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On the real analyticity of the scattering operator
for the Hartree equation

by CHANGXING MIAO (Beijing), HAIGEN WU (Beijing and Jiaozuo) and
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Abstract. We study the real analyticity of the scattering operator for the Hartree
equation i0yu = —Au + u(V * |u|?). To this end, we exploit interior and exterior cut-off
in time and space, together with a compactness argument to overcome difficulties which
arise from absence of good properties as for the Klein-Gordon equation, such as the finite
speed of propagation and ideal time decay estimate. Additionally, the method in this paper
allows us to simplify the proof of analyticity of the scattering operator for the nonlinear
Klein—Gordon equation with cubic nonlinearity.

1. Introduction. This paper is devoted to the proof of the real analyt-
icity of the scattering operator for the Hartree equation

{i@tu = —Au+u(V*|u?), (tz)€RxR3
u(0) = ug € H'(R3).

Here u(t,r) is a complex-valued function defined in R'*3, V(z), called a
potential, is a real-valued radial function defined in R3, and * denotes con-
volution in R?. Under suitable assumptions on V', Ginibre—Velo [7] developed
the scattering theory of the equation (1.1) in the energy space H'. Attempt-
ing to study the (complex) analyticity of the scattering operator is in vain
because u is not analytic even if u is. However, following W. Strauss’s sug-
gestion (private communication), we can study the real analyticity which is
still an interesting issue.

Let u = ¢(t,x) + ip(t, z), up = po(x) + ibo(z), where p(t, x), ¥(t, x),
wo(z), 1o(x) are real-valued functions defined in R x R3 or R3. Then the
integral form of equation (1.1)

(1.1)

t

(1.2) u(t) = e"Pug — i | DAV x Jul?)u)(s) ds
0
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can be rewritten as

@\  [costA —sintA) (pg
(13) (@0) B (sintA costA ) (1,[)0)

O sin(t—s)A  cos(t—s)A\ (¢ (o () ds
+é(—cos(t—s)A sin(t—s)A> <¢>(V (¥" +97))(s) ds.

0= () = = ()

we can transform (1.3) into

Setting

(L4) Ny = U(t) = G)Uy — | A7 (t — 5)(V % [U]*)U(s) ds,
0

Gt) = (cos tA —sin tA>

where

sintA  costA

is the unitary group associated with the equation (1.1).
First, we recall the decay estimate and Strichartz estimates in the context
of Schrédinger equation (see [6], [9], [11]).

DEFINITION 1.1. A pair (q,r) is admissible, denoted by (q,r) € A, if
r € [2,6] and ¢ satisfies

(1.5) = 5(r) = 3@ - i)
LEMMA 1.1. Let S(t) = e®?. Then:
(1) the L' -L" decay estimate

(1.6) IS@) el < Ot~ ()]l

holds for 2 < r < oo;
(2) the Strichartz estimates

(1.7) 1S ull Lar,zr@s)) < Cllullz2,

< / /
qu(I,Lrl(R?’)) — C||f||Lq2(I7LT2(R3))

(1.8) H§ St — 5)f(s) ds‘
0

hold for any interval I CR, and for any admissible pairs (q,7), (¢j,75)
eA j=1,2.
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REMARK 1.1. Lemma 1.1 still holds for the propagators G(t) and
A7LG'(t) by the Euler formulae
HA | —itA HA  —itA
%’ GintA — %

Let B be a Banach space, and write

ez =G,

Throughout this paper, the symbol C' denotes a constant which may be
different from line to line, and C'(*) denotes a constant which only depends
on the parameter .

Define the wave operator Wy : Uy — Up as follows: for any Uy € H!,
there exists Uy € H! such that

(1.9) |Gt Ux — N(#)Ug|lgr — 0 as t — Fo0.

When the wave operators W, are invertible, we can define the scattering
operator as S = W;l oW_:U_w— Us.
Set

costA =

= [lullp + [lvllz < oo

X=CR,H'®))n (] LI(R,H(R?)).
(g,r)eA

Ginibre—Velo established a complete scattering theory in energy space
provided that the potential V' satisfies the following assumption:

(H1) V is a real function and V' € LP' 4+ LP2 for some p;, p2 satisfying
1<p2§p1<3/2.

(H2) V is radial and nonincreasing, i.e., V(x) = v(r) where v is non-
increasing in RT. Furthermore, for some a > 2, v satisfies the
following condition:

(Aq) There exist @ > 0 and A, > 0 such that
Aa
v(r) —v(rg) > o (r§ —r{) for0<r <ry<a.

In particular, the wave operator Wy and the scattering operator S are
bounded and continuous from H! to H'.
Our main result is

THEOREM 1.1. Let V satisfy the assumptions (H1) and (H2). Then the
operators Wy and S are analytic from H' to H'.

The proof of Theorem 1.1 depends on the following theorem:

THEOREM 1.2. Let Uy € H' and U(t) be the unique solution of (1.4)
in X. Then the map U : Uy — U(Up) is analytic from H* to X.
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For the nonlinear Klein—Gordon equation with cubic nonlinearity, using
the contraction mapping principle, Baez—Zhou [2] proved the analyticity of
the scattering operator on a neighborhood of zero in the space of finite-
energy Cauchy data, H' @ L?(R?). Kumlin [10] generalized that result to
the entire energy space by means of the Fredholm alternative theorem. The
proof in [10] depends on the following two nice properties of the linear Klein—
Gordon equation:

(1) LP-LP" estimates stated in the following proposition.
ProposITION 1.1 ([4], [10]). Let

sint(—A +m?)'/?
K(t) = CA T ndie

l<p<2<yp,1/p+1/y =1, 0 :=1/2-1/p and 0 < 0 < 1. If
(n+140)0 <1+4s—4, then

(1.10) IK@)gllys o < k@Ollgllwss, >0,

where

—(n—1-0)c
k(t):{t , 0<t<1,

tf(nflJrG)o" 1<t

For suitable p and #, we have k € L'(R). In particular,
K @®)gllg < Cllgllr2-

These estimates are crucial in the proofs of Steps 1 and 3 in [10].

(2) The finite speed of propagation.

The finite speed of propagation of the solution of a linear wave equation
means that for ¢t € [-T,T], T < oo,

t

S K(t — s)nru(s) ds’
0

L5(R3)

o |

(1.11) HiK(t—s)u(s)ds‘
0

Here the cut-off function nr(z) defined in (1.15) below commutes with the
group K (t) in some sense, which plays an important role in the proof of
analyticity (see Step 2 in [10]).

The arguments in this paper still apply the Fredholm alternative theorem
together with the analytic version of the implicit function theorem (cf. [2,
3, 10]). However, we have to overcome some difficulties arising from loss of
the good properties (1) and (2) for the Schrédinger equation. Our major
innovations are as follows: Compared with k(t) in (1.10), the kernel |¢|~%(")
in (1.6) is not in any LP(R), 1 < p < oo, and the Hardy-Littlewood—Sobolev
inequality cannot supply any decay. A new approach to the singular kernel
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is the double localization in time

(1.12) = s Oxgeermxgasty 1= s ooy X (s T
which together with other techniques helps us to get time decay; here x4
denotes the characteristic function of the interval A. On the other hand,
modifying (1.11) by introducing double (interior and exterior) cut-off in
space

(113)  [|§A7G = )V« [UP)eR;)(5) ds

LA(t|<T, H (|z|>M))’

O e o O e

(L14) [ §ATE = )V # [UPmRE)(s) ds|

LA(t|<T, Hi(R3))’

we obtain decay estimates and overcome the above difficulties by means of
a compactness principle; here
o3 (1 iffz| <R,

113 e CFE). o ={y "5
Based on these decay estimates and the arguments in Kumlin [10], we can
prove Theorem 1.1 by applying the approximation theorem for analytic op-
erator sequences (cf. [8]). However, it is worth mentioning that we make use
of compactness arguments and the definition of Fréchet derivative to avoid
repeating the argument of global time space integrability,which makes the
proof of Theorem 1.1 more concise.

The paper is organized as follows: In Section 2 we give the proof of
Theorem 1.2; Section 3 is devoted to the proof of a key lemma, which con-
stitutes the main part of this paper; finally, we supply a brief derivation of
Theorem 1.1 in Section 4.

nr(z) =1 —&r(x).

2. Proof of Theorem 1.2. We need the following analytic version of
the implicit function theorem.

LEMMA 2.1 ([3]). Suppose that X,Y,Z are Banach spaces and Q is an
open neighborhood of the point (x,y) € X x Y. Suppose that f : Q — Z
is analytic, f(z,y) = 0 and Daof(x,y) : X — Z has a left inverse, where
Dy indicates the Fréchet derivative with respect to the second variable. Then

for some open set P containing x, there exists a unique analytic function
g: P —Y such that g(x) =y and f(2',g(z")) =0 for all 2’ € P.

For Uy € H' and ¥ € X, we set
(2.1) R(Uy, W) =G(t)Uy — SA_IG'(t —s)((V = |&D|2)!I/)(s) ds —W(t).
0
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Since R is linear in Uy and multilinear in ¥, we know that R: H' x X — X
is analytic by the nonlinear estimate in [7]

[ 4716/ = (v« WPy ds| < oo e x
0

On the other hand, R(Up,U) = 0 by (1.4). Hence it suffices to prove the
invertibility of

DoR(Up,U) 1 X — X

for each Uy € H'. By the open mapping theorem, we only need to prove
that DaR(Up, U) is injective and surjective.
For Uy € H' and ¥ € X, one has
t
(22)  DR(Uo, U)(@)(t) = —2{ ATIG/(t — 5)(V * (PU))¥(s) ds
0
t

—VATIG(t = s)(V % |UP)W(s) ds — (2).
0
(1) The injectivity of DoR(Uy,U). For simplicity, we always assume that

V € L. Let DyR(Up, U)W = 0. Then

t
(23) [[Z[l, < C V[t = s|2O |V (U@NT(s)lly + [|(V 5 [UP)&(s)]0) ds

0

t

<2C | [t = s[ OV U] ds,
0
where 2 =1/p+ 2/l +2/r.
For every p € (1,3/2), we can take | = r € (3,4) such that
t
(2.4) 121l < CIVIpIU G i Y1t = 51721l .
0

For each ¢ € (0,T), one easily verifies that by (2.4),

1@ ()|, < Ct 00 esssup ||#(s)]],..
s€(0,¢)

We choose T small enough such that
1
esssup ||@(t)||, < 5 eSS sup & (s)]|-
te(0,T) s€(0,T)

This implies that ¥ = 0 for a.e. t € [0,T], for some T" > 0. Repeating this
process on (nT,nT +T), n € Z, we have ¥ = 0 for a.e. (z,t) € R3t1.
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(2) The surjectivity of DaR(Uy,U). Setting
¢
(2.5) Tu,¥(t) = — [ AT/t — s)(V * [U[P))(s) ds
0
t

—2{ ATIG/(t = 5)((V = (UW))U)(s) ds,
0
we have DyR(Uy,U) = Ty, — I. By the Fredholm alternative, one could
attempt to show that 7y, is a compact operator from X to X since Ty, — I
is injective. However, 7y;, may not be compact. But for our goal, it suffices
to show that 7; [?0 is compact. In fact, since

(2.6) 75 — 1 =Ty, — I)(Ty, + 1)
and 7y, + I is also injective, the Fredholm theorem still works. Therefore
(2.6) implies the surjectivity of Ty, — I.

Concerning the trilinear form

(2.7) B(Wy, Wy, W3) = — | ATG/(t — s)(V * (¥105))W5(s) ds,
0

we have the following nonlinear estimate.
LEMMA 2.2. For¥; € X, j =1,2,3, one has
(2.8) 1B, W, w)|x S T I1)llamry-
j=1,2,3

Proof. Using the Strichartz estimates together with the Holder inequal-
ity, we obtain

t
(29)  [[JATIG (- )V x (@) (s) ds |
0
RSN

Yo IVl s 15 |l s 5
{i.5k}={1,2,3}

S I 1%leam,
§=1,2,3

IN

where p = 6p/(4p — 3), and we have used the embedding Hi — LP.
As a direct consequence of Lemma 2.2, we have

17w @ ()l x < 11 pay-
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This implies that 7y, : L*H3 — X is bounded. Since the composition of a
compact operator and a bounded operator is still compact, it is enough to
verify the following key lemma.

LEMMA 2.3. Let Uy € H'. Then Ty, : X — L*H3 is compact.

3. Proof of Lemma 2.3. Let {¥;}3%, be uniformly bounded in X,
Le. [[Zj|lx < C for constant C > 0. We shall show that {7y, ¥;}32, has a

Cauchy subsequence in L4H§. Our main tool is the Arzela—Ascoli theorem,
so it is necessary to localize both the time and space. Let £r,nr be as in
(1.15). The proof can be divided into five steps:

STEP 1. jliiréoiggHTUOWJ'HL4(|t|>T,H§(R3)) =0;

STEP 2. li_rgo ?lelg 1 Too (nRY)) || L4 o<, 11 (m3)) = O for all T > 0;

Step 3. lim sup 1Tt (€RY) | Lo o)< 13 (ol > 01y = O for all T, R > 0

STEP 4. {7y, (rYj)}j=o has a Cauchy subsequence in LAt < T, Hi(|x|
< M)) for all T, R, M > 0;

STEP 5. A Cantor diagonal process.

For the sake of convenience, we first give some useful estimates.

LEMMA 3.1. Let |U|x < C, |¥]lx < C and V € LP(R3). Then for any
p € (1,3/2) and sufficiently small § > 0, we have

IV +[U)lla < O, [V # [UP)]| 35 < C.
Proof. For any p € (1,3/2), by the Sobolev embedding theorem,
IV [UPll2 < IVIIU Il < IV IRHUNE 00 pra 193] oo 1

where 1 +1/2 =1/p+3/r, r € (18/5,6). Taking 6 > 0 small enough and
using the fractional Leibniz formula, we have

IV * U s < CUAV IIUIZID 1l + IV 1T 11 DUl 1511)
< IV o 1 19| e -
This shows that the sequence {(V * |U ]2)%};‘;0 is uniformly bounded in
H°(R3).
LEMMA 3.2. Let T < oo,t € [-T,T], and € > 0. Then

< CUlr2(—r/m,22(R3))-

) )\S)A—laf<t_s)a<s>dsumE(RB)
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Proof (cf. [5], [10]). For k € R, let F* denote the operator on L2[—T,T]
defined by Fkh(n) = (in)*h(n),n € N — {0}, and F¥h(0) = h(0), where
h € L?[—T,T] and the hat denotes the Fourier transform. Making use of the
discrete Plancherel identity and the transformation between time and space
regularity, it follows that by taking 2k = 2 — ¢ with k < 1,

H §A‘1G’(t — §U(s) ds‘
0

H2—¢

< || § (Fox0a)(s) - (FEATIG (0 = U () (s) s

H2—-¢

< 1F*xpqll2qerm) - 1F"ATIG (= YU Ol 2oy, 2o
< ClUp2(j=1/17,22)
where we have used the estimate

1\ 2 1/2
IF X0l 270 §< > <n’“n> +1> < .

neZ—{0}
Now, we are in a position to prove Lemma 2.3. Note that the multilinear
estimates of the two terms of 7y, are similar, so we only need to estimate
the first term.

STEP 1. We make use of an interior time cut-off technique to deal with
the convolution kernel. It is easy to see that

(3.2) H §A‘1G’(t — 8)(V = [UP)%;(s) ds‘
0

LA(|t|>T,Hg (R%))

LA(|¢|>T)

t
|| S 1t = 572 IV« [0 )] gy, s

5 LA(|t|>T)
=11 +1
On the one hand,
t
I= |[§ 16 = s 20V 5 0P sy (5) g, 0]
0

SNV P qsp>/2 % | s
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< (V= ‘U‘2>X{|s|>T/2}"LQ(R,L3)“WJ"L4(R,H§)
+ [[(V * |U’2)X{\s\>T/2}||L2(R,H21p)”WjHL‘l(R,Lﬁ)
< 151 x (IOV 1O P)x s> a2y 2oy + 1V = U xgss /2|2 @,y ) -
Since
IV [UP)xqsi>/21 2w pey + [(V |U|2)X{|s|>T/2}||L2(R,H21p)
< VI IlU N s g 5y + IVIIU 2,y 10 2,113
<2Vl U@ 1y < 00,

and

(3.3) [(V ‘U|2)X{|s|>T/2}HLQ(R,L3) +[[(V * |U’2)X{\s\>T/2}HLQ(R,H%p)
= ||V x ‘U|2HL2(\t|>T/2,L3) + [V ‘U’2HL2(\t|>T/2,H21p)
—0 asT — oo,

where we have used the property of absolute continuity, it follows that

lim Il =0.

T—o0

Similar arguments can be used to get

(3.4)
B 4 \1/4
I2§( | Hlt—sl stz (N V * UPZ) )y, dS’ dt)
t>T R
oo —14 1/4
T 2 9 4\ 1/4
S (§t—2 ) (| Sxrzrrs NV WPy ]

1 4+te 3+e

ST (§ xqaizryzy () ds) HE( |V [UPwy)(s) | or2ds )
R

< ARETCE= [((V * |U)Z;)(s)] s

e
L3e ),
< T At (HVHpHWmeHJHU||%QU VIOl e 10 e 195 o)
where g = 4 — 8+3E and r =p= 4633.
For any p € (1,3/2), r € (3, 6), we can choose ¢ € (2,4) such that
(q,7) € A, provided that € > 0 sufficiently small. Hence

L ST |V, |15 x|UI1% =0 as T — oo

STEP 2. In contrast to Step 1, we perform an interior cut-off in space
to get
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t
H SA_IG,(t — S)((V * |U|2)773!pj)(5) ds‘ LA(|t|<T, HL (R3))
0 S1,H3

SV« \U|2)77R%'\|L4/3(|t\gT,H§/2)
< (V= \U\Z)HRHL2(|t\§T,L3)|WjHL4(\t|§T,H31)

+ [[(V * |U’2)77RHL2(\7€|§T,H21P)H'—‘ijL4(|t\§T,L5)
< ||%‘||X(||(V * ’U|2)77R||L2(|t\§T,L3) + [[(V x |U’2)77RHL2(\7€|§T,H21P))7

while

IOV U Pngl c2gg<r,ee) + 1V 1UP)0g 2y <r,my,)
< VIO R e ucrrny + VTN a0 egueriny
< 2HV”p||U||i4(|t|§T7H§) < 0.

Hence,

(35) NV = [UP)nel z2qg<r,ce) + 1V * UP)nrl 2y <r,m)

= IV« |UP |l s2qe1<7,25(2)>Ry) + IV * |U\Q)URHL2(|t|gT,H21p(|x|>R))

—0 as R — .

STEP 3. Observe that for each fixed j € N,
Jim (|70 (ErY5) | 240y <, 13 () > a0y = O

In order to prove that the convergence is uniform in j € N, we use a com-
pactness argument. By Lemma 3.1, one has

(V5 [UPYERY; || o wsy < IV [U Pl s (o <2m) < C.

This together with the Rellich-Kondrashov theorem implies that {(V =
\U|2)!Z/j};";0 is compact in L?(|z| < 2R). Hence for every € > 0, there is
a finite set &/ C N such that for each j € N, there exists | € & satisfying

IV *|UP)ErY; — (V * [U*)ertr 2 < e

Hence, for M large enough, by Lemma 3.2 we obtain

t
a6t = v < UP)ert;)(e)ds L4t} <T,H} (o] > M)
0 A

< [[§aTrE = )V [UPIERE; — (V U 2)Rw0) ds|
0

LA(|t|<T,H})
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t
A—l Iy 2 v
+ Hg G'(t = $)((V * |UP)énii)(s) ds| et oot

t

<o) suwp ||JATG (- )V« |UP)r;
tel-T,1) "5

— (V% |UP)érW) ds’

H2—<(R3)
<C(T) [Sup ] I(V * [U*)ér®; — (V * [UP)erW| 2rs) + € S €.
te[-T,T

STEP 4. After localizing ¢ and x to a bounded domain, we can use the
following Arzela—Ascoli compactness argument.

LEMMA 3.3. A sequence {f;}32 in C([-T, T), Hi(|z| < M)) has a con-
vergent subsequence iff

(i) for each t € [T, T, the sequence {f;(t)}32, has a convergent sub-
sequence in Hi(|z| < M);
(ii) the sequence {f;}32 is equicontinuous on [—T,T].

We now verify that

fit) = =\ ATG (t = s)((V * |UIP)ErY; ) (s) ds
0

satisfies the two conditions of Lemma 3.3.
By Lemma 3.2, for all t € [T, T] we have

(3.6) ||JATG - )V [UP)erw;)(s) ds|
0

H?~= (|| <M)
SNV *[UPER | L2 —111,L2) < C.

This, together with the Rellich-Kondrashov theorem, implies that the se-
quence {f;}32, satisfies (i) of Lemma 3.3.
Next, we show the equicontinuity of the sequence {f;}52, on [T, T]:

t

15+ R) = f@Ollmy = |

h
AT (t+h = s)(V = [U[*)er))(s) ds

AT (1= 5)(V + [UP)ER®;) (5) ds|

1
H3

Ot o+ Ot +
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<[ §@1 @+ n—5) = AT (4 )V [UP)er®;)(s) ds|
0

H;

t+h
+|| § AT+ h =) (v U PR (s) ds|

Hy
=:J1 + Jo.

Let Uj := (V * ]U|2)§RWJ-. By Lemma 3.2 and compactness as in Step 3,

(3.7) Ji= H §A‘1G’(t — 8)(G(h) — D)U(s) ds( -

< H §A‘1G’(t — 5)(G(h) — I)U;(s) ds‘ (for some & > 0)
0

H2—=¢

[(G(h) = DUjll L2 (-1.1,2)

[(G(h) = I)(Uj = Ul 21,22 + (G(h) = DU 2 ((—110,22)
<2|U; = Ulllz2(=r.1),02) + I(G(R) — DUl L2 (—7.1),02) < €

uniformly in j € N as || is small enough. Combining the LP-LP" estimate
with the Holder inequality, we deduce that
t+h
(3.8) Jo< | b= sV s yU|2lpj\|H§/2 ds
t
beh / 1/q
< (§ ferh—sT2ds) TV Uy
t
where 1/¢+1/¢ = 1.
Let 14+2/3 =1/p+3/r. One easily verifies 3 < r < 9/2 for any 1 < p <
3/2. This allows us to choose admissible pairs (g, 7) € A such that
(3.9) ”V*’U‘lejHLqul/Q

<V (NU e o195l Loy + U | zoo 2 1951 oo £r |U | Lo )
< VLU N%]lx < C

and

t+h
(3.10) S|t+h—s\_q//2d5H0 as h — 0.
t

Hence, Jo — 0 uniformly on j € N as h — 0.
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STEP 5 (A Cantor diagonal process). For each N € {1,2,...}, we choose
a T(N) in Step 1, an R(N) in Step 2 and an M (N) in Step 3 such that

(3.11) S}elg 1 To6 %5\l Laqe> vy, mL @3)) < L/,
J

(3.12) Sup 1 Tve MRy i)l Loy <o vy, 2L R3)) < L/,
J

(3.13) Sup 1 Tvo (Er(nZi) | Lo < (), L (12> M (vy)) < L/N-
J

In this way, we can choose inductively a subsequence {¥; y} of {¥; y_1},
N = 1,2,..., with ¥;o = ¥, such that {7y, (§rn)¥jN)} converges in
LAt < T(N), Hi(la] < M(N))). Thus {Top (EnonPa.n) Ry converges
in L*(R, H}(R?)). This completes the proof of Lemma 2.3.

4. Proof of Theorem 1.1. We use the approach of Kumlin [10] and a
compactness argument, which enables us to give a more concise proof.

LEMMA 4.1 ([8]). Let H be a Hilbert space, and let A, : H — H, k =
1,2,..., be analytic mappings, uniformly bounded on all compact sets D C H.
Also assume that Agu — Au as k — oo for all w € H. Then the mapping
A: H — H is also analytic.

According to Theorem 1.2, N(T) : Uy + U(T) is analytic from H' to
H! for every T € R. The wave operators W and their inverses can be
represented as

(4.1) We = _lim N(=T)G(T),
(4.2) Wil = Lim G(=T)N(T).

Note that N(=T)G(T) and G(—T)N(T) are analytic on H', and G(T)
is isometric on H'. Lemma 4.1 implies that Wi, W, Land S are analytic
provided that

(4.3) sup sup [|[N(T)®| i1 < oo
#eD TER

for all compact sets D C H!. In fact,
(44)  IN(D)P|m <GP

F§ a6 - 9w s w@pu@ s
0

<12l + VI IU (@7 gy -
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Hence, it is enough to prove

(4.5) sup [[U(®) | spps < .
dPeD

Indeed, as a direct result of scattering theory, we have
|U(@)] gy < o0

for @ € H'. Hence, we need to prove that the bound is uniform in @ € D.
Since D is a compact subset of H!, for fixed 0 < gy < 1 there exists a
finite set &7 = {&Py,,...,P;, } such that for any & € D, there exists §; € &7
satisfying
|2 — @il i1 < €0

Noting that U : @ +— U(®) is analytic from H' to L*H}, we easily see that
the Fréchet derivative U’(U;) is a bounded operator from H' to L*H2. This
yields

(4.6)  NU@pamy < U(P) = U@ pamy + 1U(P) = U(Pi) | Lapy
< U (@)(@ = P)l| gy + o(e0) + U @) 111y
< Gill® — Pifl g + ofe0) + [|U(P0) || L4y
< Cigo + o(eo) + |U(P) || Lapy < C.

This completes the proof of Theorem 1.1.
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