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Dynamical systems method for solving
linear ill-posed problems

by A. G. Ramm (Manhattan, KS)

Abstract. Various versions of the Dynamical Systems Method (DSM) are proposed
for solving linear ill-posed problems with bounded and unbounded operators. Convergence
of the proposed methods is proved. Some new results concerning the discrepancy principle
for choosing the regularization parameter are obtained.

1. Introduction. In this paper we present part of the results from the
author’s invited plenary talk at the international conference on mathemat-
ical analysis and applications ICMAAS06, held in Egypt. This part deals
with linear ill-posed problems.

Some of the ideas and results in this paper are taken from the papers of
the author, cited in the bibliography, but many results are new, including
Theorems 2–8 and 10.

The Dynamical Systems Method (DSM ) is developed in [7], [8], [9]–[33].
The discrepancy principle was discussed earlier in [5]. Its analogs and new
versions have been studied recently in [9]–[11] and in [7], [8] for DSM.

Consider an equation

(1.1) Au− f = 0,

where A is an operator in a Banach space X. If A is a homeomorphism of
X onto X (i.e., a continuous injective and surjective map in X which has a
continuous inverse) then problem (1.1) is called well-posed in the Hadamard
sense. Otherwise it is called ill-posed.

The DSM for solving equation (1.1) consists of solving the Cauchy prob-
lem

(1.2) u̇ = Φ(t, u), u(0) = u0, u̇ =
du

dt
,

2000 Mathematics Subject Classification: 47A52, 47B25, 65R30.
Key words and phrases: ill-posed problems, dynamical systems method (DSM), regular-
ization parameter, discrepancy principle, unbounded operators, linear operator equations.

DOI: 10.4064/ap95-3-5 [253] c© Instytut Matematyczny PAN, 2009



254 A. G. Ramm

which we call a dynamical system, where Φ is chosen so that the problem
(1.2) has a unique solution u(t), defined for all t ≥ 0, and such the limit
u(∞) := limt→∞ u(t) exists and satisfies A(u(∞)) = f :

(1.3) ∃!u(t) ∀t ≥ 0; ∃u(∞); A(u(∞)) = f.

We do not assume that the solution to (1.1) is unique, but we do assume
that it exists. If (1.3) holds, then we say that DSM is justified for solving
equation (1.1).

There is a large body of literature on solving ill-posed problems (see,
e.g., [2], [7], [39] and references therein). Variational regularization, iterative
regularization, quasisolutions and quasiinversion are some of the methods
for stable solution of ill-posed problems discussed in the literature. In this
paper several new methods for stable solution of linear ill-posed problems are
discussed. They are based on the Dynamical Systems Method. This method
has been developed fairly recently for solving a wide variety of linear and
nonlinear ill-posed problems [9]–[38] although it was proposed already in [1]
for solving well-posed problems.

Because of space limitations we will not discuss solving nonlinear ill-
posed problems by the DSM, and refer the reader to [7], [8], [17], [33]–[38].

Here we describe a new version of DSM for solving linear ill-posed prob-
lems. There are many practical problems of this type. We only mention solv-
ing ill-conditioned linear algebraic systems and Fredholm equations of the
first kind ([32], [33]). The novel points in our results are not only the method
of solving these problems by DSM but also the applicability of the method
to unbounded operators ([20], [22]–[23], [25]). In the literature, a widely-
discussed method for solving ill-posed problems (1.1) is the method of varia-
tional regularization introduced by Phillips [6] and studied by Tikhonov [39],
Morozov [5], Ivanov [2], Ramm ([7], [8]) and many other authors under the
assumption that the operator A in (1.1) is a linear bounded operator. There
are also some results on regularization of unbounded operators (e.g. [4], [28]
[20]–[22], [25]). The variational regularization method for stable solution of
(1.1) consists in solving the problem

(1.4) F (u) := ‖Au− fδ‖2 + a‖u‖2 = min,

where a > 0 is a constant, called a regularization parameter, fδ is the “noisy
data”, i.e., an element which satisfies the inequality ‖fδ− f‖ ≤ δ and which
is given together with the “noise level” δ > 0, while the exact data f is not
known. A stable solution to (1.1) is an element uδ such that limδ→0 ‖uδ−y‖
= 0, where Ay = f and y is the unique minimal-norm solution of the linear
equation (1.1). If X is a Hilbert space H, which we assume below, then the
minimal-norm solution is the solution which is orthogonal to the null space
N of A, N = N(A) = {u : Au = 0}. If the linear operator A in (1.1) is
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unbounded, then we assume that it is closed and densely defined, so that its
adjoint A∗ is densely defined and closed (see, e.g., [3]). The DSM for such
operators is developed in [20]–[22], [25], [28], [33], and [8].

If A is bounded, then a necessary and sufficient condition for u to be the
minimizer of the quadratic functional (1.4) is the Euler equation

(1.5) Tau = A∗fδ, Ta := T + aI, T := A∗A,

where I is the identity operator and T ≥ 0 is a selfadjoint operator. Equation
(1.5) has a unique solution ua,δ = T−1

a A∗fδ. One can choose a = a(δ) so
that limδ→0 a(δ) = 0 and uδ := ua(δ),δ is a stable solution to (1.1):

(1.6) lim
δ→0
‖uδ − y‖ = 0,

where Ay = f and y ⊥ N . There are a priori choices of a(δ) and a posteriori
ones. An a priori choice is based on the estimate

‖T−1
a A∗fδ − y‖ ≤ ‖T−1

a A∗(fδ − f)‖+ ‖T−1
a A∗f − y‖(1.7)

≤ δ

2
√
a

+ η(a),

where

(1.8) η2(a) = ‖T−1
a Ty − y‖2 = a2

∞�

0

d(Esy, y)
(s+ a)2

→ ‖PNy‖2 as a→ 0,

and PN is the orthoprojector onto N . Since we assume that y ⊥ N , equation
(1.8) implies

(1.9) lim
a→0

η(a) = 0.

The term δ/(2
√
a) in (1.7) appears due to the estimate

‖T−1
a A∗‖ = ‖A∗Q−1

a ‖ = ‖UQ1/2Q−1
a ‖(1.10)

≤ ‖Q1/2Q−1
a ‖ = sup

s≥0

√
s

s+ a
=

1
2
√
a
.

Here Q := AA∗, U is a partial isometry, Qa := Q + aI, and we have used
the formula

(1.11) T−1
a A∗ = A∗Q−1

a ,

the polar decomposition A∗ = UQ1/2, and the spectral theorem for the
selfadjoint operator Q, namely ‖g(Q)‖ = sups≥0 |g(s)|. Formula (1.11) is
obvious if A is bounded: multiply (1.11) by Ta on the left and then by Qa
on the right, and get A∗(AA∗ + aI) = (A∗A + aI)A∗, which is an obvious
identity. Since the operators Qa and Ta are boundedly invertible, one may
reverse steps and get (1.11). Thus a priori choices of a(δ), which imply (1.6),
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are

(1.12) lim
δ→0

δ√
a(δ)

= 0, lim
δ→0

a(δ) = 0.

There are many functions a(δ) satisfying (1.12). One can find an optimal
value a(δ) by minimizing the right-hand side of (1.7) with respect to a. Al-
ternatively, one may calculate a(δ) by solving the equation δ = 2

√
a(δ) η(a)

for a for a fixed small δ > 0.
If A is closed, densely defined in H, unbounded, and a = const > 0, then

the author has proved in [22] that the operator T−1
a A∗, with the domain

D(A∗), is closable, its closure, denoted again T−1
a A∗, is a bounded operator

defined on all of H, ‖T−1
a A∗‖ ≤ 1/(2

√
a), and (1.1) holds.

For convenience of the reader let us sketch the proof of these claims. To
check that T−1

a A∗ is closable, one takes hn ∈ D(T−1
a A∗) = D(A∗) such that

hn → 0 and T−1
a A∗hn → g as n → ∞, and checks that g = 0. Indeed, let

u ∈ H be arbitrary. Then

(1.13) (g, u) = lim
n→∞

(T−1
a A∗hn, u) = lim

n→∞
(hn, AT−1

a u) = 0.

Since u is arbitrary, this implies g = 0, as claimed. Note that T−1
a u ∈ D(A),

so that the above calculation is justified. If one drops the index n and the
lim in (1.13), then one can see that the adjoint to the closure of T−1

a A∗ is
the operator AT−1

a , defined on all of H and bounded:

‖AT−1
a ‖ = ‖UT 1/2T−1

a ‖ ≤
1

2
√
a
.

Since ‖A∗‖ = ‖A‖, one gets ‖T−1
a A∗‖ ≤ 1/(2

√
a). Finally, formula (1.11)

can be proved for an unbounded closed, densely defined operator A as above,
if one checks that the operator A∗AA∗ is densely defined. This is indeed the
case, because the operator A∗AA∗A = T 2 is densely defined if T is, and
D(T 2) ⊂ D(A∗AA∗).

Let us now describe an a posteriori choice of a(δ) which implies (1.6)
and which is called the discrepancy principle. This principle was discussed
in [5], [7]. It consists in finding a(δ) from the equation

(1.14) ‖Aua,δ − fδ‖ = Cδ, 1 < C < 2,

where C = const, ‖fδ‖ > Cδ and ua,δ = T−1
a A∗fδ. One can prove (see

e.g. [7]) that equation (1.14) for a small fixed δ > 0 has a unique solution
a(δ) with limδ→0 a(δ) = 0 and uδ = ua(δ),δ satisfies (1.6), i.e. uδ is a stable
solution to (1.1). To prove these claims one denotes by PN the orthogonal
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projection onto a subspace N , writes (1.14) as

C2δ2 = ‖[AT−1
a A∗ − I]fδ‖2 = ‖[QQ−1

a − I]fδ‖2(1.15)

=
∞�

0

a2d(Eδfδ, fδ)
(s+ a)2

=: h(a, δ),

and takes into account that h(a, δ) is, for a fixed δ > 0, a continuous mono-
tone function of a, with h(∞, δ) = ‖fδ‖2 > C2δ2 and h(+0, δ) = ‖PN∗fδ‖
≤ δ2, so that there exists a unique a = a(δ) such that h(a(δ), δ) = C2δ2. Here
we have set N∗ := N(A∗) and used the obvious relation N(Q) = N(A∗),
the inequality ‖PN∗fδ‖ ≤ ‖PN∗(fδ − f)‖+ ‖PN∗f‖ ≤ ‖fδ − f‖ = δ, and the
relation PN∗f = 0. This last relation follows from the relations f ∈ R(A)
and R(A) ⊥ N∗.

Let us now check that if a(δ) solves (1.5) then uδ = ua(δ),δ satisfies (1.6).
One has F (uδ) ≤ F (y), so

(1.16) ‖Auδ − fδ‖2 + a(δ)‖uδ‖2 ≤ δ2 + a(δ)‖y‖2.

Since ‖Auδ − fδ‖2 = C2δ2 > δ2 and a(δ) > 0, one gets

(1.17) ‖uδ‖ ≤ ‖y‖.

Therefore one can select a weakly convergent sequence un = uδn ⇀ u as
n → ∞. Let us prove that u = y and limn→∞ ‖un − y‖ = 0. Since this
holds for any subsequence, it will then follow that (1.6) holds. To prove that
u = y note that (1.17) implies ‖u‖ ≤ ‖y‖, and that u solves (1.1). Since the
minimal-norm solution to (1.1) is unique, it follows that u = y. To check
that u solves (1.1) we note that limδ→0 ‖Auδ − f‖ = 0, as follows from
(1.16) because limδ→0 a(δ) = 0. The relations uδ ⇀ u and ‖Auδ − f‖ → 0
as δ → 0 imply Au = f and limδ→0 ‖uδ − u‖ = 0. Indeed, let us first check
that Au = f . One has

(f, g) = lim
δ→0

(Auδ, g) = (u,A∗g) ∀g ∈ D(A∗).

Thus u ∈ D(A) and Au = f , as claimed. As proved above, this implies that
u=y. Therefore uδ⇀y and ‖uδ‖≤‖y‖. This implies that limδ→0 ‖uδ−y‖=0.
Indeed,

‖uδ − y‖2 = ‖uδ‖2 + ‖u‖2 − 2 Re (uδ, y)(1.18)
≤ 2‖y‖2 − 2 Re (uδ, y)→ 0 as δ → 0.

Thus, the relation (1.6) is proved for the choice of a(δ) by the discrepancy
principle.

The drawback of the a priori choice of a(δ) is that it is nonunique and
although it guarantees convergence (1.16), the error of the method can be
large if δ > 0 is fixed. The drawback of the discrepancy principle is the
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necessity of solving the nonlinear equation (1.14) and also a possible large
error for a fixed δ.

In Section 2 we discuss the DSM for solving linear equations (1.1).

2. DSM for solving linear problems. We assume first that the linear
closed densely defined in H operator in (1.1) is selfadjoint, A = A∗. This is
not an essential restriction: every solvable linear equation (1.1) is equivalent
to the equation Tu = A∗f , where T = T ∗ = A∗A. Indeed, if Au = f , then
applying A∗ and assuming f ∈ D(A∗), one gets Tu = A∗f . Conversely, if
Tu = A∗f and f = Ay, then Tu = Ty. Multiply the equation 0 = T (u− y)
by u−y to get 0 = (A∗A(u−y), u−y) = ‖Au−Ay‖2. Thus Au = Ay = f . If
A is bounded, then f ∈ D(A∗) for any f ∈ H. If A is unbounded, then D(A∗)
is a linear dense subset of H. In this case, if f 6∈ D(A∗), then we define a
solution of the equation Tu = A∗f by the formula u = lima→0 T

−1
a A∗f . As

we have proved in Section 1, for any f ∈ R(A) this limit exists and equals
the minimal-norm solution y: lima→0 T

−1
a A∗Au = y if Au = f . This is true

because lima→0 T
−1
a Tu = u− PNu = y.

The DSM for solving equation (1.1) with a linear selfadjoint operator
can be constructed as follows. Consider the problem

(2.1) u̇a = i(A+ ia)ua − if, u(0) = 0; u̇ =
du

dt
,

where a = const > 0. Our first result is formulated as Theorem 1.

Theorem 1. If Ay = f and y ⊥ N , then

(2.2) lim
a→0

lim
t→∞

ua(t) = y.

Our second result shows that the method, based on Theorem 1, gives a
stable solution of the equation Au = f . Assume that ‖fδ − f‖ ≤ δ, and let
ua,δ(t) be the solution to (2.1) with fδ in place of f .

Theorem 2. There exist t = tδ with limδ→0 tδ =∞, and a = a(δ) with
limδ→0 a(δ) = 0, such that uδ := ua(δ),δ(tδ) satisfies (1.6).

We will discuss the ways to choose a(δ) and tδ after the proofs of these
theorems are given.

From the numerical point of view, if one integrates problem (2.1) with
the exact data f on the interval 0 ≤ t ≤ T , and T is fixed, then one is
interested in choosing a = a(T ) such that limT→∞ ‖ua(T )(T ) − y‖ = 0. We
will give such a choice of a(T ).

Before we start proving these two theorems, let us explain the ideas of
the proof. Suppose B is a linear operator and its inverse B−1 exists and is
bounded.
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Finally, assume that

(2.3) lim
t→∞
‖eBt‖ = 0.

This will happen, for example, if ReB ≤ −c, where c > 0 is a constant.
Under these assumptions one has

(2.4)
t�

0

eBs ds = B−1(eBt − I), − lim
t→∞

t�

0

eBs ds = B−1.

The operator
	t
0 e

Bs ds solves the problem

(2.5) Ẇ = BW + I, W (0) = 0,

where I is the identity operator. If limt→∞ ‖eBt‖ = 0, then

(2.6) − lim
t→∞

W (t) = B−1.

The basic idea of the DSM is the representation of the inverse operator
as the limit as t→∞ of the solution to the Cauchy problem (2.5).

Proof of Theorem 1. The solution to (2.1) is

ua(t) =
t�

0

ei(A+ia)(t−s)(if) ds = [i(A+ ia)]−1(ei(A+ia)t − I)(−if).

Since ‖ei(A+ia)t‖ = e−at → 0 as t→∞, one gets

(2.7) lim
t→∞

ua(t) = (A+ ia)−1f.

Since f = Ay, one has

(2.8) η(a) := ‖(A+ ia)−1Ay − y‖ = a‖(A+ ia)−1y‖ → 0 as a→ 0.

The last relation follows from the assumption y ⊥ N . Indeed, by the spectral
theorem one has

lim
a→0

η2(a) = lim
a→0

a2‖(A+ ia)−1y‖2 = lim
a→0

∞�

−∞

a2

s2 + a2
d(Esy, y)

= ‖(E0 − E0−0)y‖2 = ‖PNy‖2 = 0.

Theorem 1 is proved.

Remark 1. In a numerical implementation of Theorem 1 one chooses τ
and a = a(τ), and integrates (2.1) on the interval [0, τ ]. One chooses τ so
that

(2.9) lim
τ→∞

‖ua(τ) − y‖ = 0.
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In order to choose a(τ), note that ‖ua(t)−ua(∞)‖ ≤ e−at/a, as follows from
the derivation of (2.7). Therefore, by Theorem 1, the relation (2.9) holds if

(2.10) lim
τ→∞

e−a(τ)τ

a(τ)
= 0, lim

τ→∞
a(τ) = 0.

For example, one may take a(τ) = τ−γ , where 0 < γ < 1 is a constant.

Proof of Theorem 2. Let us start with the formula

(2.11) ua,δ(t) =
t�

0

ei(A+ia)(t−s)(−ifδ) ds = [i(A+ ia)]−1(ei(A+ia)t − I)(ifδ).

Thus

(2.12) E := ‖ua,δ(t)− y‖ ≤ ‖ua,δ(t)− ua(t)‖+ ‖ua(t)− y‖.

One has

(2.13) ‖ua,δ(t)− ua(t)‖ ≤
‖fδ − f‖

a
‖I − eiAt−at‖ ≤ 2δ

a
,

and

(2.14) ‖ua(t)− y‖ ≤
e−at

a
‖f‖+ η(a),

where η(a) is defined in (2.8), lima→0 η(a) = 0. Since ‖f‖ ≤ ‖fδ‖ + δ ≤ c,
one obtains from (2.12)–(2.14):

(2.15) lim
δ→0
E = 0

provided that t = tδ, a = a(δ) and

(2.16) lim
δ→0

tδ =∞, lim
δ→0

a(δ) = 0, lim
δ→0

e−a(δ)tδ

a(δ)
= 0, lim

δ→0

δ

a(δ)
= 0.

Theorem 2 is proved.

Remark 2. There are many choices of tδ and a(δ) satisfying relations
(2.16). If one has an estimate of the rate of decay of η(a) as a→ 0, then one
may obtain some rate of convergence of E to zero as δ → 0. However, it is
impossible, in general, to get a rate of decay of η(a) as a→ 0 without addi-
tional assumptions on the data f or on the solution y. A typical assumption
is y = Az, that is, y ∈ R(A). If fractional powers of A are defined (which is
the case when A ≥ 0, for example) then one may assume y = Aγz, γ > 0.
Let us show how to get the rate of decay of η(a) under such assumptions.
Assume, for example, that y = Az. Then

(2.17) η2(a) =
∞�

−∞

a2s2

a2 + s2
d(Esz, z) ≤ a2‖z‖2,
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and the error bound is

(2.18) E ≤ 2δ
a

+ c1
e−at

a
+ c2a, c2 = ‖z‖, c1 = ‖fδ‖+ δ.

Choose, for example, a = δγ , 0 < γ < 1, and tδ = δ−µ, µ > γ. Then
limδ→0 e

−a(δ)tδ/a(δ) = 0 and (2.15) holds with the rate δν , ν = min(1−γ, γ).
If γ = 1/2 then max0<γ<1 min(1− γ, γ) is equal to 1/2, and for γ = 1/2 one
gets E = O(δ1/2) if tδ = δ−µ with µ > 1/2.

3. Second version of the DSM. Consider problem (2.1) with a =
a(t). Let us assume that

(3.1) 0 < a(t)↘ 0, a′ + a2 ∈ L1(0,∞),
∞�

0

a(s) ds =∞.

The solution to this problem is

(3.2) u(t) =
t�

0

eiA(t−s)−
	t
s a(p) dp ds (−if).

Theorem 3. Under the above assumptions one has

(3.3) lim
t→∞
‖u(t)− y‖ = 0.

Proof. Since f = Ay, integrating by parts one gets

u(t) = eiAte−iAs−
	t
s a dpy|t0 −

t�

0

eiA(t−s)a(s)e−
	t
s a(p) dp ds y.

Thus

(3.4) u(t) = y − eiAt−
	t
0 a dpy −

t�

0

eiA(t−s)a(s)e−
	t
s a dp ds y,

and

(3.5) ‖u(t)− y‖ ≤ e−
	t
0 a dp‖y‖+

∥∥∥ t�
0

eiA(t−s)a(s)e−
	t
s a dp ds y

∥∥∥ =: J1 + J2.

By the last assumption of (3.1) one gets

(3.6) lim
t→∞

J1 = 0.

We now prove that

(3.7) lim
t→∞

J2 = 0.

Using the spectral theorem, one gets

(3.8) J2
2 =

∞�

−∞
d(Eλy, y)

∣∣∣ t�
0

eiλ(t−s)a(s)e−
	t
s a dp ds

∣∣∣2.
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Let us prove that

(3.9) lim
t→∞

t�

0

eiλ(t−s)a(s)e−
	t
s a dp ds = 0 ∀λ 6= 0.

From (3.8), (3.9) and the assumption y ⊥ N , the conclusion (3.7) follows.
To verify (3.9), integrating by parts one gets

(3.10) J3 :=
t�

0

eiλ(t−s)a(s)e−
	t
s a dp ds

=
eiλ(t−s)

−iλ
a(s)e−

	t
s a dp

∣∣∣∣t
0

+
1
iλ

t�

0

eiλ(t−s)[a′(s) + a2(s)]e−
	t
s a(p) dp ds.

Thus

(3.11) J3 =
a(t)
−iλ

+
eiλt−

	t
0 a dpa(0)
iλ

+ J4, λ 6= 0,

where J4 denotes the last integral in (3.10). The first two terms in (3.11)
tend to zero as t→∞ because of the assumptions about a(t).

Assumptions (3.1) imply that

(3.12) lim
t→∞

J4 = 0.

Thus, Theorem 3 is proved.

Remark 3. For example, the function a(t)=c0/(c1+t)b, where c0, c1>0
are arbitrary constants and b ∈ (1/2, 1) is a constant, satisfies assump-
tions (3.1).

Let us prove that Theorem 3 yields a stable solution to equation (1.1).

Theorem 4. There exists a stopping time tδ, with limδ→0 tδ =∞, such
that (1.6) holds with uδ = uδ(tδ), where uδ(t) is the solution to problem (2.1)
with a = a(t) and fδ in place of f , with ‖fδ − f‖ ≤ δ.

Proof. One has

(3.13) ‖uδ(t)− y‖ ≤ ‖uδ(t)− u(t)‖+ ‖u(t)− y‖,
where u(t) solves problem (2.1) with a = a(t) and exact data. We have
proved in Theorem 3 that

(3.14) lim
t→∞
‖u(t)− y‖ = 0.

We have

(3.15) ‖uδ(t)− u(t)‖ ≤
t�

0

e−
	t
s a(p) dp ds ‖fδ − f‖ ≤

δ

a(t)
.
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Here the estimate
	t
0 e
−

	t
s a dp ds ≤ 1/a(t) was used, which is derived easily:

t�

0

e−
	t
s a dp ds ≤ 1

a(t)

t�

0

a(s)e−
	t
s a dp dp =

1
a(t)

e−
	t
s a dp

∣∣∣∣t
0

=
1
a(t)

(1− e−
	t
0 a dp) ≤ 1

a(t)
.

Choose tδ so that

(3.16) lim
δ→0

tδ =∞, lim
δ→0

δ

a(tδ)
= 0.

This is obviously possible. Then (3.13)–(3.15) imply

(3.17) lim
δ→0
‖uδ(tδ)− y‖ = 0.

Theorem 4 is proved.

4. Third version of DSM for solving equation (1.1)

(4.1) u̇ = −u+ T−1
a(t)A

∗f, u(0) = 0,

where f = Ay, y ⊥ N , and a(t) > 0 is a monotonically decaying continuous
function such that limt→∞ a(t) = 0 and

	∞
0 a(t) dt = ∞. We could take the

initial condition u(0) = u0 arbitrary. The contribution to the solution of
problem (4.1) which comes from the initial condition u0 is the term u0e

−t.
It decays exponentially fast and our arguments do not depend on this term
essentially. To simplify and shorten our argument we take u0 = 0.

Theorem 5. Under the assumptions of Theorem 3 the solution u(t) to
problem (4.1) exists, is unique, is defined for all t ≥ 0, and limt→∞ u(t) = y,
where y is the minimal-norm solution to (1.1).

Proof. One has

u(t) =
t�

0

e−(t−s)T−1
a(s)A

∗Ay ds =
t�

0

e−(t−s)y ds−
t�

0

e−(t−s)a(s)T−1
a(s)y ds.

Thus

(4.2) ‖u(t)− y‖ ≤ e−t‖y‖+
t�

0

e−(t−s)a(s)‖T−1
a(s)y‖ ds.

One can easily check that if b(s) is a continuous function on [0,∞) and
b(∞) = lims→∞ b(s) exists, then

(4.3) lim
t→∞

t�

0

e−(t−s)b(s) ds = b(∞).
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Thus, Theorem 5 will be proved if one checks that

(4.4) lim
a→0

a‖T−1
a y‖ = 0 ∀y ∈ H.

To prove (4.4) one writes, using the spectral theorem,

(4.5) a2‖T−1
a y‖2 =

∞�

0

a2

(s+ a)2
d(Esy, y) = ‖PNy‖2 = 0.

Theorem 5 is proved.

Let us prove that the DSM method (4.1) yields a stable solution to
problem (1.1). Assume that f is replaced by fδ, with ‖fδ − f‖ ≤ δ, in
equation (4.1), and denote by uδ(t) the corresponding solution. Then, using
the estimate (3.13), one gets

(4.6) lim
δ→0
‖uδ(tδ)− y‖ = 0

provided that

(4.7) lim
δ→0

tδ =∞, lim
δ→0

δ√
a(tδ)

= 0.

To check the sufficiency of the second condition of (4.7) for (4.6) to hold,
one proceeds as follows:

‖uδ(t)− u(t)‖ =
∥∥∥ t�

0

e−(t−s)T−1
a(s)A

∗(fδ − f) ds
∥∥∥(4.8)

≤ δ
t�

0

e−(t−s) 1
2
√
a(s)

ds ≤ δ

2
√
a(t)

.

Here we have used the monotonicity of a(t), which implies a(t) ≤ a(s) if
t ≥ s, and the estimate ‖T−1

a A∗‖ ≤ 1/(2
√
a), which was proved earlier.

Let us state the result we have proved.

Theorem 6. If tδ is chosen so that (4.7) holds, then the solution uδ(t)
to problem (4.1) with noisy data fδ in place of f satisfies (4.6).

5. A new discrepancy principle. The usual discrepancy principle
is described in the introduction. It requires solving nonlinear equation
‖Aua,δ − f‖ = Cδ with C = const, 1 < C < 2, where ua,δ = T−1

a A∗fδ.
Thus one has to know the exact minimizer ua,δ of the functional F (u) =
‖Au− fδ‖2 + a‖u‖2, or the exact solution of the equation Tau = A∗fδ.

In this section we discuss the following question:

How does one formulate the discrepancy principle in the case when ua,δ
is not the exact solution of the minimization problem F (u) = min, but an
approximate solution?
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Let us state the result.

Theorem 7. Assume that A is a bounded linear operator in a Hilbert
space H, that f = Ay, y ⊥ N , ‖fδ − f‖ ≤ δ, ‖fδ‖ > Cδ, C = const,
C ∈ (1, 2), and ua,δ is any element which satisfies the inequality

(5.1) F (ua,δ) ≤ m+ (C2 − 1− b)δ2,
where

(5.2) F (u) = ‖Au− fδ‖2 + a‖u‖2, m = inf
u∈H

F (u),

b = const > 0 and C2 > 1 + b. Then the equation

(5.3) ‖Aua,δ − fδ‖ = Cδ

has a solution for any fixed δ > 0, with limδ→0 a(δ) = 0, and

(5.4) lim
δ→0
‖uδ − y‖ = 0,

where uδ = ua(δ),δ and a(δ) solves (5.3).

Proof. To prove the existence of a solution to (5.3), we denote
‖Aua,δ − fδ‖ by h(δ, a), check that h(δ,+0) < Cδ, h(δ,∞) > Cδ, and note
that h(δ, a) is a continuous function of a on the interval (0,∞). This implies
the existence of a solution a = a(δ) to equation (5.3).

As a→∞, one has

a‖ua,δ‖2 ≤ F (ua,δ) ≤ m+ (C2 − 1− b)δ2 ≤ F (0) + (C2 − 1− b)δ2,
so, with c := F (0) + (C2 − 1− b)δ2, one obtains

‖ua,δ‖ ≤ c/
√
a→ 0 as a→∞.

Thus

(5.5) h(δ,∞) = ‖A0− fδ‖ = ‖fδ‖ > Cδ.

As a→ 0, one has

h2(δ, a) ≤ F (ua,δ) ≤ m+ (C2 − 1− b)δ2 ≤ F (y) + (C2 − 1− b)δ2.
Since

F (y) = δ2 + a‖y‖2,
one has

h2(δ, a) ≤ (C2 − b)δ2 + a‖y‖2,
and

(5.6) h(δ,+0) ≤ (C2 − b)1/2δ < Cδ.

Finally, the continuity of h(δ, a) with respect to a ∈ (0,∞) for any fixed δ > 0
follows from the continuity of the bounded operator A and the continuity of
ua,δ with respect to a ∈ (0,∞). Thus, the existence of a solution a = a(δ) > 0
of equation (5.3) is proved. One takes a solution for which limδ→0 a(δ) = 0.
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Such a solution exists because h(δ,+0) and m = m(δ, a) tend to zero as
δ → 0 and a→ 0.

Let us prove (5.4). One has

F (uδ) = ‖Auδ − fδ‖2 + a(δ)‖uδ‖2 ≤ ‖Ay − fδ‖2 + a(δ)‖y‖2(5.7)
≤ δ2 + a(δ)‖y‖2.

Since ‖Auδ − fδ‖ = Cδ, C > 1 it follows from (5.7) that

(5.8) ‖uδ‖ ≤ ‖y‖.
Thus one may assume that uδ ⇀ u as δ → 0.

Let us prove that Au = f . First, we observe that

‖Auδ − f‖ ≤ ‖Auδ − fδ‖+ ‖fδ − f‖ ≤ Cδ + δ,
so

(5.9) lim
δ→0
‖Auδ − f‖ = 0.

Secondly, for any v ∈ H we have

(5.10) (f −Au, v) = lim
δ→0

(Auδ −Au, v) = lim
δ→0

(uδ − u,A∗v) = 0,

because uδ ⇀ u. Since v is arbitrary, one concludes from (5.10) that Au = f .
From (5.8) it follows that ‖u‖ ≤ ‖y‖. As the minimal-norm solution to the
equation Au = f is unique, one obtains u = y. Thus, uδ ⇀ y and ‖uδ‖ ≤ ‖y‖.
This implies (5.4), as follows from (1.18).

Theorem 7 is proved.

6. Discrepancy principle does not yield uniform convergence
with respect to the data. In this section we make the following assump-
tion.

Assumption A. A is a linear bounded operator in a Hilbert space H,
N := N(A) = N(A∗) := N∗ = {0}, A−1 is unbounded, Ay = f, ‖fδ−f‖ ≤ δ,
‖fδ‖ > δ.

Let a = a(δ) be chosen by the discrepancy principle,

(6.1) ‖Aua,δ − fδ‖ = Cδ, uδ = ua(δ),δ = T−1
a(δ)A

∗fδ.

Consider the set
Sδ := {v : ‖Av − fδ‖ ≤ δ}.

We are interested in the following question: given {fδ}δ∈(0,δ0), where
δ0 > 0 is a small number, and assuming that a(δ) is the solution to (6.1),
can one guarantee uniform convergence with respect to the data f?

In other words, is it true that

(6.2) lim
δ→0

sup
v∈Sδ
‖uδ − v‖ = 0 ?

The answer is no.
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Theorem 8. There exist fδ such that

(6.3) lim
δ→0

sup
v∈Sδ
‖uδ − v‖ ≥ c > 0, c = const.

Proof. Set T−1
a A∗ =: G, uδ = Gfδ, ‖G‖ = 1/(2

√
a). We have proved in

(1.10) that ‖G‖ ≤ 1/2
√
a, but in fact equality holds because in (1.10), U is

unitary under Assumption A. Thus, one can find an element p = pa with
‖p‖ = δ/2 such that

(6.4) ‖Gp‖ ≥ 1
2
‖G‖ ‖p‖ =

δ

8
√
a
.

Assumption A implies that the ranges R(A) and R(T ) are dense in H. Thus
one can find an element z = za,δ such that

(6.5) ‖fδ −AT bz − p‖ ≤ δ/8, b ∈ (0, 1), b = const.

For any v one has

(6.6) ‖Gfδ − v‖ ≤ ‖Gfδ −GAv‖+ ‖GAv − v‖.
Take v = T bz and let M > 0 be an arbitrarily large fixed constant. Then

(6.7) lim
δ→0

sup
v∈Sδ, v=Bbz, ‖z‖≤M

‖GAv − v‖ = 0,

because

(6.8) ‖GAv − v‖ = ‖T−1
a Tv − v‖ = ‖−aT−1T bz‖ = a sup

s≥0

sb

s+ a
= cab,

where c = bb(1− b)1−b.
From (6.7) and (6.6) one sees that

(6.9) lim
δ→0

sup
v∈Sδ, v=T bz, ‖z‖≤M

‖Gfδ − v‖ = 0

if and only if

(6.10) lim
δ→0

sup
v∈Sδ, v=T bz, ‖z‖≤M

‖Gfδ −GAv‖ = 0.

Take z = za, v = T bz. Then

(6.11) ‖fδ −Av‖ ≤ ‖p‖+ ‖fδ −ABbz − p‖ ≤ δ/2 + δ/8 = 5δ/8 ≤ δ,
and, using (6.5), one gets

‖Gfδ −GAv‖ = ‖G(fδ −Av − p) +Gp‖ ≥ ‖Gp‖ − ‖G‖ δ
8

(6.12)

≥ δ√
a

(
1
8
− 1

16

)
=

δ

16
√
a
.

If δ/
√
a ≥ c > 0, then, according to (6.12), (6.10) fails.

Let us find fδ such that for a = a(δ), defined by the discrepancy principle,
one has δ/

√
a ≥ c > 0. This will complete the proof of Theorem 8. Let us
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assume for simplicity that A = A∗ > 0 is compact. Then T = A∗A = A2,
and equation (6.1) becomes

C2δ2 = ‖[A(A2 + a)−1A− I]fδ‖2(6.13)

=
∞∑
j=1

[
λ2
j

λ2
j + a

− 1
]2

|fδj |2 =
∞∑
j=1

a2|fδj |2

(λj + a)2
.

Here λj are the eigenvalues of A2, fδj = (fδ, ϕj), A2ϕj = λjϕj , ‖ϕj‖ = 1.
Assume, for example, that λj = 1/j and |fδj |2 = 1/j2. Then (6.13) becomes

(6.14) C2 δ
2

a2
=
∞∑
j=1

j−2

(j−1 + a)2
=: I(a).

Note that
I(a) ∼ I1(a) as a→ 0,

where

I1(a) :=
∞�

1

x−2

(x−1 + a)2
dx.

One has

I1(a) =
∞�

1

x−2

(x−1 + a)2
dx =

1�

0

ds

(s+ a)2
= −(s+ a)−1|10

= a−1

[
1− a

a+ 2

]
=

1
a

[1 +O(a)], a→ 0.

This and (6.14) imply δ/
√
a ≥ c > 0 as δ → 0. Theorem 8 is proved.

7. Iterative processes for solving equation (1.1). In this section
convergent iterative processes for solving equation (1.1) are constructed in
the case when A is a closed, densely defined, unbounded operator in H.
Consider the process

(7.1) un+1 = Bun + T−1
a A∗f, u1 ⊥ N, B := aT−1

a ,

where a = const > 0 and the initial element u1 is arbitrary in the subspace
N⊥, where N := N(A) = N(T ), T = A∗A, Ta = T + aI. Note that B ≥ 0
and ‖B‖ ≤ 1.

Theorem 9. Under the above assumptions one has

(7.2) lim
n→∞

‖un − y‖ = 0.

Proof. Let wn = un − y. Then

(7.3) wn+1 = Bwn = Bnw, w := u1 − y, w ⊥ N.



Dynamical systems method 269

Let us prove that

(7.4) lim
n→∞

‖Bnw‖ = 0.

If (7.4) is verified, then Theorem 9 is proved. We have

(7.5) ‖Bnw‖2 =
∞�

0

a2n

(a+ s)2n
d(Esw,w) =

�

s>b

+
�

0≤s≤b
=: J1 + J2,

where Es is the resolution of the identity corresponding to the operator
T ≥ 0, and b > 0 is a small number which will be chosen later. For any fixed
b > 0 one has limn→∞ J1 = 0 because a/(a+ s) ≤ a/(a+ b) < 1 if s ≥ b.
On the other hand, J2 ≤

	b
0 d(Esw,w), and limb→0

	b
0 d(Esw,w) = 0 because

w ⊥ N = E0H. Therefore, given an arbitrary small number η > 0 one can
choose b > 0 such that J2 ≤ η/2. Fix such a b and choose n sufficiently large
so that J1 ≤ η/2. Then ‖Bnw‖2 ≤ η. Since η is arbitrarily small, we have
proved (7.4). Theorem 9 is proved.

Remark 4. The iterative process (7.1) yields a stable solution of equa-
tion (1.1). Indeed, let fδ be given with ‖fδ − f‖ ≤ δ, and let un,δ be defined
by (7.1) with fδ in place of f . Let wn,δ = un,δ − y. Then

wn+1,δ = Bwn,δ + T−1
a A∗(fδ − f),

so

(7.6) wn+1,δ =
n∑
j=1

BjT−1A∗(fδ − f) +Bn(u1 − y), (u1 − y) ⊥ N.

We have proved above that

(7.7) ‖Bn(u1 − y)‖ =: E(n)→ 0 as n→∞.
One has

(7.8)
∥∥∥ n∑
j=0

BjT−1
a A∗(fδ − f)

∥∥∥ ≤ (n+ 1)δ
2
√
a

,

because ‖B‖ ≤ 1 and ‖T−1
a A∗‖ ≤ 1/(2

√
a). From (7.7) and (7.8) one finds

the stopping rule, i.e., the number n(δ) such that limδ→0 ‖wn(δ),δ‖ = 0. This
n(δ) is found for any fixed small δ as the minimizer for the problem

(7.9)
(n+ 1)δ

2
√
a

+ E(n) = min.

Alternatively, one can find n1(δ) from the equation

(7.10) E(n) =
(n+ 1)δ

2
√
a

.

Clearly n(δ) and n1(δ) tend to ∞ as δ → 0.
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8. Discrepancy principle for DSM. In this section we formulate and
justify a discrepancy principle for DSM.

Let us start with the version (4.1). We assume that a(t) > 0 is a monoton-
ically decaying twice continuously differentiable function, limt→∞[a(t) + |ȧ|
+ ä] = 0, ä > 0, and limt→∞ ȧ(t)/a(t) = 0, for example, a(t) = c1/(c0 + t)b,
where c1, c0 and b are positive constants, with b ∈ (0.5, 1). For this a(t) all
the assumptions (3.1) hold.

Theorem 10. The equation

(8.1) ‖AT−1
a(t)A

∗fδ − fδ‖ = Cδ, C = const, 1 < C < 2,

has a solution t = tδ, with limδ→0 tδ =∞, such that (4.6) holds, where uδ(t)
is the solution to (4.1) with fδ in place of f , and ‖fδ‖ > Cδ.

Proof. We have proved earlier that equation (8.1) has a unique solution
a = aδ and limδ→0 aδ = 0. If a(t) is a monotonically decaying function such
that limt→∞ a(t) = 0, then the equation aδ = a(t) uniquely defines t = tδ
such that a(tδ) = aδ, and limδ→0 tδ =∞.

Let us sketch the proof of (4.6), where uδ(tδ) =
	tδ
0 e
−(tδ−s)T−1

a(s)A
∗fδ ds

and tδ →∞ as δ → 0. We have proved (cf. (1.17)) that ‖T−1
a(tδ)

A∗fδ‖ ≤ ‖y‖,
and

(8.2) lim
δ→0
‖T−1

a(tδ)
A∗fδ − y‖ = 0.

(cf (1.18)). It is clear that limt→∞
	t
0 e
−(t−s)g(s) ds = g(∞) provided that g

is a continuous function and g(∞) := limt→∞ g(t) exists.
Note that lims→tδ ‖T

−1
a(tδ)

A∗fδ − T−1
a(s)A

∗fδ‖ = 0. We have

(8.3)
tδ�

0

e−(tδ−s)T−1
a(s)A

∗fδ ds = y + o(1) as δ → 0.

To check this we use equation (8.2), the formula

T−1
a(tδ)
− T−1

a(s) = T−1
a(s)[a(tδ)− a(s)]T−1

a(tδ)
,

the estimates ‖T−1
a(tδ)

A∗fδ‖ ≤ ‖y‖ and ‖T−1
a(s)‖ ≤ 1/a(s), and the relation

lim
t→∞

t�

0

e−(t−s) a(s)− a(t)
a(s)

ds = 0,

which holds due to our assumptions on a(t). Theorem 10 is proved.
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