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On the real analyticity of the scattering operator
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Abstract. We study the real analyticity of the scattering operator for the Hartree
equation i∂tu = −∆u + u(V ∗ |u|2). To this end, we exploit interior and exterior cut-off
in time and space, together with a compactness argument to overcome difficulties which
arise from absence of good properties as for the Klein–Gordon equation, such as the finite
speed of propagation and ideal time decay estimate. Additionally, the method in this paper
allows us to simplify the proof of analyticity of the scattering operator for the nonlinear
Klein–Gordon equation with cubic nonlinearity.

1. Introduction. This paper is devoted to the proof of the real analyt-
icity of the scattering operator for the Hartree equation

(1.1)
{
i∂tu = −∆u+ u(V ∗ |u|2), (t, x) ∈ R× R3,

u(0) = u0 ∈ H1(R3).

Here u(t, x) is a complex-valued function defined in R1+3, V (x), called a
potential, is a real-valued radial function defined in R3, and ∗ denotes con-
volution in R3. Under suitable assumptions on V , Ginibre–Velo [7] developed
the scattering theory of the equation (1.1) in the energy space H1. Attempt-
ing to study the (complex) analyticity of the scattering operator is in vain
because u is not analytic even if u is. However, following W. Strauss’s sug-
gestion (private communication), we can study the real analyticity which is
still an interesting issue.

Let u = ϕ(t, x) + iψ(t, x), u0 = ϕ0(x) + iψ0(x), where ϕ(t, x), ψ(t, x),
ϕ0(x), ψ0(x) are real-valued functions defined in R × R3 or R3. Then the
integral form of equation (1.1)

u(t) = eit∆u0 − i
t�

0

ei(t−s)∆((V ∗ |u|2)u)(s) ds(1.2)

2000 Mathematics Subject Classification: 35P25, 35Q55.
Key words and phrases: Hartree equation, real analyticity, scattering operator,
compactness.

DOI: 10.4064/ap95-3-3 [227] c© Instytut Matematyczny PAN, 2009



228 C. X. Miao et al.

can be rewritten as(
ϕ

ψ

)
=

(
cos t∆ − sin t∆
sin t∆ cos t∆

)(
ϕ0

ψ0

)
(1.3)

+
t�

0

(
sin(t− s)∆ cos(t− s)∆
− cos(t− s)∆ sin(t− s)∆

)(
ϕ

ψ

)
(V ∗ (ϕ2 + ψ2))(s) ds.

Setting

U(t) =
(
ϕ(t)
ψ(t)

)
and U0 =

(
ϕ0

ψ0

)
,

we can transform (1.3) into

N (t)U0 := U(t) = G(t)U0 −
t�

0

∆−1G′(t− s)(V ∗ |U |2)U(s) ds,(1.4)

where

G(t) =

(
cos t∆ − sin t∆
sin t∆ cos t∆

)
is the unitary group associated with the equation (1.1).

First, we recall the decay estimate and Strichartz estimates in the context
of Schrödinger equation (see [6], [9], [11]).

Definition 1.1. A pair (q, r) is admissible, denoted by (q, r) ∈ Λ, if
r ∈ [2, 6] and q satisfies

2
q

= δ(r) := 3
(

1
2
− 1
r

)
.(1.5)

Lemma 1.1. Let S(t) = eit∆. Then:

(1) the Lr
′
-Lr decay estimate

‖S(t)ϕ‖r ≤ C|t|−δ(r)‖ϕ(x)‖r′(1.6)

holds for 2 ≤ r ≤ ∞;
(2) the Strichartz estimates

‖S(t)u‖Lq(R,Lr(R3)) ≤ C‖u‖2,(1.7) ∥∥∥t�
0

S(t− s)f(s) ds
∥∥∥
Lq1 (I,Lr1 (R3))

≤ C‖f‖
Lq
′
2 (I,Lr

′
2 (R3))

(1.8)

hold for any interval I⊂R, and for any admissible pairs (q, r), (qj , rj)
∈ Λ, j = 1, 2.
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Remark 1.1. Lemma 1.1 still holds for the propagators G(t) and
∆−1G′(t) by the Euler formulae

cos t∆ =
eit∆ + e−it∆

2
, sin t∆ =

eit∆ − e−it∆

2
.

Let B be a Banach space, and write(
u

v

)
∈ B ⇔

∥∥∥∥(uv
)∥∥∥∥

B

= ‖u‖B + ‖v‖B <∞.

Throughout this paper, the symbol C denotes a constant which may be
different from line to line, and C(∗) denotes a constant which only depends
on the parameter ∗.

Define the wave operator W± : U± 7→ U0 as follows: for any U± ∈ H1,
there exists U0 ∈ H1 such that

‖G(t)U± −N (t)U0‖H1 → 0 as t→ ±∞.(1.9)

When the wave operators W± are invertible, we can define the scattering
operator as S = W−1

+ ◦W− : U− 7→ U+.
Set

X = C(R, H1(R3)) ∩
⋂

(q,r)∈Λ

Lq(R, H1
r (R3)).

Ginibre–Velo established a complete scattering theory in energy space
provided that the potential V satisfies the following assumption:

(H1) V is a real function and V ∈ Lp1 + Lp2 for some p1, p2 satisfying

1 < p2 ≤ p1 < 3/2.

(H2) V is radial and nonincreasing, i.e., V (x) = v(r) where v is non-
increasing in R+. Furthermore, for some α ≥ 2, v satisfies the
following condition:

(Aα) There exist a > 0 and Aα > 0 such that

v(r1)− v(r2) ≥ Aα
α

(rα2 − rα1 ) for 0 < r1 < r2 ≤ a.

In particular, the wave operator W± and the scattering operator S are
bounded and continuous from H1 to H1.

Our main result is

Theorem 1.1. Let V satisfy the assumptions (H1) and (H2). Then the
operators W± and S are analytic from H1 to H1.

The proof of Theorem 1.1 depends on the following theorem:

Theorem 1.2. Let U0 ∈ H1 and U(t) be the unique solution of (1.4)
in X. Then the map U : U0 7→ U(U0) is analytic from H1 to X.
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For the nonlinear Klein–Gordon equation with cubic nonlinearity, using
the contraction mapping principle, Baez–Zhou [2] proved the analyticity of
the scattering operator on a neighborhood of zero in the space of finite-
energy Cauchy data, H1 ⊕ L2(R3). Kumlin [10] generalized that result to
the entire energy space by means of the Fredholm alternative theorem. The
proof in [10] depends on the following two nice properties of the linear Klein–
Gordon equation:

(1) Lp-Lp
′

estimates stated in the following proposition.

Proposition 1.1 ([4], [10]). Let

K(t) =
sin t(−∆+m2)1/2

(−∆+m2)1/2
,

1 < p ≤ 2 ≤ p′, 1/p + 1/p′ = 1, σ := 1/2 − 1/p′ and 0 ≤ θ ≤ 1. If
(n+ 1 + θ)σ ≤ 1 + s− s′, then

‖K(t)g‖W s′,p′ ≤ k(t)‖g‖W s,p , t ≥ 0,(1.10)

where

k(t) =
{
t−(n−1−θ)σ, 0 < t < 1,
t−(n−1+θ)σ, 1 ≤ t.

For suitable p and θ, we have k ∈ L1(R). In particular,

‖K(t)g‖H1 ≤ C‖g‖L2 .

These estimates are crucial in the proofs of Steps 1 and 3 in [10].

(2) The finite speed of propagation.

The finite speed of propagation of the solution of a linear wave equation
means that for t ∈ [−T, T ], T <∞,∥∥∥ t�

0

K(t− s)u(s) ds
∥∥∥
L6(|x|>R)

∼
∥∥∥ t�

0

K(t− s)ηRu(s) ds
∥∥∥
L6(R3)

.(1.11)

Here the cut-off function ηR(x) defined in (1.15) below commutes with the
group K(t) in some sense, which plays an important role in the proof of
analyticity (see Step 2 in [10]).

The arguments in this paper still apply the Fredholm alternative theorem
together with the analytic version of the implicit function theorem (cf. [2,
3, 10]). However, we have to overcome some difficulties arising from loss of
the good properties (1) and (2) for the Schrödinger equation. Our major
innovations are as follows: Compared with k(t) in (1.10), the kernel |t|−δ(r)
in (1.6) is not in any Lp(R), 1 ≤ p ≤ ∞, and the Hardy–Littlewood–Sobolev
inequality cannot supply any decay. A new approach to the singular kernel
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is the double localization in time

|t− s|−δ(r)χ{|s|≤T/2}χ{|t|>T}, |t− s|−δ(r)χ{|s|>T/2}χ{|t|>T},(1.12)

which together with other techniques helps us to get time decay; here χA
denotes the characteristic function of the interval A. On the other hand,
modifying (1.11) by introducing double (interior and exterior) cut-off in
space ∥∥∥ t�

0

∆−1G′(t− s)((V ∗ |U |2)ξRΨj)(s) ds
∥∥∥
L4(|t|≤T,H1

3 (|x|>M))
,(1.13)

∥∥∥ t�
0

∆−1G′(t− s)((V ∗ |U |2)ηRΨj)(s) ds
∥∥∥
L4(|t|≤T,H1

3 (R3))
,(1.14)

we obtain decay estimates and overcome the above difficulties by means of
a compactness principle; here

ξR ∈ C∞0 (R3), ξR(x) =
{

1 if |x| ≤ R,
0 if |x| > 2R,

ηR(x) = 1− ξR(x).(1.15)

Based on these decay estimates and the arguments in Kumlin [10], we can
prove Theorem 1.1 by applying the approximation theorem for analytic op-
erator sequences (cf. [8]). However, it is worth mentioning that we make use
of compactness arguments and the definition of Fréchet derivative to avoid
repeating the argument of global time space integrability,which makes the
proof of Theorem 1.1 more concise.

The paper is organized as follows: In Section 2 we give the proof of
Theorem 1.2; Section 3 is devoted to the proof of a key lemma, which con-
stitutes the main part of this paper; finally, we supply a brief derivation of
Theorem 1.1 in Section 4.

2. Proof of Theorem 1.2. We need the following analytic version of
the implicit function theorem.

Lemma 2.1 ([3]). Suppose that X,Y, Z are Banach spaces and Q is an
open neighborhood of the point (x, y) ∈ X × Y . Suppose that f : Q → Z
is analytic, f(x, y) = 0 and D2f(x, y) : X → Z has a left inverse, where
D2 indicates the Fréchet derivative with respect to the second variable. Then
for some open set P containing x, there exists a unique analytic function
g : P → Y such that g(x) = y and f(x′, g(x′)) = 0 for all x′ ∈ P .

For U0 ∈ H1 and Ψ ∈ X, we set

R(U0, Ψ) = G(t)U0 −
t�

0

∆−1G′(t− s)((V ∗ |Ψ |2)Ψ)(s) ds− Ψ(t).(2.1)
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Since R is linear in U0 and multilinear in Ψ , we know that R : H1×X → X
is analytic by the nonlinear estimate in [7]∥∥∥ t�

0

∆−1G′(t− s)((V ∗ |Ψ |2)Ψ)(s) ds
∥∥∥
X
<∞, ∀Ψ ∈ X.

On the other hand, R(U0, U) = 0 by (1.4). Hence it suffices to prove the
invertibility of

D2R(U0, U) : X → X

for each U0 ∈ H1. By the open mapping theorem, we only need to prove
that D2R(U0, U) is injective and surjective.

For U0 ∈ H1 and Ψ ∈ X, one has

D2R(U0, U)(Ψ)(t) = − 2
t�

0

∆−1G′(t− s)(V ∗ (ΨU))Ψ(s) ds(2.2)

−
t�

0

∆−1G′(t− s)(V ∗ |U |2)Ψ(s) ds− Ψ(t).

(1) The injectivity of D2R(U0, U). For simplicity, we always assume that
V ∈ Lp. Let D2R(U0, U)Ψ = 0. Then

‖Ψ‖r ≤ C
t�

0

|t− s|−δ(r)
(
‖(V ∗ (UΨ))U(s)‖r′ + ‖(V ∗ |U |2)Ψ(s)‖r′

)
ds(2.3)

≤ 2C
t�

0

|t− s|−δ(r)‖V ‖p‖U‖2l ‖Ψ‖r ds,

where 2 = 1/p+ 2/l + 2/r.
For every p ∈ (1, 3/2), we can take l = r ∈ (3, 4) such that

‖Ψ‖r ≤ C‖V ‖p‖U‖2L∞H1

t�

0

|t− s|−δ(r)‖Ψ‖r ds.(2.4)

For each t ∈ (0, T ), one easily verifies that by (2.4),

‖Ψ(t)‖r ≤ Ct1−δ(r) ess sup
s∈(0,t)

‖Ψ(s)‖r.

We choose T small enough such that

ess sup
t∈(0,T )

‖Ψ(t)‖r ≤
1
2

ess sup
s∈(0,T )

‖Ψ(s)‖r.

This implies that Ψ ≡ 0 for a.e. t ∈ [0, T ], for some T > 0. Repeating this
process on (nT, nT + T ), n ∈ Z, we have Ψ ≡ 0 for a.e. (x, t) ∈ R3+1.
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(2) The surjectivity of D2R(U0, U). Setting

TU0Ψ(t) = −
t�

0

∆−1G′(t− s)((V ∗ |U |2)Ψ)(s) ds(2.5)

− 2
t�

0

∆−1G′(t− s)((V ∗ (UΨ))U)(s) ds,

we have D2R(U0, U) = TU0 − I. By the Fredholm alternative, one could
attempt to show that TU0 is a compact operator from X to X since TU0 − I
is injective. However, TU0 may not be compact. But for our goal, it suffices
to show that T 2

U0
is compact. In fact, since

T 2
U0
− I = (TU0 − I)(TU0 + I)(2.6)

and TU0 + I is also injective, the Fredholm theorem still works. Therefore
(2.6) implies the surjectivity of TU0 − I.

Concerning the trilinear form

B(Ψ1, Ψ2, Ψ3) := −
t�

0

∆−1G′(t− s)(V ∗ (Ψ1Ψ2))Ψ3(s) ds,(2.7)

we have the following nonlinear estimate.

Lemma 2.2. For Ψj ∈ X, j = 1, 2, 3, one has

‖B(Ψ1, Ψ2, Ψ3)‖X .
∏

j=1,2,3

‖Ψj‖L4H1
3
.(2.8)

Proof. Using the Strichartz estimates together with the Hölder inequal-
ity, we obtain

(2.9)
∥∥∥ t�

0

∆−1G′(t− s)(V ∗ (Ψ1Ψ2))Ψ3(s) ds
∥∥∥
X

. ‖(V ∗ (Ψ1Ψ2))Ψ3‖L4/3H1
3/2

≤
∑

{i,j,k}={1,2,3}

‖V ‖p‖Ψi‖L4H1
3
‖Ψj‖L4Lep‖Ψk‖L4Lep

.
∏

j=1,2,3

‖Ψj‖L4H1
3
,

where p̃ = 6p/(4p− 3), and we have used the embedding H1
3 ↪→ Lep.

As a direct consequence of Lemma 2.2, we have

‖TU0Ψ(t)‖X . ‖Ψ‖L4H1
3
.
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This implies that TU0 : L4H1
3 → X is bounded. Since the composition of a

compact operator and a bounded operator is still compact, it is enough to
verify the following key lemma.

Lemma 2.3. Let U0 ∈ H1. Then TU0 : X → L4H1
3 is compact.

3. Proof of Lemma 2.3. Let {Ψj}∞j=0 be uniformly bounded in X,
i.e. ‖Ψj‖X ≤ C for constant C > 0. We shall show that {TU0Ψj}∞j=0 has a
Cauchy subsequence in L4H1

3 . Our main tool is the Arzelà–Ascoli theorem,
so it is necessary to localize both the time and space. Let ξR, ηR be as in
(1.15). The proof can be divided into five steps:

Step 1. lim
T→∞

sup
j∈N
‖TU0Ψj‖L4(|t|>T,H1

3 (R3)) = 0;

Step 2. lim
R→∞

sup
j∈N
‖TU0(ηRΨj)‖L4(|t|≤T,H1

3 (R3)) = 0 for all T > 0;

Step 3. lim
M→∞

sup
j∈N
‖TU0(ξRΨj)‖L4(|t|≤T,H1

3 (|x|>M)) = 0 for all T,R > 0;

Step 4. {TU0(ξRΨj)}∞j=0 has a Cauchy subsequence in L4(|t| ≤ T,H1
3 (|x|

≤M)) for all T,R,M > 0;

Step 5. A Cantor diagonal process.

For the sake of convenience, we first give some useful estimates.

Lemma 3.1. Let ‖U‖X ≤ C, ‖Ψj‖X ≤ C and V ∈ Lp(R3). Then for any
p ∈ (1, 3/2) and sufficiently small δ > 0, we have

‖(V ∗ |U |2)Ψj‖2 ≤ C, ‖(V ∗ |U |2)Ψj‖Ḣδ ≤ C.

Proof. For any p ∈ (1, 3/2), by the Sobolev embedding theorem,

‖(V ∗ |U |2)Ψj‖2 ≤ ‖V ‖p‖U‖2r‖Ψj‖r ≤ ‖V ‖p‖U‖2L∞H1‖Ψj‖L∞H1 ,

where 1 + 1/2 = 1/p + 3/r, r ∈ (18/5, 6). Taking δ > 0 small enough and
using the fractional Leibniz formula, we have

‖(V ∗ |U |2)Ψj‖Ḣδ ≤ C(‖V ‖p‖U‖2r‖DδΨj‖r + ‖V ‖p‖U‖r‖DδU‖r‖Ψj‖r)
≤ ‖V ‖p‖U‖2L∞H1‖Ψj‖L∞H1 .

This shows that the sequence {(V ∗ |U |2)Ψj}∞j=0 is uniformly bounded in
Hδ(R3).

Lemma 3.2. Let T <∞, t ∈ [−T, T ], and ε > 0. Then∥∥∥ t�
0

∆−1G′(t− s)U(s) ds
∥∥∥
H2−ε(R3)

≤ C‖U‖L2([−T,T ],L2(R3)).(3.1)
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Proof (cf. [5], [10]). For k ∈ R, let F k denote the operator on L2[−T, T ]
defined by F̂ kh(n) = (in)kĥ(n), n ∈ N − {0}, and F̂ kh(0) = ĥ(0), where
h ∈ L2[−T, T ] and the hat denotes the Fourier transform. Making use of the
discrete Plancherel identity and the transformation between time and space
regularity, it follows that by taking 2k = 2− ε with k < 1,∥∥∥ t�

0

∆−1G′(t− s)U(s) ds
∥∥∥
H2−ε

≤
∥∥∥ T�

−T
(F kχ[0,t])(s) · (F−k∆−1G′(t− ·)U(·))(s) ds

∥∥∥
H2−ε

≤ ‖F kχ[0,t]‖L2([−T,T ]) · ‖F−k∆−1G′(t− ·)U(·)‖L2([−T,T ],H2−ε)

≤ C‖U‖L2([−T,T ],L2),

where we have used the estimate

‖F kχ[0,t]‖L2([−T,T ]) ≤
( ∑
n∈Z−{0}

(
nk · 1

n

)2

+ 1
)1/2

<∞.

Now, we are in a position to prove Lemma 2.3. Note that the multilinear
estimates of the two terms of TU0 are similar, so we only need to estimate
the first term.

Step 1. We make use of an interior time cut-off technique to deal with
the convolution kernel. It is easy to see that

(3.2)
∥∥∥ t�

0

∆−1G′(t− s)(V ∗ |U |2)Ψj(s) ds
∥∥∥
L4(|t|>T,H1

3 (R3))

≤
∥∥∥ t�

0

|t− s|−1/2‖((V ∗ |U |2)Ψj)(s)‖H1
3/2
ds
∥∥∥
L4(|t|>T )

≤
∥∥∥ t�

0

|t− s|−1/2χ{|s|>T/2}(s)‖((V ∗ |U |2)Ψj)(s)‖H1
3/2
ds
∥∥∥
L4(|t|>T )

+
∥∥∥ t�

0

|t− s|−1/2χ{|s|≤T/2}(s)‖((V ∗ |U |2)Ψj)(s)‖H1
3/2
ds
∥∥∥
L4(|t|>T )

=: I1 + I2.

On the one hand,

I1 =
∥∥∥ t�

0

|t− s|−1/2‖((V ∗ |U |2)Ψj)(s)χ{|s|>T/2}(s)‖H1
3/2
ds
∥∥∥
L4(|t|>T )

. ‖(V ∗ |U |2)χ{|s|>T/2}Ψj‖L4/3(R,H1
3/2

)
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≤ ‖(V ∗ |U |2)χ{|s|>T/2}‖L2(R,L3)‖Ψj‖L4(R,H1
3 )

+ ‖(V ∗ |U |2)χ{|s|>T/2}‖L2(R,H1
2p)
‖Ψj‖L4(R,Lep)

≤ ‖Ψj‖X
(
‖(V ∗ |U |2)χ{|s|>T/2}‖L2(R,L3) + ‖(V ∗ |U |2)χ{|s|>T/2}‖L2(R,H1

2p)

)
.

Since

‖(V ∗ |U |2)χ{|s|>T/2}‖L2(R,L3) + ‖(V ∗ |U |2)χ{|s|>T/2}‖L2(R,H1
2p)

≤ ‖V ‖p‖U‖2L4(R,Lep) + ‖V ‖p‖U‖L4(R,Lep)‖U‖L4(R,H1
3 )

≤ 2‖V ‖p‖U‖2L4(R,H1
3 ) <∞,

and

(3.3) ‖(V ∗ |U |2)χ{|s|>T/2}‖L2(R,L3) + ‖(V ∗ |U |2)χ{|s|>T/2}‖L2(R,H1
2p)

= ‖V ∗ |U |2‖L2(|t|>T/2,L3) + ‖V ∗ |U |2‖L2(|t|>T/2,H1
2p)

→ 0 as T →∞,
where we have used the property of absolute continuity, it follows that

lim
T→∞

I1 = 0.

Similar arguments can be used to get

(3.4)

I2 ≤
( �

|t|>T

∣∣∣ �
R
|t− s|−1/2χ{|s|≤T/2}(s)‖(V ∗ |U |2Ψj)(s)‖H1

3/2
ds
∣∣∣4 dt)1/4

.

(∞�
T

∣∣∣∣t− T

2

∣∣∣∣− 1
2
·4
dt

)1/4(∣∣∣ �
R
χ{|s|≤T/2}(s)‖(V ∗ |U |2Ψj)(s)‖H1

3/2
ds
∣∣∣4)1/4

. T−1/4
(�

R
χ{|s|≤T/2}(s) ds

) 1
4+ε
(�

R
‖(V ∗ |U |2Ψj)(s)‖

4+ε
3+εH1

3/2ds
) 3+ε

4+ε

. T
− ε

4(4+ε) ‖((V ∗ |U |2)Ψj)(s)‖
L

4+ε
3+εH1

3/2

≤ T−
ε

4(4+ε)
(
‖V ‖p‖Ψj‖L4H1

3
‖U‖2LqLr + ‖V ‖p‖U‖L4H1

3
‖U‖LqLr‖Ψj‖LqLr

)
,

where q = 4− 4ε
8+3ε and r = p̃ = 6p

4p−3 .

For any p ∈ (1, 3/2), r ∈ (3, 6), we can choose q ∈ (2, 4) such that
(q, r) ∈ Λ, provided that ε > 0 sufficiently small. Hence

I2 . T
− ε

4(4+ε) ‖V ‖p‖Ψj‖X‖U‖2X → 0 as T →∞.
Step 2. In contrast to Step 1, we perform an interior cut-off in space

to get
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∥∥∥ t�
0

∆−1G′(t− s)((V ∗ |U |2)ηRΨj)(s) ds
∥∥∥
L4(|t|≤T,H1

3 (R3))

. ‖(V ∗ |U |2)ηRΨj‖L4/3(|t|≤T,H1
3/2

)

≤ ‖(V ∗ |U |2)ηR‖L2(|t|≤T,L3)‖Ψj‖L4(|t|≤T,H1
3 )

+ ‖(V ∗ |U |2)ηR‖L2(|t|≤T,H1
2p)
‖Ψj‖L4(|t|≤T,Lep)

≤ ‖Ψj‖X
(
‖(V ∗ |U |2)ηR‖L2(|t|≤T,L3) + ‖(V ∗ |U |2)ηR‖L2(|t|≤T,H1

2p)

)
,

while

‖(V ∗ |U |2)ηR‖L2(|t|≤T,L3) + ‖(V ∗ |U |2)ηR‖L2(|t|≤T,H1
2p)

≤ ‖V ‖p‖U‖2L4(|t|≤T,Lep) + ‖V ‖p‖U‖L4(|t|≤T,Lep)‖U‖L4(|t|≤T,H1
3 )

≤ 2‖V ‖p‖U‖2L4(|t|≤T,H1
3 ) <∞.

Hence,

(3.5) ‖(V ∗ |U |2)ηR‖L2(|t|≤T,L3) + ‖(V ∗ |U |2)ηR‖L2(|t|≤T,H1
2p)

= ‖V ∗ |U |2‖L2(|t|≤T,L3(|x|>R)) + ‖(V ∗ |U |2)ηR‖L2(|t|≤T,H1
2p(|x|>R))

→ 0 as R→∞.

Step 3. Observe that for each fixed j ∈ N,

lim
M→∞

‖TU0(ξRΨj)‖L4(|t|≤T,H1
3 (|x|>M)) = 0.

In order to prove that the convergence is uniform in j ∈ N, we use a com-
pactness argument. By Lemma 3.1, one has

‖(V ∗ |U |2)ξRΨj‖Hδ(R3) ≤ ‖(V ∗ |U |2)Ψj‖Hδ(|x|≤2R) ≤ C.

This together with the Rellich–Kondrashov theorem implies that {(V ∗
|U |2)Ψj}∞j=0 is compact in L2(|x| ≤ 2R). Hence for every ε > 0, there is
a finite set A ⊂ N such that for each j ∈ N, there exists l ∈ A satisfying

‖(V ∗ |U |2)ξRΨj − (V ∗ |U |2)ξRΨl‖L2 < ε.

Hence, for M large enough, by Lemma 3.2 we obtain

∥∥∥ t�
0

∆−1G′(t− s)((V ∗ |U |2)ξRΨj)(s) ds
∥∥∥
L4(|t|≤T,H1

3 (|x|>M))

≤
∥∥∥ t�

0

∆−1G′(t− s)((V ∗ |U |2)ξRΨj − (V ∗ |U |2)ξRΨl) ds
∥∥∥
L4(|t|≤T,H1

3 )
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+
∥∥∥ t�

0

∆−1G′(t− s)((V ∗ |U |2)ξRΨl)(s) ds
∥∥∥
L4(|t|≤T,H1

3 (|x|>M))

≤ C(T ) sup
t∈[−T,T ]

∥∥∥ t�
0

∆−1G′(t− s)((V ∗ |U |2)ξRΨj

− (V ∗ |U |2)ξRΨl) ds
∥∥∥
H2−ε(R3)

+ ε

≤ C(T ) sup
t∈[−T,T ]

‖(V ∗ |U |2)ξRΨj − (V ∗ |U |2)ξRΨl‖L2(R3) + ε . ε.

Step 4. After localizing t and x to a bounded domain, we can use the
following Arzelà–Ascoli compactness argument.

Lemma 3.3. A sequence {fj}∞j=0 in C([−T, T ], H1
3 (|x| ≤M)) has a con-

vergent subsequence iff

(i) for each t ∈ [−T, T ], the sequence {fj(t)}∞j=0 has a convergent sub-
sequence in H1

3 (|x| ≤M);
(ii) the sequence {fj}∞j=0 is equicontinuous on [−T, T ].

We now verify that

fj(t) = −
t�

0

∆−1G′(t− s)((V ∗ |U |2)ξRΨj)(s) ds

satisfies the two conditions of Lemma 3.3.
By Lemma 3.2, for all t ∈ [−T, T ] we have

(3.6)
∥∥∥ t�

0

∆−1G′(t− s)((V ∗ |U |2)ξRΨj)(s) ds
∥∥∥
H2−ε(|x|≤M)

. ‖(V ∗ |U |2)ξRΨj‖L2([−T,T ],L2) ≤ C.

This, together with the Rellich–Kondrashov theorem, implies that the se-
quence {fj}∞j=0 satisfies (i) of Lemma 3.3.

Next, we show the equicontinuity of the sequence {fj}∞j=0 on [−T, T ]:

‖fj(t+ h)− fj(t)‖H1
3

=
∥∥∥ t+h�

0

∆−1G′(t+ h− s)((V ∗ |U |2)ξRΨj)(s) ds

−
t�

0

∆−1G′(t− s)((V ∗ |U |2)ξRΨj)(s) ds
∥∥∥
H1

3
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≤
∥∥∥ t�

0

(∆−1G′(t+ h− s)−∆−1G′(t− s))((V ∗ |U |2)ξRΨj)(s) ds
∥∥∥
H1

3

+
∥∥∥ t+h�

t

∆−1G′(t+ h− s)((V ∗ |U |2)ξRΨj)(s) ds
∥∥∥
H1

3

=: J1 + J2.

Let Uj := (V ∗ |U |2)ξRΨj . By Lemma 3.2 and compactness as in Step 3,

(3.7) J1 =
∥∥∥ t�

0

∆−1G′(t− s)(G(h)− I)Uj(s) ds
∥∥∥
H1

3

.
∥∥∥ t�

0

∆−1G′(t− s)(G(h)− I)Uj(s) ds
∥∥∥
H2−ε

(for some ε > 0)

. ‖(G(h)− I)Uj‖L2([−T,T ],L2)

≤ ‖(G(h)− I)(Uj − Ul)‖L2([−T,T ],L2) + ‖(G(h)− I)Ul ‖L2([−T,T ],L2)

≤ 2‖Uj − Ul‖L2([−T,T ],L2) + ‖(G(h)− I)Ul‖L2([−T,T ],L2) < ε

uniformly in j ∈ N as |h| is small enough. Combining the Lp-Lp
′

estimate
with the Hölder inequality, we deduce that

J2 ≤
t+h�

t

|t+ h− s|−1/2‖V ∗ |U |2Ψj‖H1
3/2
ds(3.8)

≤
(t+h�

t

|t+ h− s|−q′/2 ds
)1/q′

‖V ∗ |U |2Ψj‖LqH1
3/2
,

where 1/q + 1/q′ = 1.
Let 1 + 2/3 = 1/p+ 3/r. One easily verifies 3 < r < 9/2 for any 1 < p <

3/2. This allows us to choose admissible pairs (q, r) ∈ Λ such that

(3.9) ‖V ∗ |U |2Ψj‖LqH1
3/2

≤ ‖V ‖p(‖U‖2L∞Lr‖Ψj‖LqH1
r

+ ‖U‖L∞Lr‖Ψj‖L∞Lr‖U‖LqH1
r
)

≤ c‖V ‖p‖U‖2X‖Ψj‖X ≤ C

and
t+h�

t

|t+ h− s|−q′/2 ds→ 0 as h→ 0.(3.10)

Hence, J2 → 0 uniformly on j ∈ N as h→ 0.
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Step 5 (A Cantor diagonal process). For each N ∈ {1, 2, . . .}, we choose
a T (N) in Step 1, an R(N) in Step 2 and an M(N) in Step 3 such that

sup
j∈N
‖TU0Ψj‖L4(|t|>T (N),H1

3 (R3)) < 1/N,(3.11)

sup
j∈N
‖TU0(ηR(N)Ψj)‖L4(|t|≤T (N),H1

3 (R3)) < 1/N,(3.12)

sup
j∈N
‖TU0(ξR(N)Ψj)‖L4(|t|≤T (N),H1

3 (|x|>M(N))) < 1/N.(3.13)

In this way, we can choose inductively a subsequence {Ψj,N} of {Ψj,N−1},
N = 1, 2, . . . , with Ψj,0 = Ψj , such that {TU0(ξR(N)Ψj,N )} converges in
L4(|t| ≤ T (N), H1

3 (|x| ≤ M(N))). Thus {TU0(ξR(N)ΨN,N )}∞N=1 converges
in L4(R, H1

3 (R3)). This completes the proof of Lemma 2.3.

4. Proof of Theorem 1.1. We use the approach of Kumlin [10] and a
compactness argument, which enables us to give a more concise proof.

Lemma 4.1 ([8]). Let H be a Hilbert space, and let Ak : H → H, k =
1, 2, . . . , be analytic mappings, uniformly bounded on all compact sets D⊂H.
Also assume that Aku → Au as k → ∞ for all u ∈ H. Then the mapping
A : H → H is also analytic.

According to Theorem 1.2, N (T ) : U0 7→ U(T ) is analytic from H1 to
H1 for every T ∈ R. The wave operators W± and their inverses can be
represented as

W± = lim
T→±∞

N (−T )G(T ),(4.1)

W−1
± = lim

T→±∞
G(−T )N (T ).(4.2)

Note that N (−T )G(T ) and G(−T )N (T ) are analytic on H1, and G(T )
is isometric on H1. Lemma 4.1 implies that W±,W−1

± and S are analytic
provided that

sup
Φ∈D

sup
T∈R
‖N (T )Φ‖H1 <∞(4.3)

for all compact sets D ⊂ H1. In fact,

‖N (T )Φ‖H1 ≤ ‖G(T )Φ‖H1(4.4)

+
∥∥∥ T�

0

∆−1G′(t− s)(V ∗ |U(Φ)|2)U(Φ)(s) ds
∥∥∥
L∞H1

≤ ‖Φ‖H1 + ‖V ‖p‖U(Φ)‖3L4H1
3
.
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Hence, it is enough to prove

sup
Φ∈D
‖U(Φ)‖L4H1

3
<∞.(4.5)

Indeed, as a direct result of scattering theory, we have

‖U(Φ)‖L4H1
3
<∞

for Φ ∈ H1. Hence, we need to prove that the bound is uniform in Φ ∈ D.
Since D is a compact subset of H1, for fixed 0 < ε0 < 1 there exists a

finite set A = {Φl1 , . . . , Φln} such that for any Φ ∈ D, there exists Φl ∈ A
satisfying

‖Φ− Φl‖H1 < ε0.

Noting that U : Φ 7→ U(Φ) is analytic from H1 to L4H1
3 , we easily see that

the Fréchet derivative U ′(Ul) is a bounded operator from H1 to L4H1
3 . This

yields

‖U(Φ)‖L4H1
3
≤ ‖U(Φ)− U(Φl)‖L4H1

3
+ ‖U(Φ)− U(Φl)‖L4H1

3
(4.6)

≤ ‖U ′(Φl)(Φ− Φl)‖L4H1
3

+ o(ε0) + ‖U(Φl)‖L4H1
3

≤ Cl‖Φ− Φl‖H1 + o(ε0) + ‖U(Φl)‖L4H1
3

≤ Clε0 + o(ε0) + ‖U(Φl)‖L4H1
3
< C.

This completes the proof of Theorem 1.1.
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