The set of recurrent points of a continuous self-map on compact metric spaces and strong chaos

by Lidong Wang (Dalian), Gongfu Liao (Changchun), Zhizhi Chen (Siping) and Xiaodong Duan (Dalian)

Abstract. We discuss the existence of an uncountable strongly chaotic set of a continuous self-map on a compact metric space. It is proved that if a continuous self-map on a compact metric space has a regular shift invariant set then it has an uncountable strongly chaotic set in which each point is recurrent, but is not almost periodic.

1. Introduction. Throughout this paper, X will denote a compact metric space with metric d, and I is the closed interval [0,1].

For a continuous map $f: X \to X$, we will denote the set of almost periodic points and of recurrent points of f by A(f) and R(f) respectively, with the usual definitions; f^n will denote the n-fold iterate of f.

For x, y in X, any real number t and positive integer n, let

$$\xi_n(f, x, y, t) = \#\{i \mid d(f^i(x), f^i(y)) < t, 1 \le i \le n\},\$$

where we use $\#(\cdot)$ to denote the cardinality of a set. Let

$$F(f,x,y,t) = \liminf_{n \to \infty} \frac{1}{n} \, \xi_n(f,x,y,t), \quad F^*(f,x,y,t) = \limsup_{n \to \infty} \frac{1}{n} \, \xi_n(f,x,y,t).$$

Definition 1.1. Call $x, y \in X$ a pair of points displaying strong chaos if

- (1) F(f, x, y, t) = 0 for some t > 0,
- (2) $F^*(f, x, y, t) = 1$ for any t > 0.

DEFINITION 1.2. f is said to display strong chaos if there exists an uncountable set $D \subset X$ such that any two different points in D display strong chaos.

²⁰⁰⁰ Mathematics Subject Classification: 37B10, 37B40, 74H65, 34C28, 54H20.

Key words and phrases: strong chaos, topological entropy, recurrence, regular shift invariant.

Project supported by the National Science Foundation of China.

For a continuous map $f: I \to I$, Schweizer and Smítal [8] have proved:

- (C_1) If f has zero topological entropy, then no pair of points can form a strongly chaotic set.
- (C_2) If f has positive entropy, then there exists an uncountable strongly chaotic set in which each member is an ω -limit point of f.

One may pose the following questions:

- (Q_1) Is (C_1) still true for a continuous map of any compact metric space X?
- (Q_2) Is there an uncountable strongly chaotic set in which each member is a recurrent point of f on compact metric spaces?

A negative answer to (Q_1) has been given in [6], where a minimal strongly chaotic sub-shift having zero topological entropy was constructed.

In this paper, a positive answer to (Q_2) is given.

In fact, we will prove

MAIN THEOREM. Let $f: X \to X$ be continuous. If f has a regular shift invariant set, then it has an uncountable strongly chaotic set in which each point is recurrent, but is not almost periodic.

2. Basic definitions and preparations. Let $S = \{0,1\}$, $\Sigma = \{x = x_1x_2... \mid x_i \in S, i = 1,2,...\}$ and define $\varrho : \Sigma \times \Sigma \to \mathbb{R}$ as follows: for any $x,y \in \Sigma$, if $x = x_1x_2...$ and $y = y_1y_2...$, then

$$\varrho(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1/2^k & \text{if } x \neq y \text{ and } k = \min\{n \mid x_n \neq y_n\} - 1. \end{cases}$$

It is not difficult to check that ϱ is a metric on Σ . The space (Σ, ϱ) is compact and called the *one-sided symbolic space* on two symbols.

Define $\sigma: \Sigma \to \Sigma$ by $\sigma(x_1x_2...) = x_2x_3...$ for any $x = x_1x_2... \in \Sigma$. Then σ is continuous and called the *shift* on Σ . Call A a tuple (over $S = \{0,1\}$) if it is a finite sequence of elements in S. If $A = a_1a_2...a_m$ where $a_i \in S$, $1 \le i \le m$, then m is called the *length* of A, denoted by |A| = m.

For an arbitrary tuple $B = b_1 b_2 \dots b_n$, the set $[B] = \{x = x_1 x_2 \dots \in \Sigma, x_i = b_i, 1 \le i \le n\}$ is called the *cylinder* generated by B. For any $n \ge 1$, let

$$\mathcal{B}_n = \{ [b_1 \dots b_n] \mid b_i = 0 \text{ or } 1, 1 \le i \le n \}.$$

Then the collection $\bigcup_{n=1}^{\infty} \mathcal{B}_n$ is a subalgebra which generates the σ -algebra of Borel subsets of Σ . Let $h: X \to \Sigma$ be a continuous map. We use $I_{[B]}$ to denote $h^{-1}[B]$ for any $[B] \in \mathcal{B}_n$.

DEFINITION 2.1. Let $f: X \to X$ be continuous. A compact set $\Lambda \subset X$ is said to be a regular shift invariant set for f if:

- (1) $f(\Lambda) \subset \Lambda$,
- (2) there exists a continuous surjection $h: \Lambda \to \Sigma$ satisfying
 - (a) $h \circ f|_{\Lambda} = \sigma \circ h$,
 - (b) there exists an M > 0 such that $\sum_{[B] \in \mathcal{B}_n} \operatorname{diam} I_{[B]} \leq M$ for any $n \geq 1$.

DEFINITION 2.2. $\mathcal{B}(X)$ is the σ -algebra of Borel subsets of X. A probability measure μ on $(X, \mathcal{B}(X))$ is an *invariant measure* for f if $\mu(f^{-1}(B)) = \mu(B)$ for any $B \in \mathcal{B}(X)$. We denote the set of all invariant measures for f by M(X, f).

 $\mu \in M(X, f)$ is *ergodic* (f can then also be regarded ergodic) if the only members B of $\mathcal{B}(X)$ with $f^{-1}(B) = B$ satisfy $\mu(B) = 0$ or $\mu(B) = 1$.

If μ is a unique member of M(X, f), it must be ergodic [9]; we then say that f is uniquely ergodic.

LEMMA 2.1 (see [12]). Let $f: X \to X$ and $g: Y \to Y$ be continuous, where X and Y are compact metric spaces. If there exists a continuous surjection $h: X \to Y$ such that $g \circ h = h \circ f$, then

- (1) h(A(f)) = A(g),
- (2) h(R(f)) = R(g).

Lemma 2.2 (see [10] or [11]). There exists an uncountable set \mathcal{T} on the one-sided symbolic space satisfying

- (1) $\mathcal{T} \subset R(\sigma) A(\sigma)$,
- (2) $\sigma|_{\mathcal{T}}$ is strongly chaotic,
- (3) $\sigma|_{\mathcal{T}}$ is uniquely ergodic.

LEMMA 2.3. Let $\sigma: \Sigma \to \Sigma$ be continuous. If μ is the only invariant probability measure for $\sigma|_{R(\sigma)-A(\sigma)}$, then $\mu(\{x\})=0$ for any $x \in R(\sigma)-A(\sigma)$.

Proof. Let $x \in R(\sigma) - A(\sigma)$. We first claim that $\{x\}$, $\sigma^{-1}(x)$, $\sigma^{-2}(x)$, ... are pairwise disjoint. Assume the claim to be false; then $\sigma^{-m}(x) \cap \sigma^{-n}(x) \neq \emptyset$ for some m and n with $m > n \ge 0$. Take $y \in \sigma^{-m}(x) \cap \sigma^{-n}(x)$, so $\sigma^{m}(y) = \sigma^{n}(y) = x$. Furthermore,

$$\sigma^{m-n}(x) = \sigma^{m-n}(\sigma^n(y)) = \sigma^m(y) = x,$$

i.e. x is a periodic point, which contradicts $x \in R(\sigma) - A(\sigma)$. Since μ is an invariant probability measure for $\sigma|_{R(\sigma)-A(\sigma)}$ and the set of simple points on (Σ, ϱ) is closed, we have $\{x\} \in \mathcal{B}(\Sigma)$ and

$$\mu(\lbrace x \rbrace) = \mu(\sigma^{-1}(x)) = \mu(\sigma^{-2}(x)) = \dots = \mu(\sigma^{-n}(x)).$$

By the countable additivity of μ , we get $\mu(\{x\}) = 0$.

LEMMA 2.4. Suppose $\mathcal{T} = R(\sigma) - A(\sigma)$. If μ is the only invariant probability measure for $\sigma|_{\mathcal{T}}$, then the sequence $\{\mu([b_1 \dots b_n])\}$ of real numbers converges to zero uniformly in $b_i \in \{0,1\}, 1 \leq i \leq n$, as $n \to \infty$.

Proof. For any $\varepsilon > 0$ and any $x \in \mathcal{T}$, by Lemma 2.3, there is an open neighborhood V_x of x such that $\mu(V_x) < \varepsilon$. Moreover, by the definition of $[b_1 \dots b_n]$, there exists N > 0 such that $\text{diam}[b_1 \dots b_n] < \varepsilon$ uniformly in $b_i \in \{0,1\}, 1 \leq i \leq n$, as $n \to \infty$. Thus for any $x \in [b_1 \dots b_n] \cap \mathcal{T}$, there exists N > 0 such that x must be contained in some V_x when $n \geq N$. So

$$\mu([b_1 \dots b_n]) = \mu([b_1 \dots b_n] \cap \mathcal{T}) < \varepsilon. \blacksquare$$

LEMMA 2.5 (see [7]). Let $f: X \to X$ be continuous, $x, y \in X$, N > 0.

- (1) If $F(f^N, x, y, s) = 0$ for any s > 0, then there exists a t > 0 such that F(f, x, y, t) = 0.
- (2) If $F^*(f^N, x, y, s) = 1$ for any s > 0, then $F^*(f, x, y, t) = 1$ for any t > 0.
- **3. Proof of the main theorem.** By the hypothesis, f has a regular shift invariant set, denoted by Λ . Thus there is a continuous surjection h: $\Lambda \to \Sigma$ such that for any $x \in \Lambda$,

$$h\circ f(x)=\sigma\circ h(x).$$

According to Lemma 2.2, there is an uncountable set $\mathcal{T} \subset R(\sigma) - A(\sigma)$ which is strongly chaotic and $\sigma|_{\mathcal{T}}$ has the only ergodic measure μ . Set, for simplicity, $g = f|_{\Lambda}$. For any $y \in \mathcal{T}$, by Lemma 2.1 there exists $x \in R(g) - A(g)$ such that h(x) = y. Let

$$D = \{x \mid x \in R(g) - A(g), h(x) = y \text{ and } y \in T\}.$$

Then $D \subset \Lambda$ and D is an uncountable set. To complete the proof, it suffices to show that D is a strongly chaotic set for f.

For any distinct $x_1, x_2 \in D$, there exist $y_1, y_2 \in \mathcal{T}$ such that $h(x_i) = y_i$ for i = 1, 2. Since y_1 and y_2 are in a strongly chaotic set for σ , there exists s > 0 and a sequence $n_k \to \infty$ such that

(3.1)
$$\frac{1}{n_k} \xi_{n_k}(\sigma, y_1, y_2, s) \to 0 \quad (k \to \infty).$$

Choose an N > 0 such that diam [B] < s for any $[B] \in \mathcal{B}_N$. Let

$$t = \min\{d(I_{[B]}, I_{[C]}) \mid [B], [C] \in \mathcal{B}_N \text{ and } [B] \neq [C]\},\$$

where $d(I_{[B]}, I_{[C]}) = \inf\{d(p, q) \mid p \in I_{[B]}, q \in I_{[C]}\}$. By the properties of g, $d(I_{[B]}, I_{[C]}) > 0$ for any distinct $[B], [C] \in \mathcal{B}_N$ and so t > 0. It is easily seen that for any $i \geq 0$,

$$\begin{split} \varrho(\sigma^i(y_1),\sigma^i(y_2)) &\geq s \\ \Rightarrow \ \sigma^i(y_1) \in [B], \ \sigma^i(y_2) \in [C] \\ & \text{for some distinct } [B], [C] \in \mathcal{B}_N \ (\text{since diam } [B] < s) \\ \Rightarrow \ g^i(x_1) \in I_{[B]}, \ g^i(x_2) \in I_{[C]} \ \text{and} \ d(I_{[B]},I_{[C]}) \geq t \\ \Rightarrow \ d(g^i(x_1),g^i(x_2)) \geq t, \end{split}$$

and therefore, for each k we have

$$\xi_{n_k}(g, x_1, x_2, t) \le \xi_{n_k}(\sigma, y_1, y_2, s).$$

By (3.1), we get

$$\frac{1}{n_k} \, \xi_{n_k}(g, x_1, x_2, t) \to 0 \quad (k \to \infty),$$

and hence

$$(3.2) F(g, x_1, x_2, t) = 0.$$

We now prove $F^*(g, x_1, x_2, t) = 1$ for any t > 0. By the hypothesis, we can choose M > 0 such that $\sum_{[B] \in \mathcal{B}_n} \operatorname{diam} I_{[B]} \leq M$ for any fixed n > 0. For any given t > 0 and $\varepsilon > 0$, choose an integer k > 0 such that tk > M. By Lemma 2.4, we may also choose an N_1 large enough such that $\mu([B]) < \varepsilon/(2k)$ for any $[B] \in \mathcal{B}_{N_1} \cap \mathcal{T}$, i.e. for any $y \in \mathcal{T}$,

(3.3)
$$\lim_{n \to \infty} \frac{1}{n} \#\{i \mid \sigma^i(y) \in [B], \ 0 \le i \le n\} < \frac{\varepsilon}{2k}.$$

Put $s = 1/2^{N_1}$. Since $F^*(\sigma, y_1, y_2, s) = 1$, there exists a sequence $n_j \to \infty$ such that

(3.4)
$$\frac{1}{n_j} \xi_{n_j}(\sigma, y_1, y_2, s) \to 1 \quad (n_j \to \infty).$$

Set, for simplicity,

$$\theta_{n_j} = \sum_{[B] \in \mathcal{B}_{N_i} \cap \mathcal{T}} \frac{1}{n_j} \# \{ i \mid g^i(x_1), g^i(x_2) \in I_{[B]}, \ 0 \le i \le n_j \}.$$

Noting that

$$(3.5) \quad \varrho(\sigma^{i}(y_{1}), \sigma^{i}(y_{2})) < s$$

$$\Leftrightarrow \quad \sigma^{i}(y_{1}), \sigma^{i}(y_{2}) \in [B] \text{ for some } [B] \in \mathcal{B}_{N_{1}} \cap \mathcal{T}$$

$$\Leftrightarrow \quad g^{i}(x_{1}), g^{i}(x_{2}) \in I_{[B]} \text{ for some } [B] \in \mathcal{B}_{N_{1}} \cap \mathcal{T},$$

according to (3.4), we have

$$(3.6) \theta_{n_j} \to 1 (j \to \infty).$$

Thus from (3.3), (3.5), and (3.6) we can choose N large enough such that for $n_j > N$,

$$\frac{1}{n_j} \# \{i \mid g^i(x_1), g^i(x_2) \in I_{[B]}, \ 0 \le i < n_j\} < \frac{\varepsilon}{2k} \quad \text{for any } [B] \in \mathcal{B}_{N_1} \cap \mathcal{T},$$

and

$$(3.7) 1 - \theta_{n_i} < \varepsilon/2.$$

On the one hand, by the definition of θ_{n_i} ,

(3.8)
$$\theta_{n_{j}} - \sum_{\substack{[B] \in \mathcal{B}_{N_{1}} \cap \mathcal{T} \\ \operatorname{diam} I_{[B]} \geq t}} \frac{\varepsilon}{2k}$$

$$\leq \theta_{n_{j}} - \sum_{\substack{[B] \in \mathcal{B}_{N_{1}} \cap \mathcal{T} \\ \operatorname{diam} I_{[B]} \geq t}} \frac{1}{n_{j}} \#\{i \mid g^{i}(x_{1}), g^{i}(x_{2}) \in I_{[B]}, \ 0 \leq i < n_{j}\}\}$$

$$= \sum_{\substack{[B] \in \mathcal{B}_{N_{1}} \cap \mathcal{T} \\ \operatorname{diam} I_{[B]} < t}} \frac{1}{n_{j}} \#\{i \mid g^{i}(x_{1}), g^{i}(x_{2}) \in I_{[B]}, \ 0 \leq i < n_{j}\}$$

$$\leq \frac{1}{n_{j}} \xi_{n_{j}}(g, x_{1}, x_{2}, t).$$

On the other hand, because of the choice of k, there exist at most k different [B]'s with diam $I_{[B]} \geq t$ in $\mathcal{B}_{N_1} \cap \mathcal{T}$. In fact, since tk > M, if there exists $k_1 > k$ such that k_1 different [B]'s satisfy diam $I_{[B]} \geq t$, then k_1 diam $I_{[B]} \geq t$. However, by the choice of M, we know that

$$M \ge \sum_{[B] \in \mathcal{B}_N, \, \cap \mathcal{T}} \operatorname{diam} I_{[B]} \ge k_1 \operatorname{diam} I_{[B]},$$

which is contradictory. By (3.8), we have

$$\theta_{n_j} - \frac{\varepsilon}{2} = \theta_{n_j} - k \cdot \frac{\varepsilon}{2k} \le \frac{1}{n_j} \xi_{n_j}(g, x_1, x_2, t).$$

Combining this with (3.7), we see that for $n_j > N$,

$$0 \le 1 - \frac{1}{n_j} \xi_{n_j}(g, x_1, x_2, t) \le 1 - \theta_{n_j} + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which gives

$$(3.9) F^*(g, x_1, x_2, t) = 1.$$

By (3.2), (3.9) and the arbitrariness of x_1 and x_2 , we conclude that D is an uncountable strongly chaotic set of g.

Thus, we have proved that f has an uncountable strongly chaotic set D in R(f) - A(f).

4. Examples

Example 4.1. Let $f \in C^0(I)$. If f has a positive topological entropy, then there exists an N > 0 such that f^N has a regular shift invariant set ([1]). From the theorem, we deduce that f^N has an uncountable strongly chaotic set in which each point is recurrent, but is not almost periodic. The same holds for f, since for any positive integer n, f displays strong chaos if and only if f^n does (Lemma 2.5).

EXAMPLE 4.2. Let $r_0, r_1: S^1 \to S^1$ be irrational rotations with $r_0 \neq \pm r_1$. Define $f: \Sigma \times S^1 \to \Sigma$ by

$$f(x,t) = (\sigma(x), r_{x_1}(t))$$

for $x = x_1 x_2 \dots \in \Sigma$, $t \in S^1$. Note that the *n*th iteration of f at the point $(x,t) \in \Sigma \times S^1$ is given by

$$f^n(x,t) = (\sigma^n(x), r_{x_n} \circ \ldots \circ r_{x_2} \circ r_{x_1}(t)).$$

It is easy to see that f is continuous.

Let $h: \Sigma \times S^1 \to \Sigma$ be defined by h(x,t) = x. We see that h satisfies (2)(a) of Definition 2.1, but not (2)(b). Indeed, we do not know if an h satisfying both (2)(a) and (2)(b) exists or not. Also we do not know if f displays strong chaos or not, since our theorem cannot be used.

References

- L. S. Block and W. A. Coppel, Dynamics in One Dimension, Springer, New York, 1992, 35–36.
- B. S. Du, Every chaotic interval map has a scrambled set in the recurrent set, Bull. Austral. Math. Soc. 39 (1989), 259–264.
- [3] T. Y. Li, M. Misiurewicz, G. Pianigiani and J. Yorke, Odd chaos, Phys. Lett. A 87 (1982), 271–273.
- [4] —, —, —, No division implies chaos, Trans. Amer. Math. Soc. 273 (1982), 191–199.
- [5] G. F. Liao, Chain recurrent orbits of mapping of the interval, Northeast. Math. J. 2 (1986), 240–244.
- [6] G. F. Liao and Q. J. Fan, Minimal subshifts which display Schweizer-Smital chaos and have zero topological entropy, Sci. China Ser. A 41 (1998), 33–38.
- [7] G. F. Liao and L. D. Wang, Almost periodicity and SS scrambled sets, Chinese Ann. Math. Ser. A 23 (2002), 685–692 (in Chinese).
- [8] B. Schweizer and J. Smital, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), 737–754.
- [9] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.
- [10] L. D. Wang, Z. Y. Chu and G. F. Liao, Recurrence, strong chaos and unique ergodicity, Jilin Shifan Daxue Xuebao 82 (2003), 11–15 (in Chinese).
- [11] L. D. Wang, G. F. Liao and X. Yang, Recurrent point set of the shift on Σ and strong chaos, Ann. Polon. Math. 78 (2002), 123–130.

- [12] J. C. Xiong, Set of almost periodic points of a continuous self-map of an interval, Acta Math. Sinica 2 (1986), 73–77.
- [13] R. S. Yang, *Pseudo-shift-invariant sets and chaos*, Chinese Ann. Math. Ser. A 13 (1992), 22–25 (in Chinese).
- [14] Z. L. Zhou and W. H. He, Level of the orbit's structure and topological semiconjugacy, Sci. China Ser. A 38 (1995), 897–907.

Lidong Wang and Xiaodong Duan Research Institute of Nonlinear Information Technology Dalian Nationalities University Dalian 116600, P.R. China E-mail: wldwyylfx@hotmail.com

Gongfu Liao Institute of Mathematics Jilin University Changchun 130023, P.R. China E-mail: liaogf@public.cc.jl.cn

Zhizhi Chen

Graduate Department of Jilin Normal University Siping 136000, P.R. China

E-mail: dingding_chen@263.sina.com

Reçu par la Rédaction le 13.3.2003 Révisé le 20.6.2003 (1432)