A class of functions containing polyharmonic functions in \mathbb{R}^n

by V. ANANDAM and M. DAMLAKHI (Riyadh)

Abstract. Some properties of the functions of the form $v(x) = \sum_{i=0}^{m} |x|^{i} h_{i}(x)$ in \mathbb{R}^{n} , $n \geq 2$, where each h_{i} is a harmonic function defined outside a compact set, are obtained using the harmonic measures.

1. Introduction. Let Ω be a clamped plate with an external load density $f(x), x \in \Omega$. If $\partial \Omega$ is regular for the Dirichlet problem, the solution u(x) corresponding to the conditions of elasticity given by $\Delta^2 u(x) = f(x)$ on $\Omega, u = 0 = \partial u / \partial n$ on $\partial \Omega$, has a representation (Nicolesco [16, p. 40]) $u(x) = \int_{\Omega} G_2(x, y) f(y) \, dy$. However, the calculation of $G_2(x, y)$ corresponding to a given Ω is not simple.

This note, among other results, shows that in the particular case of Ω being in the form of a star domain with centre 0 and the equation $\Delta^2 u = f$ being reduced to the condition $\Delta u(x) = G(x) + |x|^{-1}H(x)$ where G and H are harmonic functions on Ω , continuous on $\overline{\Omega}$, we can express u as $u(x) = |x|^2 h_2(x) + |x|h_1(x) + h_0(x)$ where $h_i(x)$ are harmonic functions on Ω . This suggests the study of the properties of functions of the form $u(x) = \sum_{i=0}^{m} |x|^i h_i(x)$ in a star domain Ω with centre 0 in \mathbb{R}^n , $n \geq 2$, which include the polyharmonic functions of finite order on Ω .

In another context, when $u(x) = \sum_{i=0}^{m} |x|^{i} h_{i}(x)$ is defined on the whole of \mathbb{R}^{n} , $n \geq 2$, where each h_{i} is harmonic on \mathbb{R}^{n} , Nakai and Tada ([15, Theorem 3]) give a necessary and sufficient condition on u so that each h_{i} is a harmonic polynomial, by using the Fourier expansion method. In this note we obtain some complementary results for such functions u, by using harmonic measures.

2. Functions in the class $H^*(\mathbb{R}^n)$ **.** We begin with the following definition.

²⁰⁰⁰ Mathematics Subject Classification: Primary 31B30.

Key words and phrases: harmonic measure, polyharmonic functions, Liouville theorem.

DEFINITION 2.1. Let Ω be a star domain with centre 0 in \mathbb{R}^n , $n \geq 2$. A continuous function u(x) defined on Ω is said to be in the class $H^m(\Omega)$ if it is of the form $u(x) = \sum_{i=0}^m |x|^i h_i(x)$ where $h_i, 0 \leq i \leq m$, are harmonic on Ω . Write $H^*(\Omega) = \bigcup_{m>0} H^m(\Omega)$.

We remark that if u(x) is a polyharmonic function of order m on Ω (that is, $u \in C^{2m}(\Omega)$ and $\Delta^m u = 0$), then the Almansi representation of u (see Aronszajn *et al.* [8, Proposition 1.3]) is of the form $u(x) = \sum_{i=0}^{m-1} |x|^{2i} h_i(x)$ where $h_i(x)$ are uniquely determined harmonic functions on Ω . Hence $u \in H^{2m-2}(\Omega)$, $H^0(\Omega)$ being the class of all harmonic functions on Ω .

In this section, we obtain some Liouville-type theorems for functions in $H^*(\mathbb{R}^n)$. For a given continuous function f on \mathbb{R}^n , let $D_r f$ stand for the Dirichlet solution in |x| < r with boundary value f(x) on |x| = r.

THEOREM 2.2. Let $u \in H^*(\mathbb{R}^n)$. Let a_j be a sequence of real numbers increasing to ∞ . Let ω be a nonempty open set and e be a polar set in \mathbb{R}^n . If

$$\liminf_{j \to \infty} \frac{D_{a_j} u(z)}{a_j} = 0$$

for every $z \in \omega \setminus e$, then u is harmonic on \mathbb{R}^n .

Proof. Let $u(x) = \sum_{i=0}^{m} |x|^i h_i(x)$. Then, for fixed $z \in \omega \setminus e$ and large j, $D_{a_j}u(z) = \sum_{i=0}^{m} a_j^i h_i(z)$. Hence the assumption on $D_{a_j}u$ as $j \to \infty$ implies that $h_i(z) = 0$ for $1 \leq i \leq m$. Since z is arbitrary in $\omega \setminus e$, h_i vanishes on $\omega \setminus e$, which implies that $h_i \equiv 0$ for $1 \leq i \leq m$. Consequently, $u(x) = h_0(x)$ is harmonic on \mathbb{R}^n .

COROLLARY 1 (see [15, Proposition 1]). Let $u = \sum_{i=0}^{m} |x|^i h_i(x) \in H^*(\mathbb{R}^n)$. If $u(x) \to 0$ when $|x| \to \infty$, in particular if $u \equiv 0$, then each $h_i \equiv 0$.

Proof. As in the proof of Theorem 2.2 we can show that $h_i \equiv 0$ for $1 \leq i \leq m$ and $u = h_0$ on \mathbb{R}^n . Since $u \to 0$ at infinity, $h_0 \equiv 0$.

COROLLARY 2. Let $u \in H^*(\mathbb{R}^n)$. Let M(r, |u|) denote the mean value of |u(x)| on |x| = r. Suppose M(r, |u|) = o(r) as $r \to \infty$. Then u is a constant.

Proof. Write $D_r u(z) = \int u(x) d\varrho_z^r(x)$ where ϱ_z^r is the harmonic measure on |x| = r. Recall

$$d\varrho_z^r(x) = r^{n-2} \frac{r^2 - |z|^2}{|x - z|^n} \, d\sigma_r(x)$$

where $d\sigma_r(x)$ is the measure on |x| = r, invariant with respect to the rotations of |x| = r and such that $\sigma_r(|x| = r) = 1$. Suppose now $|z| \le 1 < r$ = |x|. Then

$$\frac{r^2 - |z|^2}{|x - z|^n} \le \frac{r^2}{(r - 1)^n}$$

so that

$$|D_r u(z)| \le \int |u(x)| \frac{r^n}{(r-1)^n} \, d\sigma_r(x).$$

Consequently, for large r, $|D_r u(z)| \leq 2M(r, |u|)$ so that $\lim_{r\to\infty} D_r u(z)/r = 0$ for $|z| \leq 1$. Then by the above theorem, we conclude that u is harmonic on \mathbb{R}^n ; this, together with the condition that M(r, |u|) = o(r), implies that u is a constant. (See [6, Corollary 3.3] for an indication of different proofs of this result.)

COROLLARY 3. Let $u \in H^*(\mathbb{R}^n)$ be such that for a superharmonic function s on \mathbb{R}^n , $|u| \leq s$. Then u is a constant.

Proof. We write s = p + c where $p \ge 0$ is a potential on \mathbb{R}^n $(p \equiv 0$ is the only potential on \mathbb{R}^2) and $c \ge 0$ is a constant. Since $M(r, p) \to 0$ as $r \to \infty$, M(r, |u|) = o(r). Hence by Corollary 2, u is harmonic on \mathbb{R}^n and $|u| \le p + c$, which implies that $|u| \le c$ on \mathbb{R}^n so that u is a constant.

REMARK. The above Corollary 3 expresses the classical Liouville–Picard theorem for the class $H^*(\mathbb{R}^n)$. In fact, in its standard form this theorem states that if $u \in H^0(\mathbb{R}^n)$ and $u \ge 0$, then it is a constant; this can be generalized as follows: If $u \in H^*(\mathbb{R}^n)$ is a positive superharmonic function, then u is a constant. This generalization is a consequence of the above Corollary 3. However, if we leave out the condition that u is superharmonic, we have from Armitage [7] or Futamura–Kishi–Mizuta [13] or Nakai–Tada [15] the following: If $u \in H^m(\mathbb{R}^n)$ is positive, then u is a polynomial of degree at most m. More generally, let $u(x) = \sum_{i=0}^{m} |x|^{i} h_{i}(x)$ and suppose $\liminf_{|x|\to\infty} u(x)/|x|^s \ge 0$ for some s > m. Then for each i, h_i is a harmonic polynomial of degree less than s - i. For as in [6, Lemma 2.1] we can find a locally integrable function $\varphi(x)$ on \mathbb{R}^n such that $u(x) \geq \varphi(x)$ outside a compact set K and $M(r, |\varphi|) = o(r^s)$ as $r \to \infty$. Since $u \ge -|\varphi|$ on $\mathbb{R}^n \setminus K$, $M(r, u^-) = o(r^s)$ as $r \to \infty$; also $M(r, u) = O(r^m)$. Hence $M(r, |u|) = o(r^s)$. Consequently, each h_i is a harmonic polynomial of degree less than s-i. In particular, if $\liminf_{|x|\to\infty} u(x)/|x| \ge 0$ then u is a constant.

3. H^* functions on a star domain. Let Ω denote a star domain in \mathbb{R}^n , $n \geq 2$, with centre 0. Then, as in Definition 2.1, $H^m(\Omega)$ denotes the class of functions of the form $u(x) = \sum_{i=0}^m |x|^i h_i(x)$ where h_i are harmonic on Ω . We shall use the operator Δ^p , with integer $p \geq 1$, in the sense of distributions.

LEMMA 3.1. If $u \in C^{2p}(\Omega)$, let $f(x) = |x|^{\alpha}u(x)$ where $\alpha > 2p - n$. Then $\Delta^p(|x|^{\alpha}u(x))$ is locally integrable on Ω .

Proof. Since $(\partial/\partial x)^{\lambda}|x|^{\alpha}$ is locally integrable on \mathbb{R}^n when $\alpha > |\lambda| - n$, the lemma is evident. We need the following expression of $\Delta^p f(x)$ for later use.

For |x| = r > 0, let $g = \Delta^p f$ in the classical sense. Since

$$\Delta f = \alpha(\alpha + n - 2)r^{\alpha - 2}u + 2\alpha r^{\alpha - 2}\sum x_i \frac{\partial u}{\partial x_i} + r^{\alpha} \Delta u,$$

we have $\Delta f = r^{\alpha-2}u_1$ where $u_1 \in C^{2p-2}$ (note that u_1 is harmonic if u is). Proceeding thus, we find $\Delta^j f = r^{\alpha-2j}u_j$ for $1 \leq j \leq p$, where $u_j \in C^{2p-2j}$. Let $g(x) = |x|^{\alpha-2p}u_p(x)$ for |x| > 0 and $g(0) = \limsup_{x \to 0} g(x)$. Then g(x) is u.s.c. on Ω and since $\alpha - 2p + n > 0$, g(x) is locally integrable on Ω and $\Delta^p f = g$ on Ω in the sense of distributions.

REMARK. Let h be harmonic on Ω . Then from the above proof (replacing u by h) we see that if $\alpha > 2p - n$, then $\Delta^p(|x|^{\alpha}h(x)) = |x|^{\alpha-2p}H(x)$ where H(x) is harmonic on Ω .

PROPOSITION 3.2. Let $u \in H^*(\Omega)$ and $2p \leq n$. Then $\Delta^p u$ is locally integrable on Ω .

Proof. Let $u = \sum_{i=0}^{m} |x|^i h_i(x)$. Then for any $i \ge 1$, i > 2p - n so that $\Delta^p(|x|^i h_i(x))$ is locally integrable on Ω ; for i = 0, $\Delta(h_0) = 0$. Hence $\Delta^p u$ is locally integrable on Ω .

CONSEQUENCE. The above proposition, in particular, states that if $u \in H^*(\mathbb{R}^n)$, $n \geq 2$, then Δu is locally integrable on \mathbb{R}^n . This leads to an *integral representation* of u in \mathbb{R}^n . For that, recall that given any positive Radon measure μ on an open set ω in \mathbb{R}^n , $n \geq 2$, Brelot [12] shows that a subharmonic function s can be constructed on ω with associated measure μ in the local Riesz representation.

Now, for $u \in H^*(\mathbb{R}^n)$, $n \geq 2$, since Δu is locally integrable, $d\lambda(x) = \Delta u dx$ can be treated as defining the difference of two positive Radon measures on \mathbb{R}^n . Hence u is the difference of two subharmonic functions on \mathbb{R}^n . Then we can define the order of u and the order of λ as in Arsove [9] (see also [4]). If the order of λ is finite, a correspondingly modified form of the logarithmic kernel (if n = 2) or the Newtonian kernel (if $n \geq 3$) can be used to represent u as an integral up to an additive harmonic function which is a harmonic polynomial if the order of u is finite (see Arsove [9], and [4, Theorems 11 and 12]; see also Mizuta [14]).

LEMMA 3.3. Let H be a harmonic function on Ω . If $n + \alpha - 2 > 0$ and if $\alpha + 2i \neq 0$ for i, $0 \leq i \leq p - 1$, then there exists a harmonic function h on Ω such that $\Delta^p(|x|^{\alpha+2p-2}h(x)) = |x|^{\alpha-2}H(x)$.

Proof. We prove the lemma for the case p = 1 by adapting the method given in Aronszajn *et al.* [8, p. 5]. The general case follows by induction. Suppose a harmonic function h exists on Ω such that $\Delta(|x|^{\alpha}h(x)) = |x|^{\alpha-2}H(x)$.

Then, treating h as a function of r, we should have

$$\Delta(r^{\alpha}h) = \alpha(n+\alpha-2)r^{\alpha-2}h + 2\alpha r^{\alpha-1}\frac{\partial h}{\partial r}.$$

Then

$$\alpha(n+\alpha-2)h+2\alpha r\frac{\partial h}{\partial r}=H$$
 on Ω .

This can be written as

$$\frac{d}{dr}[r^{(n+\alpha-2)/2}h] = \frac{H}{2\alpha}r^{(n+\alpha-4)/2}$$

outside 0. Since at the origin, $r^{(n+\alpha-2)/2}h = 0$, we should have

$$r^{(n+\alpha-2)/2}h(r,w) = \int_{0}^{r} \frac{1}{2\alpha} \varrho^{(n+\alpha-4)/2} H(\varrho,w) \, d\varrho,$$

where x = (r, w) is represented by the spherical polar coordinates. Set $\rho = tr$. Then

$$h(x) = \frac{1}{2\alpha} \int_{0}^{1} t^{(n+\alpha-4)/2} H(tx) \, dt;$$

here $\Delta h = 0$ since H is harmonic. Consequently, given the harmonic function H on Ω , if we define h(x) by the formula above, then h(x) is harmonic on Ω , satisfying the condition $\Delta(|x|^{\alpha}h(x)) = |x|^{\alpha-2}H(x)$.

THEOREM 3.4. A continuous function u on Ω is in $H^m(\Omega)$ if and only if for any integer $p, 2 \leq 2p \leq n$, there exists a function $v \in H^{m-1}(\Omega)$ such that $\Delta^p u(x) = |x|^{1-2p} v(x)$ in the sense of distributions.

Proof. (1) Let $u = \sum_{i=0}^{m} |x|^i h_i \in H^m(\Omega)$. We shall now use the Remark following Lemma 3.1 to calculate $\Delta^p u(x)$.

If p = 1, then $\Delta u = \sum_{i=0}^{m-2} |x|^i H_i + |x|^{-1} v_1$ where H_i $(0 \le i \le m-2)$ and v_1 are harmonic functions on Ω . Hence $\Delta u = |x|^{-1} [\sum_{i=0}^{m-2} |x|^{i+1} H_i + v_1] = |x|^{-1} s_1(x)$ where $s_1 \in H^{m-1}(\Omega)$.

If p = 2, then $n \ge 4$ and in this case $\Delta(|x|^{-1}v_1) = |x|^{-3}v_2$ where v_2 is harmonic on Ω . This leads to the equation $\Delta^2 u = \Delta(\Delta u) = \sum_{i=0}^{m-4} |x|^i H'_i + |x|^{-1}v + |x|^{-3}v_2$ on Ω , where H'_i $(0 \le i \le m-4)$, v and v_2 are harmonic on Ω . This simplifies to the form $\Delta^2 u = |x|^{-3}s_2(x)$ where $s_2 \in H^{m-1}(\Omega)$.

This process by induction leads to the result that if $2 \leq 2p \leq n$, then $\Delta^p u = |x|^{-(2p-1)} s_p(x)$ where $s_p \in H^{m-1}(\Omega)$.

(2) Conversely, suppose that u is a continuous function on Ω such that for any integer $p, 2 \leq 2p \leq n$, we have $\Delta^p u = |x|^{-(2p-1)}v$ where $v \in H^{m-1}(\Omega)$. Then, in particular for p = 1, by Lemma 3.3 we have

$$\Delta u = |x|^{-1}v = |x|^{-1}\sum_{i=0}^{m-1} |x|^i H_i = \sum_{i=0}^{m-1} |x|^{i-1} H_i = \sum \Delta(|x|^{i+1} h_i).$$

Hence $u = (\sum_{i=0}^{m-1} |x|^{i+1}h_i) + (a \text{ harmonic function on } \Omega)$; in other words, $u \in H^m(\Omega)$.

COROLLARY 1. Let $u = \sum_{i=0}^{m} |x|^i h_i(x) \in H^m(\Omega)$. Suppose u is harmonic on a neighbourhood of a point in Ω . Then $h_i \equiv 0$ for $1 \leq i \leq m$. In particular, if $u \equiv 0$ on a nonempty open set in Ω , then $h_i \equiv 0$ for all i, $0 \leq i \leq m$.

Proof. Let u be harmonic on a nonempty open set ω . Since $u \in H^m(\Omega)$, there exists $v_{m-1} \in H^{m-1}(\Omega)$ such that $\Delta u = |x|^{-1}v_{m-1}(x)$ on Ω . This implies $v_{m-1} = 0$ on ω . Now again by Theorem 3.4, there exists $v_{m-2} \in H^{m-2}(\Omega)$ such that $\Delta v_{m-1} = |x|^{-1}v_{m-2}(x)$, which implies that $v_{m-2} = 0$ on ω . Proceeding thus, we obtain $v_i \in H^i(\Omega)$, $0 \leq i \leq m-1$, such that $\Delta v_{i+1} = |x|^{-1}v_i$ on Ω and $v_i = 0$ on ω (taking $v_m = u$).

Since v_0 is harmonic on Ω and $v_0 = 0$ on ω , $v_0 \equiv 0$ on Ω . This implies v_1 is harmonic on Ω and since $v_1 = 0$ on ω , we have $v_1 \equiv 0$ on Ω . Thus proceeding, we remark that $v_i \equiv 0$ on Ω for $0 \le i \le m - 1$ so that $\Delta u = 0$ on Ω ; that is, u is harmonic on Ω .

Then $\sum_{i=1}^{m} |x|^i h_i(x) = u(x) - h_0(x)$ is harmonic on Ω . Choose *a* such that $\{x : |x| < a\} \subset \Omega$. Fix $z \in \Omega$ so that |z| < r < a. Let ϱ_z^r be the harmonic measure on |x| = r. Then

$$\sum_{i=1}^{m} \int |x|^{i} h_{i}(x) \, d\varrho_{z}^{r}(x) = \int (u - h_{0}) \, d\varrho_{z}^{r},$$

which implies that

$$\sum_{i=1}^{m} r^{i} h_{i}(z) = u(z) - h_{0}(z).$$

Since r is arbitrary in the interval (|z|, a), we have $h_i(z) = 0$ for $1 \le i \le m$ and $u(z) - h_0(z) = 0$. Since h_i and u are harmonic on Ω and z is arbitrary except for the condition |z| < a, we conclude $h_i \equiv 0$ on Ω for $1 \le i \le m$ and $u \equiv h_0$.

COROLLARY 2. Let $u \in H^m(\Omega)$ and $2 \leq 2p \leq n$. Suppose u is p-harmonic $(\Delta^p u = 0)$ on a neighbourhood of a point in Ω . Then u is p-harmonic on Ω .

Proof. Suppose $\Delta^p u = 0$ on a nonempty open set ω . By Theorem 3.4, there exists a function $v \in H^{m-1}(\Omega)$ such that $\Delta^p u = |x|^{1-2p}v$ on Ω . Hence v = 0 on ω and consequently, by Corollary 1, $v \equiv 0$ on Ω , which means that u is p-harmonic on Ω .

REMARK. We thank the referee for pointing out that in the proofs of the above two corollaries, one can use the real analyticity of u outside the origin, without having recourse to Theorem 3.4.

COROLLARY 3. Let $u \in H^m(S)$, where $S = \{x : |x| < 1\}$ in \mathbb{R}^n , be such that $\liminf_{r\to 1} M(r, |u|) = 0$. Then u(x) = (1-|x|)v(x) where $v \in H^{m-1}(S)$.

Proof. Let $u(x) = \sum_{i=0}^{m} |x|^i h_i(x) \in H^m(S)$. Notice that by the above Corollary 1, there exist uniquely determined harmonic functions u_i on S such that

$$u(x) = \sum_{i=0}^{m} (1 - |x|)^{i} u_{i}(x)$$
 on S.

In particular,

$$h_0(x) = \sum_{i=0}^m u_i(x).$$

Fix z with $|z| \leq 1/4$. For |x| = r, $1/2 \leq r < 1$, let $d\varrho_z^r(x)$ denote the harmonic measure on |x| = r. Integrate u(x) with respect to $d\varrho_z^r(x)$ to get

$$|(1-r)^m u_m(z) + \ldots + (1-r)u_1(z) + u_0(z)| = \left| \int u(z) \, d\varrho_z^r(x) \right| \le CM(r, |u|)$$

for some constant C since $|z| \leq 1/4$ and $1/2 \leq r < 1$ (see the proof of Corollary 2 to Theorem 2.2).

Let $r \to 1$. Since $\liminf_{r\to 1} M(r, |u|) = 0$ by hypothesis, we obtain $u_0(z) = 0$ for $|z| \le 1/4$. Hence $u_0 \equiv 0$. Consequently, u(x) = (1 - |x|)v(x) where

$$v(x) = \sum_{i=0}^{m-1} (1 - |x|)^{i} u_{i+1}(x) \in H^{m-1}(S).$$

NOTE. The above corollary easily includes the result: If u is p-harmonic on S such that $\liminf_{r\to 1} M(r, |u|) = 0$, then $u(x) = (1 - |x|^2)v(x)$ where vis polyharmonic on S of order $\leq m - 1$. This in itself is a generalization of a result of Abkar and Hedenmalm [1, pp. 321–322] proved in the complex plane using the Fourier series: If u(z) is biharmonic on the unit disc in the complex plane and if M(r, |u|) = O(1-r) as $r \to 1$, then $u(z) = (1-|z|^2)h(z)$ for a harmonic function on the unit disc.

4. H^* functions defined near infinity. It is not surprising that in many respects, the functions in $H^{2m-2}(\mathbb{R}^n)$ behave near infinity like the *m*-harmonic functions (that is, the solutions of $\Delta^m u = 0$) on \mathbb{R}^n . In this section, we study a class of continuous functions on \mathbb{R}^n which are associated near infinity with the functions in $H^{2m-2}(\mathbb{R}^n)$ and the fundamental solution of Δ^m on \mathbb{R}^n . This class contains a significant collection of functions having some nice regularity properties at infinity.

For $m \geq 1$, $n \geq 2$, let e_m^n denote the fundamental solution of Δ^m on \mathbb{R}^n . We recall that

$$e_m^n = \begin{cases} |x|^{2m-n} & \text{if } 2m < n \text{ or } 2m - n \text{ is odd} > 0, \\ |x|^{2m-n} \log |x| & \text{if } 2m - n \text{ is even} \ge 0. \end{cases}$$

DEFINITION 4.1. A continuous function v defined outside a compact set in \mathbb{R}^n is said to be in the class $H^{2m-2}_{\infty}(\mathbb{R}^n)$ if there exists $u \in H^{2m-2}(\mathbb{R}^n)$ such that $u - v = O(e_m^n)$ near infinity.

PROPOSITION 4.2. Let h_i $(0 \le i \le m-2)$ be arbitrary harmonic functions defined outside a compact set in \mathbb{R}^n . Then

$$v = \sum_{i=0}^{2m-2} |x|^i h_i(x) \in H^{2m-2}_{\infty}(\mathbb{R}^n).$$

Proof. Recall that (see [2] or Axler *et al.* [10]) given a harmonic function h outside a compact set in \mathbb{R}^n , there exists a harmonic function H on \mathbb{R}^n and a constant α such that outside a compact set,

$$h(x) = \begin{cases} H(x) + \alpha \log |x| + g(x) & \text{if } n = 2, \\ H(x) + g(x) & \text{if } n \ge 3, \end{cases}$$

where g(x) is a harmonic function satisfying $g(x) = O(|x|^{2-n})$ near infinity. Hence for each $i, 0 \le i \le 2m-2$, there exists a harmonic function H_i on \mathbb{R}^n such that $|h_i - H_i| \le A|x|^{2-n}$ if $n \ge 3$ and $|h_i - H_i - \alpha_i \log |x|| \le A$ if n = 2, outside a compact set. Let $u(x) = \sum_{i=0}^{2m-2} |x|^i H_i(x)$. Then $u \in H^{2m-2}(\mathbb{R}^n)$ and near infinity $u - v = O(e_m^n)$. Hence $v \in H^{2m-2}_{\infty}(\mathbb{R}^n)$.

COROLLARY. Let k be a compact set in a star domain Ω with centre 0. Suppose $u = \sum_{i=0}^{2m-2} |x|^i h_i(x)$ where h_i are harmonic on $\Omega \setminus k$. Then there exist $t \in H^{2m-2}(\Omega)$ and $s \in H^{m-2}_{\infty}(\mathbb{R}^n) \cap C(\mathbb{R}^n \setminus k)$, $s = O(e_m^n)$ near infinity, such that u = s - t on $\Omega \setminus k$.

Proof. We know that for each i, there exist $s_i \in H^0(\mathbb{R}^n \setminus k)$ and $t_i \in H^0(\Omega)$ such that $h_i = s_i - t_i$ on $\Omega \setminus k$ (Laurent decomposition for harmonic functions, see [2] or Axler *et al.* [10, pp. 171–175]).

Let now

$$s^{1}(x) = \sum_{i=0}^{2m-2} |x|^{i} s_{i}(x)$$
 and $t^{1}(x) = \sum_{i=0}^{2m-2} |x|^{i} t_{i}(x).$

Then $u = s^1 - t^1$ on $\Omega \setminus k$ where by the above proposition $s^1(x)$ is in the class $H^{2m-2}_{\infty}(\mathbb{R}^n)$, and $t^1(x) \in H^{2m-2}(\Omega)$. Since $s^1 \in H^{2m-2}_{\infty}(\mathbb{R}^n)$, there exists $v \in H^{2m-2}(\mathbb{R}^n)$ such that $s^1 - v = O(e_m^n)$ near infinity. Write now $s = s^1 - v$ and $t = t^1 - v$ to obtain the decomposition u = s - t on $\Omega \setminus k$ as stated in the Corollary.

PROPOSITION 4.3. If v is an m-harmonic function defined outside a compact set in \mathbb{R}^n , then $v \in H^{2m-2}_{\infty}(\mathbb{R}^n)$.

248

Proof. For m = 1, the representation for a harmonic function h outside a compact set (given in the proof of Proposition 4.2) leads to the result that $h \in H^1_{\infty}(\mathbb{R}^n)$.

Let us take the case m = 2. In this case, we start with the representation for a biharmonic function b defined near infinity in the following form (see [11, p. 19]):

$$b(x) = \begin{cases} (\alpha + \alpha_1 x_1 + \alpha_2 x_2) \log |x| + \beta |x|^2 \log |x| + B(x) + u(x) & \text{if } n = 2, \\ \beta |x| + B(x) + u(x) & \text{if } n = 3, \\ \beta \log |x| + B(x) + u(x) & \text{if } n = 4, \\ B(x) + u(x) & \text{if } n \ge 5, \end{cases}$$

where B(x) is biharmonic on \mathbb{R}^n and u(x) is biharmonic bounded near infinity. In the case of $n \geq 5$, we can show that $|u(x)| \leq A|x|^{4-n}$ by specializing the proof $(1)\Rightarrow(2)$ of [11, Theorem 10]. Consequently, since $B \in H^2(\mathbb{R}^n)$ and since $b - B = O(e_2^n)$ near infinity, we have $b \in H^2_{\infty}(\mathbb{R}^n)$.

Finally, for m > 2, we have a similar representation for an *m*-harmonic function defined outside a compact set (details given in a forthcoming paper [5]) which can be used to prove the proposition. The result referred to here is as follows: Let *u* be *m*-harmonic outside a compact set in \mathbb{R}^n . Then there exists an *m*-harmonic function *v* on \mathbb{R}^n such that $u - v = O(e_m^n)$ as $|x| \to \infty$.

THEOREM 4.4. Let $v \in H^{2m-2}_{\infty}(\mathbb{R}^n)$, $n > 2m \ge 2$. Suppose either one of the following conditions is satisfied:

(1) There exists a superharmonic function s outside a compact set such that $|v| \leq s$ near infinity.

(2) $\lim_{|x|\to\infty} v(x)/|x| = 0.$

Then $\lim_{|x|\to\infty} v(x)$ exists and is finite.

Proof. (1) Suppose $|v| \leq s$ near infinity. Since $n \geq 3$, there exists a superharmonic function S on \mathbb{R}^n such that S - s is bounded near infinity (see [3]). Hence we can as well assume that s is a superharmonic function defined on the whole of \mathbb{R}^n and $|v| \leq s$ near infinity.

Since $v \in H^{2m-2}_{\infty}(\mathbb{R}^n)$, by definition there exists $u \in H^{2m-2}(\mathbb{R}^n)$ such that $|u-v| \leq A|x|^{2m-n}$ near infinity. Hence $|u| \leq s+A|x|^{2m-n} \leq s+A$ near infinity. Then by Corollary 3 in Section 2, u is a constant α . Consequently, $\lim_{x\to\infty} v(x) = \alpha$.

(2) Suppose now $\lim_{|x|\to\infty} v(x)/|x| = 0$. Since $v \in H^{2m-2}_{\infty}(\mathbb{R}^n)$, there exists $u \in H^*(\mathbb{R}^n)$ such that $|u-v| \leq A|x|^{2m-n}$ near infinity. This implies that $\lim_{|x|\to\infty} u(x)/|x| = 0$. Hence, by Corollary 2 in Section 2, u is a constant α . Consequently $\lim_{|x|\to\infty} v(x) = \alpha$.

REMARK. Since every bounded continuous function v is in H_{∞}^{2m-2} if $2 \le n \le 2m$, the above theorem is not valid if $n \le 2m$.

We thank the College of Science Research Center, King Saud University, for the grants MATH 141914 and MATH 142020.

References

- A. Abkar and H. Hedenmalm, A Riesz representation formula for super-biharmonic functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), 305–324.
- [2] V. Anandam, Sur une propriété de la fonction harmonique, Bull. Sci. Math. 101 (1977), 255–263.
- [3] —, Subharmonic functions outside a compact set in \mathbb{R}^n , Proc. Amer. Math. Soc. 84 (1982), 52–54.
- [4] —, On the integral representation of biharmonic functions in \mathbb{R}^n , Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 357–367.
- [5] —, Polysubharmonic functions near infinity, to appear.
- [6] V. Anandam and M. Damlakhi, Harmonic singularity at infinity in ℝⁿ, Real Anal. Exchange 23 (1997/98), 471–476.
- [7] D. Armitage, A Liouville theorem for polyharmonic functions, Hiroshima Math. J. 31 (2001), 367–370.
- [8] N. Aronszajn, T. M. Creese and L. J. Lipkin, *Polyharmonic Functions*, Clarendon Press, Oxford, 1983.
- M. Arsove, Functions representable as differences of subharmonic functions, Trans. Amer. Math. Soc. 75 (1953), 327–365.
- [10] S. Axler, P. Bourdon and W. Ramey, *Harmonic Function Theory*, Springer, 1992.
- I. Bajunaid and V. Anandam, Biharmonic extensions in Riemannian manifolds, Hiroshima Math. J. 30 (2000), 9–20.
- [12] M. Brelot, Sur l'intégration de $\Delta u(M) = \varphi(M)$, C. R. Acad. Sci. Paris 201 (1935), 1316–1318.
- [13] T. Futamura, K. Kishi and Y. Mizuta, A generalization of the Liouville theorem to polyharmonic functions, J. Math. Soc. Japan 53 (2001), 113–118.
- [14] Y. Mizuta, An integral representation and fine limits at infinity for functions whose Laplacians iterated m times are measures, Hiroshima Math. J. 27 (1997), 415–427.
- [15] M. Nakai and T. Tada, A form of classical Liouville theorem for polyharmonic functions, ibid. 30 (2000), 205–213.
- [16] M. Nicolesco, Les fonctions polyharmoniques, Hermann, Paris, 1936.

Department of Mathematics King Saud University P.O. Box 2455 Riyadh 11451, Saudi Arabia E-mail: vanandam@ksu.edu.sa damlakhi@ksu.edu.sa