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Symplectic structures on the tangent bundles
of symplectic and cosymplectic manifolds

by J. Kurek (Lublin) and W. M. Mikulski (Kraków)

Abstract. We describe all natural symplectic structures on the tangent bundles of
symplectic and cosymplectic manifolds.

0. Introduction. In [4], the authors classified all Hamiltonian type nat-
ural operators on the cotangent bundle T ∗M . In [1], the author described
all Hamiltonian type natural operators transforming a function f on a sym-
plectic manifold (M,ω) into a vector field V (ω, f) on M . The present pa-
per also deals with natural operators on symplectic structures. We describe
all natural symplectic structures on the tangent bundles of symplectic and
cosymplectic manifolds. This problem arises in the context of not necessarily
regular natural operators in the sense of I. Kolář, P. W. Michor and J. Slo-
vak [6], which are defined on symplectic (resp. cosymplectic) structures.
Since homotheties are not symplectomorphisms (resp. cosymplectomor-
phisms), it is difficult to apply the homogeneous function theorem and the
problem of classification of the operators in question is more difficult than
the one for natural operators defined on all 2-forms (see [2], [3], [6], etc).

Symplectic structures are involved in the Hamilton equation of motion.
For this reason the results of this paper are also interesting from the point
of view of theoretical mechanics.

We start with the problem of how to construct canonically a symplectic
manifold (TM,Λ(ω)) for a given symplectic 2m-manifold (M,ω), where ω is
a closed 2-form with ωm 6= 0 for any point in M . This problem arises in the
context of not necessarily regularMf2m-natural operators Λ, whereMf2m

is the category of 2m-dimensional manifolds and their local diffeomorphisms.
We recall that a not necessarily regularMf2m-natural operator in question
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is a family of functions

Λ : SYMP(M)→ SYMP(TM)

from SYMP(M), the set of all symplectic forms on M , into SYMP(TM) for
any 2m-dimensional manifold M , satisfying the naturality condition

Λ(ϕ∗ω) = (Tϕ)∗Λ(ω)

for any symplectic form ω on a 2m-manifoldN and any local diffeomorphism
ϕ : M → N . The first main result of the present note is the following
classification theorem.

Theorem 1. Let Λ be a not necessarily regular Mf2m-natural operator
as above. Then there exist real numbers α and β 6= 0 such that

(1) Λ(ω) = απ∗ω + βω̃∗Ω

for any symplectic structure ω on M , where π∗ω is the vertical lifting of ω
to the tangent bundle TM , π : TM → M is the tangent bundle projection,
( )∗ is the pull-back , Ω is the canonical symplectic structure on T ∗M and
ω̃ : TM → T ∗M is the standard isomorphism induced by ω, ω̃(v) = ωx(·, v)
for v ∈ TxM and x ∈M .

Conversely , for any real numbers α and β 6= 0 the operator Λ(ω) defined
by (1) is a symplectic structure on TM .

We recall that ω̃∗Ω coincides with the tangent lift dTω (W. Tulczy-
jew [8]), and (under the isomorphisms TTM → T ∗TM induced by the
symplectic form dTω) with the tangent lift of the corresponding 2-vector
field (J. Grabowski and P. Urbański [5]).

By the Darboux theorem every symplectic structure ω on a 2m-manifold
M is locally ωo =

∑m
i=1 dx

i∧dxm+i in some coordinate system xj on M . In
the induced coordinate system (xj , yj) on T ∗M we haveΩ =

∑2m
j=1 dx

j∧dyj .
Hence Λ(ω) from (1) is a symplectic structure.

So, Theorem 1 is a consequence of the following fact.

Theorem 2. Let Λ be a not necessarily regular Mf2m-natural operator
transforming a symplectic structure ω on a 2m-manifold M into a 2-form
Λ(ω) on TM . Then there exist real numbers α and β such that

(2) Λ(ω) = απ∗ω + βω̃∗Ω

for any symplectic structure ω on M , where Ω and ω̃ are as in Theorem 1.

The proof of Theorem 2 will occupy Section 1 of this note.
Using the isomorphism ω̃ : TM → T ∗M induced by ω we can obtain

versions of Theorems 1 and 2 for T ∗M instead of TM .
Next, using Theorem 2, we study the problem of how to construct canon-

ically a symplectic manifold (TM,Λ(ω, θ)) for a given cosymplectic 2m+ 1-
manifold (M,ω, θ), where ω is a closed 2-form and θ is a closed 1-form with
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ωm ∧ θ 6= 0 for any point in M . This problem arises in the context of not
necessarily regular Mf2m+1-natural operators Λ (the definition is an obvi-
ous modification of the above one). Our second main result is the following
classification theorem.

Theorem 3. Let Λ be a not necessarily regular Mf2m+1-natural oper-
ator as above. Then there exists a uniqely determined real number a and
uniquely determined smooth maps b, c : R → R with b(x) 6= 0 and b(x) +
c(x) 6= 0 for all x ∈M such that

(3) Λ(ω, θ) = aπ∗ω + (b ◦ θ)ϕ∗ω,θΩ + (b′ ◦ θ)ϕ∗ω,θλ ∧ dθ + (c ◦ θ)π∗θ ∧ dθ
for any cosymplectic structure (ω, θ) on M , where b′ : R→ R is the deriva-
tive of b, λ is the standard Liouville 1-form on T ∗M , Ω = −dλ is the
canonical symplectic structure on T ∗M , π : TM → M is the tangent bun-
dle projection, ϕω,θ : TM → T ∗M is the standard isomorphism induced by
(ω, θ), ϕω,θ(v) = ωx(·, v) + θ(v)θx for v ∈ TxM and x ∈ M , ( )∗ is the
pull-back and dθ is the differential of the fiber linear map θ : TM → R
corresponding to the 1-form θ.

Conversely , for any real number a and smooth maps b, c : R → R with
b(x) + c(x) 6= 0 and b(x) 6= 0 for all x ∈ M the operator Λ(ω, θ) defined as
in (3) is a symplectic structure on TM .

By the Darboux theorem every cosymplectic structure (ω, θ) on a 2m+1-
manifold M is locally ωo =

∑m
i=1 dx

i ∧ dxm+i and θo = dx2m+1 in some
coordinate system xj on M . In the induced coordinate system (xj , yj) on
T ∗M we have Ω =

∑2m+1
j=1 dxj ∧ dyj , π∗ωo =

∑m
i=1 dx

i ∧ dxm+i, π∗θo =
dx2m+1 and dθo = dy2m+1. Hence Λ(ω, θ) from (3) is a symplectic structure
for any real number a and any smooth maps b, c : R→ R with b(x)+c(x) 6= 0
and b(x) 6= 0 for all x ∈M .

In fact, in Section 2 we prove the following more general Theorem 4.

Theorem 4. Let Λ be a not necessarily regular Mf2m+1-natural oper-
ator transforming a cosymplectic structure (ω, θ) on a 2m + 1-manifold M
into a 2-form Λ(ω, θ) on TM . Then there exist uniquely determined smooth
maps α, β, γ, δ, ε : R→ R such that

Λ(ω, θ) = (α ◦ θ)ϕ∗ω,θΩ + (β ◦ θ)π∗ω + (γ ◦ θ)ϕ∗ω,θλ ∧ π∗θ(4)

+ (δ ◦ θ)ϕ∗ω,θλ ∧ dθ + (ε ◦ θ)π∗θ ∧ dθ
for any cosymplectic structure (ω, θ) on M , where λ, Ω = −dλ, ϕω,θ, π and
( )∗ are as in Theorem 3.

Theorem 3 can be fairly easily deduced from Theorem 4. Just write
(in the induced coordinates on TR2m+1) that Λ(ωo, θo) from (4) is closed
and next that (Λ(ωo, θo))2m+1 6= 0 everywhere, where (ωo, θo) is the above
mentioned standard cosymplectic structure on R2m+1.
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Using the isomorphism ϕω,θ : TM → T ∗M induced by (ω, θ) we can
obtain versions of Theorems 3 and 4 for T ∗M instead of TM .

Given a map f : M → R on a manifold M we have f [0] = f ◦π : TM → R
and f [1] = df : TM → R.

The usual coordinates on R2m will be denoted by xi, xi, where i =
1, . . . ,m and i = m+i. The standard symplectic structure on R2m is denoted
by ωo =

∑m
i=1 dx

i ∧ dxi. The system (xi)[0], (xi)[0], (xi)[1], (xi)[1] for i =
1, . . . ,m is the induced coordinate system on TR2m.

The usual coordinates on R2m+1 will be denoted by xi, xi, x2m+1,
where i = 1, . . . ,m and i = m + i. The standard cosymplectic structure
on R2m+1 is denoted by ωo =

∑m
i=1 dx

i ∧ dxi and θo = dx2m+1. The system
(xi)[0], (xi)[0], (xi)[1], (xi)[1], (x2m+1)[0], (x2m+1)[1] for i = 1, . . . ,m is the
induced coordinate system on TR2m+1.

All manifolds and maps are assumed to be of class C∞.

1. The symplectic case. The purpose of this section is to prove The-
orem 2.

Using notations from Section 0, one can show that

ω̃∗oΩ =
m∑

i=1

d(xi)[0] ∧ d(xi)[1] −
m∑

i=1

d(xi)[0] ∧ d(xi)[1],(5)

π∗ωo =
m∑

i=1

d(xi)[0] ∧ d(xi)[0].(6)

Let Λ be as in Theorem 2.

Lemma 1. If Λ(ωo) = 0, then Λ = 0.

Proof. We have to show that Λ(ω) = 0 for any symplectic structure ω
on a 2m-manifold. By the Darboux theorem and naturality we can assume
ω = ωo.

In view of Lemma 1, Λ is uniquely determined by Λ(ωo). So, it is sufficient
to study Λ(ωo). By the invariance of Λ(ωo) with respect to translations
R2m → R2m we can write

Λ(ωo) =
∑

(k,λ)<(l,µ)

f(k,λ),(l,µ)((x
i)[1], (xi)[1])d(xk)[λ] ∧ d(xl)[µ](7)

+
∑

(k,λ)<(l,µ)

g(k,λ),(l,µ)((x
i)[1], (xi)[1])d(xk)[λ] ∧ d(xl)[µ]

+
m∑

k,l=1

∑

λ,µ=0,1

h(k,λ),(l,µ)((x
i)[1], (xi)[1])d(xk)[λ] ∧ d(xl)[µ]
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for some smooth maps f(k,λ),(l,µ), g(k,λ),(l,µ), h(k,λ),(l,µ) : R2m → R, where
the sum

∑
(k,λ)<(l,µ) is over all (k, λ), (l, µ) ∈ {1, . . . ,m} × {0, 1} with

(k, λ) < (l, µ) with respect to the lexicographic ordering on {1, . . . ,m} ×
{0, 1} (i.e. k < l or (k = l and λ < µ)) and k = m+ k, l = m+ l, i = m+ i.

We now study the maps f(k,λ),(l,µ), g(k,λ),(l,µ) : R2m → R.

Lemma 2. For any (k, λ), (l, µ) ∈ {1, . . . ,m}×{0, 1} with (k, λ) < (l, µ)
there exists a real number a(k,λ),(l,µ) such that

(8) f(k,λ),(l,µ)((x
i)[1], (xi)[1]) = a(k,λ),(l,µ)(x

k)[1](xl)[1].

For any (k, λ), (l, µ) ∈ {1, . . . ,m} × {0, 1} with (k, λ) < (l, µ) there exists a
real number b(k,λ),(l,µ) such that

(9) g(k,λ),(l,µ)((x
i)[1], (xi)[1]) = b(k,λ),(l,µ)(x

k)[1](xl)[1].

Proof. Using the invariance of Λ(ωo) with respect to the ωo-automor-
phisms xi = xi − τix

i and xi = xi for i = 1, . . . ,m and arbitrary real
numbers τi from (7) we get the conditions

f(k,λ),(l,µ)((x
i)[1] + τi(xi)[1], (xi)[1]) = f(k,λ),(l,µ)((x

i)[1], (xi)[1])

Thus the maps f(k,λ),(l,µ) are independent of the first m coordinates.

By the same argument for the ωo-automorphisms xi = xi − τix
i and

xi = xi for i = 1, . . . ,m we deduce that the maps g(k,λ),(l,µ) are independent
of the last m coordinates.

Then by the invariance of Λ(ωo) with respect to the ωo-automorphisms
xi = τix

i and xi = (1/τi)xi for i = 1, . . . ,m and arbitrary positive real
numbers τi we get the homogeneity conditions

f(k,λ),(l,µ)(τi(x
i)[1]) = τkτlf(k,λ),(l,µ)((x

i)[1]),

g(k,λ),(l,µ)

(
1
τi

(xi)[1]
)

=
1
τk

1
τl
g(k,λ),(l,µ)((x

i)[1]).

Now an application of the homogeneous function theorem finishes the
proof.

Next, we study the maps h(k,λ),(l,µ) : R2m → R.

Lemma 3. For any (k, λ), (l, µ) ∈ {1, . . . ,m} × {0, 1} with k 6= l there
exists a real number c(k,λ),(l,µ) such that

(10) h(k,λ),(l,µ)((x
i)[1], (xi)[1]) = c(k,λ),(l,µ)(x

k)[1](xl)[1].

Proof. Let ko, lo ∈ {1, . . . ,m} with ko < lo. Using Lemma 2 and the
invariance of Λ(ωo) with respect to the ωo-automorphisms xlo = xlo , xlo =
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−xlo and xi = xi and xi = xi for i = 1, . . . ,m with i 6= lo we get
∑

λ,µ=0,1

h(ko,λ),(lo,µ)((x
1)[1], . . . , (xlo)[1], . . . , (xm)[1],

(x1)[1]), . . . ,−(xlo)[1], . . . , (xm)[1])d(xko)[λ] ∧ d(xlo)[µ]

= −
∑

λ,µ=0,1

a(ko,λ),(lo,µ)(x
ko)[1](xlo)[1]d(xko)[λ] ∧ d(xlo)[µ].

This ends the proof in the case k < l. The case k > l is quite similar.

Lemma 4. For the constants of Lemmas 2 and 3, we have

(11) a(k,λ),(l,µ) = 0, b(k,λ),(l,µ) = 0

for any (k, λ), (l, µ) ∈ {1, . . . ,m} × {0, 1} with k < l, and

(12) c(k,λ),(l,µ) = 0

for any (k, λ), (l, µ) ∈ {1, . . . ,m} × {0, 1} with k 6= l.

Proof. Let ko, lo ∈ {1, . . . ,m} with ko < lo. Using the invariance of
Λ(ωo) with respect to the ωo-automorphisms xi = xi − τixi and xi = xi for
i = 1, . . . ,m and arbitrary real numbers τi we get an equality with both
sides being polynomials in τko and τlo . Considering the coefficients of τko
and τlo we get (12). Considering the coefficients of (τko)

2(τlo)
2 we get the

second equality of (11). Then considering the coefficients of τkoτlo we get
the first equality of (11).

By (7) and Lemmas 2–4 we can write

Λ(ωo) =
m∑

k=1

Ak((xk)[1])2d(xk)[0] ∧ d(xk)[1](13)

+
m∑

k=1

Bk((xk)[1])2d(xk)[0] ∧ d(xk)[1]

+
m∑

k=1

∑

λ,µ=0,1

Ck,λ,µ((xi)[1], (xi)[1])d(xk)[λ] ∧ d(xk)[µ]

for some real numbers Ak, Bk and some maps Ck,λ,µ : R2m → R.
Consider now a local germ0(ωo)-preserving diffeomorphism

ϕ =
(
xi − 1

2
(xi)2,

xi

1− xi
)

: U → R2m,

where U is a neighbourhood of 0 ∈ R2m.

Lemma 5. For i = 1, . . . ,m we have

(xi)[1] ◦ Tϕ = (xi)[1], (xi)[1] ◦ Tϕ = (xi)[1],(14)
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d(xi)[0] ◦ TTϕ = d(xi)[0], d(xi)[0] ◦ TTϕ = d(xi)[0],(15)

d(xi)[1] ◦ TTϕ = d(xi)[1] − (xi)[1]d(xi)[0],(14)

d(xi)[1] ◦ TTϕ = d(xi)[1] + (xi)[1]d(xi)[0] + (xi)[1]d(xi)[0](16)

over 0 ∈ R2m.

Proof. It is clear that

(xi)[0] ◦ Tϕ = (xi)[0] − 1
2

((xi)[0])2,

(xi)[0] ◦ Tϕ =
(xi)[0]

1− (xi)[0]
,

(xi)[1] ◦ Tϕ = (1− (xi)[0])(xi)[1],

(xi)[1] ◦ Tϕ =
1

1− (xi)[0]
(xi)[1] +

(xi)[0]

(1− (xi)[0])2
(xi)[1]

over U . Differentiating both sides of each equality and using the fact that
(xi)[0] = 0 and (xi)[0] = 0 over 0 ∈ R2m we complete the proof.

Lemma 6. For the coefficients in (13), we have

Ck,1,1 = 0, Ak = Bk,(18)

−Bk((xk)[1])2(xk)[1] − Ck,1,0(xk)[1] + Ck,0,1(xk)[1] = 0,(19)

Ck,1,0 + Ck,0,1 = 2Dk, Ck,0,0 = Ek(20)

for any k = 1, . . . ,m, where Dk and Ek are real numbers. From (19) and
(20) we get

(21) Ck,0,1 =
1
2
Bk(xk)[1](xk)[1] +Dk, Ck,1,0 = −1

2
Bk(xk)[1](xk)[1] +Dk.

Proof. Let ϕ be as in Lemma 5. Clearly ϕ preserves the germ of ωo
at 0. Then using the invariance of Λ(ωo) over 0 ∈ R2m with respect to ϕ−1

and using the transformation rules (Lemma 5) from (13) we get a certain
equality.

Considering the coefficients of d(xk)[1] ∧ d(xk)[0] of both sides of that
equality we get Ck,1,1 = 0.

Then considering the coefficients of d(xk)[0] ∧ d(x)k)[0] we get (19).
Using the invariance of Λ(ωo) with respect to the ωo-automorphism xi =

−xi and xi = xi from (13) we deduce the second formula in (18).
Using the invariance of Λ(ωo) with respect to the ωo-automorphisms

xi = xi − τixi and xi = xi for i = 1, . . . ,m and arbitrary real numbers τi
we get
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−τkAk((xk)[1])2 + Ck,1,0((xi)[1] + τi(xi)[1], (xi)[1]) = Ck,1,0((xi)[1], (xi)[1]),

τkAk((xk)[1])2 + Ck,0,1((xi)[1] + τi(xi)[1], (xi)[1]) = Ck,0,1((xi)[1], (xi)[1]).

Summing the equalities we find that Ck,1,0 +Ck,0,1 is independent of the first
m coordinates. Similarly one can prove that Ck,1,0 + Ck,0,1 is independent
of the last m coordinates.

Using the invariance of Λ(ωo) with respect to the ωo-automorphisms
xi = xi − τixi and xi = xi for i = 1, . . . ,m and arbitrary real numbers τi
we get

Ck,0,0((xi)[1] + τi(xi)[1], (xi)[1]) = Ck,0,0((xi)[1], (xi)[1]).

So, Ck,0,0 is independent of the first m coordinates. Similarly, Ck,0,0 is in-
dependent of the last m coordinates.

By (13) and Lemma 6 we can write

Λ(ωo) =
m∑

k=1

Bk((xk)[1])2d(xk)[0] ∧ d(xk)[1](22)

+
m∑

k=1

Bk((xk)[1])2d(xk)[0] ∧ d(xk)[1]

+
1
2

m∑

k=1

Bk(xk)[1](xk)[1]d(xk)[0] ∧ d(xk)[1]

− 1
2

m∑

k=1

Bk(xk)[1](xk)[1]d(xk)[1] ∧ d(xk)[0]

+
m∑

k=1

Dkd(xk)[0] ∧ d(xk)[1] −
m∑

k=1

Dkd(xk)[0] ∧ d(xk)[1]

+
m∑

k=1

Ekd(xk)[0] ∧ d(xk)[0]

for some real numbers Bk, Ek, Dk.
Using the invariance of Λ(ωo) with respect to permutations of the first

m coordinates together with the corresponding permutations of the last m
coordinates we deduce that Bk = B and Dk = D and Ek = E for any
k = 1, . . . ,m. So, replacing Λ(ω) by Λ(ω)− Eπ∗ω −Dω̃∗Ω we have

Λ(ωo) = B

m∑

k=1

((xk)[1])2d(xk)[0] ∧ d(xk)[1](23)

+B

m∑

k=1

((xk)[1])2d(xk)[0] ∧ d(xk)[1]
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+
1
2
B

m∑

k=1

(xk)[1](xk)[1]d(xk)[0] ∧ d(xk)[1]

− 1
2
B

m∑

k=1

(xk)[1](xk)[1]d(xk)[1] ∧ d(xk)[0]

for some real number B.
Consider now the ωo-diffeomorphism

ψ = (xi − (xi)2, xi).

Lemma 7. For i = 1, . . . ,m we have

(xi)[1] ◦ Tψ = (xi)[1], (xi)[1] ◦ Tψ = (xi)[1],(24)

d(xi)[0] ◦ TTψ = d(xi)[0], d(xi)[0] ◦ TTψ = d(xi)[0],(25)

d(xi)[1] ◦ TTψ = d(xi)[1] − 2(xi)[1]d(xi)[0],(26)

d(xi)[1] ◦ TTψ = d(xi)[1](27)

over 0 ∈ R2m.

Proof. The proof is quite similar to the one of Lemma 5.

Proof of Theorem 2. By Lemma 1 it is sufficient to prove that B = 0,
where B is as in (23).

Let ψ be as in Lemma 7. Using the invariance of Λ(ωo) with respect to
ψ−1 from (23) and the transformation rules from Lemma 7 we get B = 0.

2. The cosymplectic case. The purpose of this section is to prove
Theorem 4.

Using notations from Section 0, one can prove that

ϕ∗ωo,θoΩ =
m∑

i=1

d(xi)[0] ∧ d(xi)[1] −
m∑

i=1

d(xi)[0] ∧ d(xi)[1](28)

+ d(x2m+1)[0] ∧ d(x2m+1)[1],

ϕ∗ωo,θoλ ∧ π∗θo = −
m∑

i=1

(xi)[1]d(xi)[0] ∧ d(x2m+1)[0](29)

+
m∑

i=1

(xi)[1]d(xi)[0] ∧ d(x2m+1)[0],

ϕ∗ωo,θoλ ∧ dθo = −
m∑

i=1

(xi)[1]d(xi)[0] ∧ d(x2m+1)[1](30)

+
m∑

i=1

(xi)[1]d(xi)[0] ∧ d(x2m+1)[1],
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π∗θo ∧ dθo = d(x2m+1)[0] ∧ d(x2m+1)[1].(31)

Let Λ be as in Theorem 4.

Lemma 8. If Λ(ωo, θo) = 0, then Λ = 0.

Proof. We have to show that Λ(ω, θ) = 0 for any cosymplectic structure
(ω, θ) on a 2m + 1-manifold. By the Darboux theorem and the naturality
we can assume ω = ωo and θ = θo.

So, it is sufficient to study Λ(ωo, θo). Given c ∈ R, let

ic : TR2m = R2m × R2m → R2m × {0} × R2m × {c} ⊂ TR2m+1

be the inclusion.

Lemma 9. We have

(ic)∗Λ(ωo, θo) = a(c)
( m∑

i=1

d(xi)[0] ∧ d(xi)[1] −
m∑

i=1

d(xi)[0] ∧ d(xi)[1]
)

(32)

+ b(c)
m∑

i=1

d(xi)[0] ∧ d(xi)[0],

for some smooth maps a, b : R→ R.

Proof. The 2-form (ic)∗Λ(ωo, θo) on TR2m is clearly invariant with re-
spect to all symplectomorphisms R2m → R2m, where on R2m we have the
standard symplectic form. An appeal to Theorem 2 completes the proof.

By the invariance of Λ(ωo, θo) with respect to translations R2m+1 →
R2m+1 and by Lemma 9 we can write

(33) Λ(ωo, θo)

= a((x2m+1)[1])
( m∑

i=1

d(xi)[0] ∧ d(xi)[1] −
m∑

i=1

d(xi)[0] ∧ d(xi)[1]
)

+ b((x2m+1)[1])
m∑

i=1

d(xi)[0] ∧ d(xi)[0]

+
m∑

k=1

∑

λ,µ=0,1

Fk,µ,ν((xi)[1], (xi)[1], (x2m+1)[1])d(xk)[µ] ∧ d(x2m+1)[ν]

+
m∑

k=1

∑

λ,µ=0,1

Gk,µ,ν((xi)[1], (xi)[1], (x2m+1)[1])d(xk)[µ] ∧ d(x2m+1)[ν]

+H((xi)[1], (xi)[1], (x2m+1)[1])d(x2m+1)[0] ∧ d(x2m+1)[1]

for some smooth maps a, b : R → R and Fk,µ,ν , Gk,µ,ν ,H : R2m+1 → R,
where k = k +m, i = m+ i.
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Lemma 10. For any k ∈ {1, . . . ,m} and µ, ν ∈ {0, 1} there are smooth
maps ak,µ,ν and bk,µ,ν such that

Fk,µ,ν((xi)[1], (xi)[1], (x2m+1)[1]) = ak,µ,ν((x2m+1)[1])(xk)[1],(34)

Gk,µ,ν((xi)[1], (xi)[1], (x2m+1)[1]) = bk,µ,ν((x2m+1)[1])(xk)[1].(35)

We can write

(36) H((xi)[1], (xi)[1], (x2m+1)[1]) = c((x2m+1)[1])

for some smooth map c : R→ R.

Proof. Using the invariance of Λ(ωo, θo) with respect to the (ωo, θo)-
automorphisms xi = xi − τixi, xi = xi and x2m+1 = x2m+1 for i = 1, . . . ,m
and arbitrary real numbers τi, from (33) we get

Fk,µ,ν((xi)[1] + τi(xi)[1], (xi)[1], (x2m+1)[1])

= Fk,µ,ν((xi)[1], (xi)[1], (x2m+1)[1]),

H((xi)[1] + τi(xi)[1], (xi)[1], (x2m+1)[1]) = H((xi)[1], (xi)[1], (x2m+1)[1]).

Thus the maps Fk,µ,ν and H are independent of the first m coordinates.
By the same argument for the (ωo, θo)-automorphisms xi = xi − τixi,

xi = xi and x2m+1 = x2m+1 for i = 1, . . . ,m we deduce that the maps
Gk,µ,ν and H are independent of the next m coordinates.

By the invariance of Λ(ωo, θo) with respect to the (ωo, θo)-automorphisms
xi = τix

i, xi = (1/τi)xi and x2m+1 = x2m+1 for i = 1, . . . ,m and arbitrary
positive real numbers τi we get the homogeneity conditions

Fk,µ,ν(τi(xi)[1], (x2m+1)[1]) = τkFk,µ,ν((xi)[1], (x2m+1)[1]),

Gk,µ,ν

(
1
τi

(xi)[1], (x2m+1)[1]
)

=
1
τk
Gk,µ,ν((xi)[1], (x2m+1)[1]).

Now an application of the homogeneous function theorem completes the
proof.

By (33) and Lemma 10 we can write

(37) Λ(ωo, θo)

= a((x2m+1)[1])
( m∑

i=1

d(xi)[0] ∧ d(xi)[1] −
m∑

i=1

d(xi)[0] ∧ d(xi)[1]
)

+ b((x2m+1)[1])
m∑

i=1

d(xi)[0] ∧ d(xi)[0]

+
m∑

k=1

∑

λ,µ=0,1

ak,µ,ν((x2m+1)[1])(xk)[1]d(xk)[µ] ∧ d(x2m+1)[ν]



284 J. Kurek and W. M. Mikulski

+
m∑

k=1

∑

λ,µ=0,1

bk,µ,ν((x2m+1)[1])(xk)[1]d(xk)[µ] ∧ d(x2m+1)[ν]

+ c((x2m+1)[1])d(x2m+1)[0] ∧ d(x2m+1)[1]

for some smooth maps a, b, ak,µ,ν , bk,µ,ν , c : R→ R.

Lemma 11. We have

(38) ak,µ,ν = −bk,µ,ν = Aµ,ν

for some smooth maps Aµ,ν : R→ R.

Proof. Using the invariance of Λ(ωo, θo) with respect to the (ωo, θo)-
automorphism xi = −xi, xi = xi, x2m+1 = x2m+1 for i = 1, . . . ,m, from
(37) we obtain ak,µ,ν = −bk,µ,ν . Next, using the invariance of Λ(ωo, θo) with
respect to permutations of the first m coordinates together with the corre-
sponding permutations of the next m coordinates on R2m+1 we complete
the proof.

Consider the (ωo, θo)-diffeomorphism

ψ = (xi − (xi)2, xi, x2m+1).

Lemma 12. For i = 1, . . . ,m we have

(xi)[1] ◦ Tψ = (xi)[1],(39)

(xi)[1] ◦ Tψ = (xi)[1],(40)

(x2m+1)[1] ◦ Tψ = (x2m+1)[1],(41)

d(xi)[0] ◦ TTψ = d(xi)[0],(42)

d(xi)[0] ◦ TTψ = d(xi)[0],(43)

d(x2m+1)[0] ◦ TTψ = d(x2m+1)[0],(44)

d(xi)[1] ◦ TTψ = d(xi)[1] − 2(xi)[1]d(xi)[0],(45)

d(xi)[1] ◦ TTψ = d(xi)[1],(46)

d(x2m+1)[1] ◦ TTψ = d(x2m+1)[1](47)

over 0 ∈ R2m.

The proof is standard and quite similar to the one of Lemma 7.

Lemma 13. We have

(48) A1,0 = A1,1 = 0.

Proof. This is a consequence of the invariance of Λ(ωo, θo) with respect
to the (ωo, θo)-diffeomorphism ψ = (xi − (xi)2, xi, x2m+1). More precisely,
we use (37), (38) the invariance of Λ(ωo, θo) with respect to ψ and the
transformation rules (39)–(47).
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Proof of Theorem 4. By (48) and Lemmas 11 and 13 we have (4) with
(ω, θ) = (ωo, θo) for some smooth maps α, β, γ, δ, ε : R→ R. Then an appeal
to Lemma 8 completes the proof.
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