infinity.
Then lim|z| 0 v(x) exists and is finite.

Proof. (1) Suppose |v| < s near infinity. Since n > 3, there exists a
superharmonic function S on R™ such that S — s is bounded near infinity
(see [3]). Hence we can as well assume that s is a superharmonic function
defined on the whole of R™ and |v| < s near infinity.

Since v € H2™~2(R"), by definition there exists u € H*™~2(R") such
that |u—v| < A|z|>™~" near infinity. Hence |u| < s+ A|z|[*™~" < s+ A near
infinity. Then by Corollary 3 in Section 2, u is a constant «. Consequently,
lim, o v(x) = .

(2) Suppose now lim|;|—oo v(z)/|z| = 0. Since v € HZ"2(R"), there
exists u € H*(R") such that |u — v| < A|z|*™~" near infinity. This im-
plies that lim|,|_,o u(x)/|2z| = 0. Hence, by Corollary 2 in Section 2, u is a
constant . Consequently lim|,|_,. v(z) = a.

REMARK. Since every bounded continuous function v is in H2"=? if
2 < n < 2m, the above theorem is not valid if n < 2m.
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