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Cauchy—Poisson transform and polynomial inequalities

by MirROSEAW BARAN (Krakow)

Abstract. We apply the Cauchy—Poisson transform to prove some multivariate poly-
nomial inequalities. In particular, we show that if the pluricomplex Green function of a
fat compact set E in RY is Holder continuous then E admits a Szegd type inequality with
weight function dist(z, dE)~(1~%) with a positive x. This can be viewed as a (nontrivial)
generalization of the classical result for the interval £ = [—-1,1] C R.

1. Introduction. Let P(C") denote the set of polynomials of N com-
plex variables. An important role in pluripotential theory and approximation
theory of many variables is played by the Siciak extremal function (or poly-
nomial extremal function, see [Sil, Si2|)

Pi(2) = sup{|p(2)[ /4 s p € P(CY), degp > 1, [lpllp <1}, z€CY,
where F is a fixed compact subset of CV. By the Zakharyuta-Siciak theorem
(see [Si2, Si3])

log®p(z) = Ve(z), zeCV,

where
Vi(z) = sup{u(z) : uw € PSH(CY), u < const + log(1 + ||z||), u|x < 0}.

If Vi(z) = limsup,,_,, Ve(w) is locally bounded then it is called the pluri-
complex Green function.

If E is a compact subset of CV then, by the definition of $p, we have
the Bernstein—Walsh—Siciak type inequality

p(2)| < llplle - @e(2)®?,  peP(CY).

An important tool in the investigations of multivariate inequalities for
derivatives of polynomials is provided by the following
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1.1. ProPOSITION ([B2]). If E C RN and x € E then for all p € P(CV)
and all v € SN~

el ,
(1.1) |Dop(2)| < (degp) lim inf — Vp(z + icv)|plle-

Moreover, if p has only real coefficients then we have a more precise inequal-
1ty

o1 .
(1.2) [Dop(a)] < (degp) lim inf — Vio( + iev) (|lp[[f — p*(2))"/*.

1.2. REMARK.

(1) If E = [~1,1] then liminf. .o, e 'Vg(z + ic) = (1 — 2)~1/2 and
in this case (1.1) and (1.2) are generalizations of the well-known
Bernstein and Szego inequalities, respectively. (The Szego inequality
is also known as the van der Corput—Schaake inequality.)

(2) We shall see that the limit lim. oy e~V (x + ic) always exists if
N =1, z € int(E) # (), and is equal to half the density ¢(z) of the
equilibrium measure Ag.

A general version of inequalities of type (1.1) and (1.2) for a compact
E C RY was proved in [B2, B3|. Similar inequalities were rediscovered later
by Totik [T1, T2| but only for N = 1.

2. Cauchy—Poisson transform and extremal function. Let us re-
call the definition of the Cauchy—Poisson transform (see e.g. [St, StW]).

2.1. DEFINITION. Let Hy and H_ be the upper half-plane and the lower
half-plane in C, respectively. We shall denote by Pu the Cauchy—Poisson
transform of a Borel function u : R — R, u(t) = O(|t|*), k € (0,1), in Hy:

o0

(2.1) PuQ) = (3 = | 1 u(r)dr
(2.2) :% g u(tym)lft?,

where ( =« + iy € H,.
In particular, Pu is well defined if u(¢) has logarithmic growth:

u(t) = O(log(1 + [t])),
or if u is globally Hélder continuous, i.e.
|u(t) — u(7)| < const - [t — 7|*

with x € [0,1) (briefly, u € HC,(R)).
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We also define Pu in the whole plane C by
Pu(—(), ¢eH._,
Pu) = { 70
u(¢), (ER.
We have

2.2. PROPOSITION. [fu € HC.(R) then Pu € H(H;UH_)NC(C). (Here
H(2) is the space of harmonic functions on an open set 2 C C.)

Proof. Harmonicity of Pu is a consequence of the equality S¢|¢ —t|72 =
$(1/(¢ —t)) and the mean value criterion.
To prove its continuity fix an xg € R. We can write, for { = x + iy,

[e.e]

1 dt
Putd) —wtow)l =| - { (wttw+2) ~wtoo)) 11
1T dt
< p Soo lu(ty + x) — u(wo)| T2
K 1 T K dt K
<Cla—wol+C 2 | I b

< Ci(|z — @ol™ + [y|").

2.3. REMARK. Pu is also continuous on C if u € C(R), since we can
then apply the Lebesgue bounded convergence theorem. We can also use the
Lebesgue theorem if |u| is bounded by C(1 + |t|)", x < 1, in particular, if u
has the logarithmic growth |u(t)| < Clog(1 + [¢]).)

To get our main result we need a theorem that establishes relations be-
tween the Zakharyuta-Siciak extremal function Vg in CV and its restriction
to RV. Here a central role is played by the CauchyPoisson transform.

2.4. THEOREM. If E is a compact set in RN then for all z,v € RN and
¢eC,
o0

| Vel + (R +130)0) © i

(2.3) Ve(z + (v) < Pu(() = 112

N[

— 00

where u(t) = Vg(z + tv), with equality if N = 1. In particular, if v € SN,
e >0 then

oo

) 1 dt
(2.4) Ve(z +iev) < - SOO Ve(tev + x) T
and
.1 . 17T
(2.5) liminf — Vg(x + icv) < = S t™“Ve(x + tv) dt.
e—0+ € T

—00
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As an immediate consequence we get
2.5. COROLLARY. If E is a compact set in RY and x € int(E) then for
any v € SN

1
(2.6) lim inf - Ve(x + tev) <

e—0+

| t72Vg(x + tv) dt.
[t|>disty (z,0F)

3=

Here dist,(z,0F) is the distance from x to OF in direction v defined in
the next section.

Proof of Theorem 2.4. Let us recall that if E is a compact subset of RY
then

VﬂdZwm{ h%%@@DMPGMﬂA%p>LHmE<1}

1
degp
where h(¢) = ¢+ /(2 =1 and |h(¢)] = h(3l¢ + 1] + 3l¢ = 1[), h(t) =
t+ (2 —1)Y2, ¢t > 1 (see [B2)).

Put )

u(Q) = g loglhlpla + ). (€T

Then
ue SH(C)N'H(H; UH_)NC(C).
Moreover, u > 0 and u(z) — 3 log(1 + [¢|?) = O(1). This implies that Pu €
C(C) and the function v defined by
v(Q) = u(¢) =Pu((), (€€,

is a bounded continuous function on C that equals 0 on R. Therefore, apply-
ing the maximum principle separately to H; and H_ we get the inequality
v < 0 in C, whence

1
degp

o0

log [h(p(x + C)) < T |

—00

1 dt
log |h t —
oy 1B L + )] s

and taking the supremum over p gives (2.3).

The proof of equality in case N = 1 is similar to that in [B4]: it suffices
to consider the case z = 0 and y = 1.

Let £ C R C C be a compact set that satisfies the HCP condition, i.e.
there exist constants M > 0 and « € (0, 1] such that

Ve(z) < Mdist(z, E)]® dist(z, E) < 1.

Then in particular Vg € C(C)NH(C\ E) and Vg (¢) —log(1+[¢|) = O(1) as
¢ — o0. Hence, by the argument of the proof of Theorem 2.4, the function

v(¢) = PVe[r(€) = VE(), (€C,
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is nonnegative, whence for ( = x + iy we get

[e.o]

Ve() =~ | Viliy+a)

—00

142

Now, if E' is an arbitrary compact subset of R, there exists a sequence of
compact sets Ej such that Ex.1 C Fy, Fx € HCP and F = ﬂzozl E;.. Hence
VE, /" Vi, and so, by the Lebesgue monotone convergence theorem,

VE(Q) \\ VE,(¢) = PVE,[r(¢)

I dt 1T
_WLVEk(ty+x)1+t2 /WSOOVE(ty—Fm)l—ktz'

Let us recall that F is said to be L-reqular at o € E if
limsup Vg(z) =0,

z—x0o

that is, Vg is continuous at zg. From Theorem 2.4 we easily derive

2.6. COROLLARY. If E is not a pluripolar subset of RN (that is, Vi is
bounded by const + log(1 + |z|) in CV) then E is L-regular at vo € E if
Ve|pn is continuous at xg.

To show another application of Theorem 2.4 we need the following simple
lemma.

2.7. LEMMA. Put
Ay (v) = Ll S (z—t)2Vgt)dt, zeint(E),veR,
R\E

and let 0 < e < 1. Then, for |v] < (1//e(1 —¢))dist(xz,R \ E), one has
1
(1—e)Az(v) < - Ve(x + iev) < Ay (v).

Proof. If |v| < (1/4/e(1 —¢))dist(z,R \ E) then, for an arbitrary ¢ €
R\ E, we have |v| < |z —t|/\/e(1 —¢€). This inequality is equivalent to
|z +icv|72 > (1 —¢)|z —t|~2 and, by the obvious inequality |z +iev —t|~2 <
|z — t|? and by (2.1), we have

(1 —-e)Az(v) < éVE(JJ + iev) = ‘:ﬂ S |z 4 dev — t| 2u(t) dt < Ag(v).
R\E

Now, by pluripotential methods developed in [B3] (see Comparison Lem-
ma 1.12 and Corollary 3.2) one easily obtains the following

2.8. PROPOSITION. Let E be a compact subset of R with nonempty in-
terior and let Ey = int(E) be the “fat” part of E. Then for the equilibrium
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measure g (see e.g. [Kl| for the definition of this notion in CV) the following
formula holds:

)\E‘Eo - ap(m) dx,

where

o)== | o tVi(t) dr.

R\E

3. Szegd type inequality for compact sets in RY. Let v € SV~!
and let E be a subset of RV. If 29 € E then the distance from xqg to OF in
direction v is defined by

disty (x0, OF) = sup{r > 0: zo + [—r,r]v C E}.
If dist(xo, OF) denotes the usual distance from zy € E to the boundary of F,
that is,
dist(zg, OF) = inf{|z — 20| : * € OE} = sup{r > 0: B(xo,r) C E}
then we have
dist(zg,0F) = inf dist,(xg,0F).

veSN-1

If BE=[-1,1 x {0} U{0} x [-1,1] C R? and x¢ = (0,0), then for v = (1,0)
and v = (0,1) we have dist,(xo, 0F) = 1 and dist(zo, 0E) = 0, so the usual
distance is in general not comparable with directional distances for n linearly
independent vectors.

3.1. THEOREM. Let E be a compact subset of RN . Let v € SN™1 and let
E, :={x € E : disty(z,0F) > 0}.

Assume that there exist positive constants Cy,Co and k € (0,1) such that

(3.1) Ve(x +tv) < Cilog(l+|t]), teR, x¢€ E,
and
(3.2) VeE(z +tv) < Colt|®  aste[-1,1], x € E,.

Then there exists a positive constant M such that for any p € R[z] and any
z e by,

(3.3) |Dyp(x)| < M(deg p)(disty (x, 0E)) ") (|[p|| — p*(2))"/2.
Proof. Without loss of generality we can assume that

sup disty(z,0F) < 1.
rxel,

To prove (3.3) we need to find an upper bound of liminf. .oy e~ 'Vg(z+icv).
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By (2.6) we have

| t2Vg(x + tv) dt
[t|>disty (x,0F)

3| =

1
lim inf R Ve(x +icv) <

e—0+

1
= [ | + | ]t—QVE(aertv) dt
1>[t|>dist, (2,0E)  [t|>1
1 0o
2 2
<X |2+ G | log(1 + )t~ dt
dist, (z,0F) T 1
_ 20 1

——— ((disty(z, 0E)) "% — 1) + C3

™ 1—k
< M (dist,(z, 0E)) =05,

where M = C3 + 2C5/(1 — k)w. Hence, by Proposition 1.1 we get inequal-
ity (3.3).

Applying Theorem 3.1 for all directions v € S*~! gives the main result
of the paper:

3.2. THEOREM. If a fat compact E in RN satisfies the HCP condition
with constants M > 0 and 0 < k < 1, then, for all directions v € S*! and
all polynomials p € R[z|, we have the following Szegé type inequality:

|Dup(w)] < A(degp)(dist(z, 0E)) "~ (|lp|f; — p*(2))"/?, @ € int(E),

where A = A(F) is a constant.

3.3. REMARK. Recall that a compact set F in RY is said to be Markov
if there exist constants M > 0, m > 2 such that for all polynomials p,

(M) lgrad pllz < M(degp)™|Iplle-

By Cauchy’s Integral Formula, any HCP compact set in RY is Markov
and till now, no Markov set which is not an HCP set is known.

It is also known (see [Pl]) that Markov’s property is equivalent to the
following condition:

(P) 3C1,Cy ¥p e Pr(CN)  |p(2)| < Collplle  as dist(z, E) < C1k™™.

It was conjectured in [B2] that an inequality of type (3.3) implies Mar-
kov’s inequality with exponent 1/x. We note that this is true in the class of
HCP sets.
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