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Liftings of forms to Weil bundles and the exterior derivative

by Jacek Dębecki (Kraków)

Abstract. In a previous paper we have given a complete description of linear liftings
of p-forms on n-dimensional manifolds M to q-forms on T AM , where T A is a Weil functor,
for all non-negative integers n, p and q, except the case p = n and q = 0. We now
establish formulas connecting such liftings and the exterior derivative of forms. These
formulas contain a boundary operator, which enables us to define a homology of the Weil
algebra A. We next study the case p = n and q = 0 under the condition that A is acyclic.
Finally, we compute the kernels and the images of the boundary operators for the Weil
algebras Dr

k and show that these algebras are acyclic.

Linear liftings of forms to Weil bundles. There is a well known one-
to-one correspondence between product preserving bundle functors, which
are also called Weil functors or Weil bundles, and Weil algebras ([4], [7], [10]).
Consequently, one may try to describe some natural operators transforming
sections of a natural bundle into sections of another natural bundle over a
Weil bundle (we call natural operators of this kind simply liftings) in terms
of the corresponding Weil algebra (see [9] for the general theory of natural
operators). In particular, liftings of forms to Weil bundles have been studied
by several authors (see for instance [5], [6], [11], [12], [3], [1]).

In this section we briefly recall basic definitions and results of [1], as they
are the starting point of the present paper.

We will denote by FpM the vector space of p-forms on a manifoldM . Let
A be a Weil algebra and TA the Weil functor corresponding to A (see [9]).
Fix non-negative integers n, p and q. A linear lifting of p-forms to q-forms
on TA is, by definition, a system of linear maps LM : FpM → Fq(TAM)
indexed by n-dimensional manifolds and satisfying for all such manifolds M
and N , every embedding f : M → N and every ω ∈ FpN the condition

(1) LM (f∗ω) = (TAf)∗(LN (ω)).
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If s is a non-negative integer, then we will use the symbol CsA to denote
the vector space of skew-symmetric s-linear maps G : A × · · · × A → A∗

(where A∗ denotes the vector space of linear functions A→ R) satisfying

(2) G(a1, . . . , as−1, bc)(d) = G(a1, . . . , as−1, b)(cd) +G(a1, . . . , as−1, c)(bd)

for all a1, . . . , as−1, b, c, d ∈ A whenever s ≥ 1.
Suppose p ≥ q and D ∈ Cp−qA. There is a unique linear lifting Dp,q of

p-forms to q-forms on TA such that

(3) Dp,q
U (ω)(X)(Y1, . . . , Yq)

= D(Xiq+1 , . . . , Xip)(((TAωi1...ip)(X))Y i1
1 . . . Y

iq
q )

for every open subset U of Rn, every ω ∈ FpU , every X ∈ TAU and all
Y1, . . . , Yq ∈ An, where the coordinates ωi1...ip : U → R for i1, . . . , ip ∈
{1, . . . , n} are such that ω(x)(y1, . . . , yp) = ωi1...ip(x)y

i1
1 . . . y

ip
p for every

x ∈ U and all y1, . . . , yp ∈ Rn (formula (3) makes sense, because TARn = An

and TAU is an open subset of the vector space An, so Dp,q
U (ω)(X) can be

interpreted as a skew-symmetric q-linear map An × · · · ×An → R).
If p + 1 ≥ q and E ∈ Cp−q+1A, then Ep+1,q ◦ d (where d denotes the

exterior derivative) is another linear lifting of p-forms to q-forms on TA.
The main theorem of [1] states that every linear lifting of p-forms to q-forms
on TA is of the form specified in the table below for almost all n, p and q,
where D ∈ Cp−qA and E ∈ Cp−q+1A are uniquely determined.

0 ≤ p ≤ n− 1 p = n n + 1 ≤ p

q = 0 Dp,0 0

1 ≤ q ≤ p Dp,q + Ep+1,q ◦ d Dn,q 0

q = p + 1 Ep+1,p+1 ◦ d 0 0

p + 2 ≤ q 0 0 0

The case p = n and q = 0 was omitted in [1], because it is more difficult than
the others. In what follows we prove Theorem 2, which covers this unusual
case.

A homology of the algebra A. If p ≥ q − 1 ≥ 0 and F ∈ Cp−q+1A
then d ◦ F p,q−1 is a linear lifting of p-forms to q-forms on TA, and so it is of
the form specified in the above table with some D and E determined by F .
In the next section we will establish explicit formulas for d ◦ F p,q−1. They
will contain a boundary operator, which we now define.
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For every positive integer s and every G ∈ CsA we define the skew-
symmetric (s− 1)-linear map ∂sG : A× · · · ×A→ A∗ by

(∂sG)(a1, . . . , as−1)(b) = G(a1, . . . , as−1, b)(1)

for all a1, . . . , as−1, b ∈ A. We will have ∂sG ∈ Cs−1A once we check that

(∂sG)(a1, . . . , as−2, bc)(d)
= (∂sG)(a1, . . . , as−2, b)(cd) + (∂sG)(a1, . . . , as−2, c)(bd)

for all a1, . . . , as−2, b, c, d ∈ A whenever s ≥ 2. By (2) and the skew-symmetry
of G,

(∂sG)(a1, . . . , as−2, bc)(d) = G(a1, . . . , as−2, bc, d)(1)
= G(a1, . . . , as−2, b, d)(c) +G(a1, . . . , as−2, c, d)(b)

= G(a1, . . . , as−2, b, c)(d) +G(a1, . . . , as−2, b, d)(c)

+G(a1, . . . , as−2, c, b)(d) +G(a1, . . . , as−2, c, d)(b)

= G(a1, . . . , as−2, b, cd)(1) +G(a1, . . . , as−2, c, bd)(1)

= (∂sG)(a1, . . . , as−2, b)(cd) + (∂sG)(a1, . . . , as−2, c)(bd),

which is the desired conclusion. Therefore we have defined the linear map
∂s : CsA→ Cs−1A for every positive integer s.

It will be convenient to put C−1A = R, ∂0 : C0A 3 G 7→ G(1) ∈ C−1A
(this definition makes sense, because C0A = A∗) and ∂−1 = 0.

If s ≥ 1 and G ∈ CsA, then by (2),

G(a1, . . . , as−1, 1)(1) = G(a1, . . . , as−1, 1 · 1)(1)
= G(a1, . . . , as−1, 1)(1) +G(a1, . . . , as−1, 1)(1),

and so G(a1, . . . , as−1, 1)(1) = 0 for all a1, . . . , as−1 ∈ A. From this we
deduce that ∂s−1∂s = 0 for every s ≥ 0.

Thus we have constructed a chain complex and we define the homology
vector spaces of the algebra A by the usual formula HsA = ker ∂s/im ∂s+1

for every s ≥ −1. We will call A acyclic if HsA = {0} for all s ≥ −1.
As a curiosity, it is worth pointing out that the above construction works

not only for a Weil algebra, but also for any algebra with unit, even non-
commutative and non-associative.

Formulas for d◦F p,q−1. Since constant coefficients in formulas we want
to derive depend on the choice of constant coefficients in some definitions,
we now make the following convention. If m and s are non-negative integers,
V is an open subset of Rm, α ∈ FsV and the coordinates αi1...is : V → R for
i1, . . . , is ∈ {1, . . . ,m} are such that α(x)(y1, . . . , ys) = αi1...is(x)y

i1
1 . . . yiss
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for every x ∈ V and all y1, . . . , ys ∈ Rm, then α = αi1...isdx
i1 ∧ · · ·∧dxis and

dα =
∂αi1...is
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxis .

We are now in a position to formulate a theorem containing the promised
formulas for d ◦ F p,q−1, where F ∈ Cp−q+1A.

Theorem 1. Let p− q + 1 ≥ 0 and F ∈ Cp−q+1A.
If q = 0, then

(4) 0 = (−1)p−1(∂p+1F )p,0 + F p+1,0 ◦ d.

If 1 ≤ q ≤ p, then

(5) q(d ◦ F p,q−1) = (p− q + 1)(−1)p−1(∂p−q+1F )p,q + (p+ 1)(F p+1,q ◦ d).

If q = p+ 1, then

(6) d ◦ F p,p = F p+1,p+1 ◦ d.

Proof. To simplify the proof, note that (4) and (6) may be interpreted as
special cases of (5), because the coefficients of the terms which do not make
sense vanish in these special cases.

If s is a positive integer, u is a non-negative integer and G ∈ CsA, then
by induction on u we deduce from (2) that

(7) G(a1, . . . , as−1, b1 . . . bu)(c)

=
u∑
v=1

G(a1, . . . , as−1, bv)(b1 . . . bv−1bv+1 . . . buc)

for all a1, . . . , as−1, b1, . . . , bu, c ∈ A. From (7) we conclude immediately that
if f : Rn → R is a polynomial, then

(8) G(a1, . . . , as−1, (TAf)(X))(c)

= G(a1, . . . , as−1, X
j)
(((

TA
∂f

∂xj

)
(X)

)
c

)
for every X ∈ An. Actually, (8) still holds when f : U → R is a smooth map
on an open subset U of Rn and X ∈ TAU (this is due to the fact that TA
has a finite order; see [1]).

If q ≥ 1, m is a non-negative integer, V is an open subset of Rm and
α ∈ Fq−1V , then we write αy1...yq−1 : V 3 x 7→ α(x)(y1, . . . , yq−1) ∈ R for
y1, . . . , yq−1 ∈ Rm. In this notation we have

(9) (dα)(x)(y1, . . . , yq) =
1
q

q∑
u=1

(−1)u−1(d(αy1...yu−1yu+1...yq))(x)(yu)

for every x ∈ V and all y1, . . . , yq ∈ Rm, as is easy to verify.
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Let U be an open subset of Rn and ω ∈ FpU . By (3), if q ≥ 1 then

F p,q−1
U (ω)(X)(Y1, . . . , Yq−1)

= F (Xiq , . . . , Xip)(((TAωi1...ip)(X))Y i1
1 . . . Y

iq−1

q−1 )

for every X ∈ TAU and all Y1, . . . , Yq−1 ∈ An. Hence (9) gives

(10) q(d(F p,q−1
U (ω)))(X)(Y1, . . . , Yq)

=
q∑

u=1

(−1)u−1

( p∑
t=q

F (Xiq , . . . , Xit−1 , Y it
u , X

it+1 , . . . , Xip)

(((TAωi1...ip)(X))Y i1
1 . . . Y

iu−1

u−1 Y
iu
u+1 . . . Y

iq−1
q )

+ F (Xiq , . . . , Xip)
(((

TA
∂ωi1...ip
∂xj

)
(X)

)
Y i1

1 . . . Y
iu−1

u−1 Y
iu
u+1 . . . Y

iq−1
q Y j

u

))
for every X ∈ TAU and all Y1, . . . , Yq ∈ An. But, by the skew-symmetry of
F and ω,

(11)
q∑

u=1

(−1)u−1
p∑
t=q

F (Xiq , . . . , Xit−1 , Y it
u , X

it+1 , . . . , Xip)

(((TAωi1...ip)(X))Y i1
1 . . . Y

iu−1

u−1 Y
iu
u+1 . . . Y

iq−1
q )

= (p− q + 1)
q∑

u=1

(−1)u−1

× F (Xiq , . . . , Xip−1 , Y
ip
u )(((TAωi1...ip)(X))Y i1

1 . . . Y
iu−1

u−1 Y
iu
u+1 . . . Y

iq−1
q )

= (p− q + 1)(−1)p−1

×
q∑

u=1

F (Xiq+1 , . . . , Xip , Y iu
u )(((TAωi1...ip)(X))Y i1

1 . . . Y
iu−1

u−1 Y
iu+1

u+1 . . . Y
iq
q ).

Since

(dω)i1...ip+1 =
1

p+ 1

p+1∑
u=1

(−1)u−1 ∂ωi1...iu−1iu+1...ip+1

∂xiu

for all i1, . . . , ip+1 ∈ {1, . . . , n}, (3) and the skew-symmetry of F give

(12) (p+ 1)(F p+1,q
U (dω))(X)(Y1, . . . , Yq)

=
p+1∑
u=1

(−1)u−1F (Xiq+1 , . . . , Xip+1)
(((

TA
∂ωi1...iu−1iu+1...ip+1

∂xiu

)
(X)

)
Y i1

1 . . . Y
iq
q

)
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=
q∑

u=1

(−1)u−1F (Xiq , . . . , Xip)
(((

TA
∂ωi1...ip
∂xj

)
(X)
)
Y i1

1 . . . Y
iu−1

u−1 Y
iu
u+1 . . . Y

iq−1
q Y j

u

)

= (−1)p
p+1∑

u=q+1

F (Xiq+1 , . . . , Xip , Xj)
(((

TA
∂ωi1...ip
∂xj

)
(X)

)
Y i1

1 . . . Y
iq
q

)
for every X ∈ TAU and all Y1, . . . , Yq ∈ An. But, by (8),

(13) (−1)p
p+1∑

u=q+1

F (Xiq+1 , . . . , Xip , Xj)
(((

TA
∂ωi1...ip
∂xj

)
(X)

)
Y i1

1 . . . Y
iq
q

)
+ (p− q + 1)(−1)pF (Xiq+1 , . . . , Xip , (TAωi1...ip)(X))(Y i1

1 . . . Y
iq
q ).

Combining (10)–(13) and applying (7) and (3) we obtain

(q(d(F p,q−1
U (ω)))− (p+ 1)(F p+1,q

U (dω)))(X)(Y1, . . . , Yq)

= (p− q + 1)(−1)p−1

×
q∑

u=1

F (Xiq+1 , . . . , Xip , Y iu
u )(((TAωi1...ip)(X))Y i1

1 . . . Y
iu−1

u−1 Y
iu+1

u+1 . . . Y
iq
q )

− (p− q + 1)(−1)pF (Xiq+1 , . . . , Xip , (TAωi1...ip)(X))(Y i1
1 . . . Y

iq
q )

= (p− q + 1)(−1)p−1F (Xiq+1 , . . . , Xip , ((TAωi1...ip)(X))Y i1
1 . . . Y

iq
q )(1)

= (p− q + 1)(−1)p−1(∂p−q+1F )p,qU (ω)(X)(Y1, . . . , Yq)

for every X ∈ TAU and all Y1, . . . , Yq ∈ An. This establishes (5), and the
proof is complete.

The case p = n and q = 0. Let L be a linear lifting of n-forms to
0-forms on TA. One may ask if there exists a D ∈ CnA such that L = Dn,0

and, if this is so, whether such aD is unique or not. The following proposition
answers the latter question.

Proposition 1. Let D, D̃ ∈ CnA. Then Dn,0 = D̃n,0 if and only if
∂nD = ∂nD̃.

Proof. From a lemma proved in [1] it follows that if L and L̃ are two
linear liftings of n-forms to 0-forms on TA such that

LRn(dx1 ∧ · · · ∧ dxn) = L̃Rn(dx1 ∧ · · · ∧ dxn),
then L = L̃. By (3) and the skew-symmetry of D,

(14) Dn,0
Rn (dx1 ∧ · · · ∧ dxn)(X)

= D(X1, . . . , Xn)(1) =
{

(∂nD)(X1, . . . , Xn−1)(Xn) if n ≥ 1,
∂0D if n = 0,
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for every X ∈ An, and a similar formula holds for D̃. Combining these with
the above-mentioned lemma completes the proof.

The problem of the existence of a D ∈ CnA such that L = Dn,0 is more
difficult. We will solve it under the condition that Hn−1A = {0}.

We define Sn−1A to be the set of skew-symmetric n-linear functions C :
A× · · · ×A→ R with the properties that

(15) C(a1, . . . , an−2, bc, d) = C(a1, . . . , an−2, b, cd) + C(a1, . . . , an−2, c, bd)

for all a1, . . . , an−2, b, c, d ∈ A whenever n ≥ 2 and

(16) C(a1, . . . , an−1, 1) = 0

for all a1, . . . , an−1 ∈ A whenever n ≥ 1 (note that if n ≥ 2, then (16) is a
consequence of (15) with b = 1 and c = 1).

Let C ∈ Sn−1A. If n ≥ 1, then we define the skew-symmetric (n−1)-linear
map C : A× · · · ×A→ A∗ by

C(a1, . . . , an−1)(b) = C(a1, . . . , an−1, b)

for a1, . . . , an−1, b ∈ A. If n = 0, then we put C = C (in this case C ∈ R). Let
Sn−1A denote the image of the linear injection Sn−1A 3 C 7→ C ∈ ker ∂n−1.

Proposition 2. Sn−1A = ker ∂n−1.

Proof. The case n ≤ 1 is trivial. Suppose that n ≥ 2 and G ∈ ker ∂n−1.
The n-linear function C : A × · · · × A → R given by C(a1, . . . , an−1, b) =
G(a1, . . . , an−1)(b) for all a1, . . . , an−1, b ∈ A is skew-symmetric in the first
n−1 variables. If we show that it is skew-symmetric in the last two variables
as well, we will have G = C and the proof will be completed. But the fact
that ∂n−1G = 0 and (2) yield

0 = G(a1, . . . , an−2, bc)(1) = G(a1, . . . , an−2, b)(c) +G(a1, . . . , an−2, c)(b)

for all a1, . . . , an−2, b, c ∈ A, which is the desired conclusion.

Lemma 1. For every linear lifting L of n-forms to 0-forms on TA there
is a unique C ∈ Sn−1A such that

(17) LRn(dx1 ∧ · · · ∧ dxn)(X) = C(X1, . . . , Xn)

for every X = (X1, . . . , Xn) ∈ An.

Proof. From (1) with f : Rn 3 x 7→ (t1x1, . . . , tnx
n) ∈ Rn, where

t1, . . . , tn ∈ R \ {0}, we have

t1 . . . tnLRn(dx1 ∧ · · · ∧ dxn)(X) = LRn(dx1 ∧ · · · ∧ dxn)(t1X1, . . . , tnX
n)

for every X ∈ An. By continuity, the same is true for all t1, . . . , tn ∈ R. The
homogeneous function theorem (see [9]) now shows that there is an n-linear
function C : A× · · · ×A→ R satisfying (17).
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From (1) with f : Rn 3 x 7→ (xσ(1), . . . , xσ(n)) ∈ Rn, where σ is a
permutation of {1, . . . , n}, we have

sgnσLRn(dx1 ∧ · · · ∧ dxn)(X) = LRn(dx1 ∧ · · · ∧ dxn)(Xσ(1), . . . , Xσ(n))

for every X ∈ An. Hence, by (17), C is skew-symmetric.
If n ≥ 2, then put U = {x ∈ Rn : xn−1 > 0} and

f : U 3 x 7→
(
x1, . . . , xn−2, 1

2(xn−1)2, xn
)
∈ Rn,

g : U 3 x 7→ (x1, . . . , xn−1, xn−1xn) ∈ Rn.

Since f∗(dx1 ∧ · · · ∧ dxn) = g∗(dx1 ∧ · · · ∧ dxn), from (1) we have

(18) LRn(dx1 ∧ · · · ∧ dxn)(X1, . . . , Xn−2, 1
2(Xn−1)2, Xn)

= LRn(dx1 ∧ · · · ∧ dxn)(X1, . . . , Xn−1, Xn−1Xn)

for X ∈ TAU . In the same manner, with U replaced by {x ∈ Rn : xn−1 < 0},
we can see that (18) also holds for X ∈ TA{x ∈ Rn : xn−1 < 0}, and so, by
continuity, for every X ∈ An. The polarization of (18) with respect to Xn−1

and (17) now show that (15) holds.
If n = 1, then from (1) with f : R 3 x 7→ 2x− 1 ∈ R we have 2LR(dx)(1)

= LR(dx)(1), so LR(dx)(1) = 0. Hence, by (17), C satisfies (16).
The uniqueness of C is evident. This completes the proof.

Lemma 1 enables us to formulate the following proposition.

Proposition 3. Let L be a linear lifting of n-forms to 0-forms on TA

and C ∈ Sn−1A be such that (17) holds. Then there exists a D ∈ CnA such
that L = Dn,0 if and only if C ∈ im ∂n.

Proof. If D ∈ CnA, then (17) and (14) show that C = ∂nD if and only if
LRn(dx1∧· · ·∧dxn) = Dn,0

Rn (dx1∧· · ·∧dxn), which is equivalent to L = Dn,0,
because of the above-mentioned lemma of [1]. This completes the proof.

Propositions 1–3 give the following theorem.

Theorem 2. If Hn−1A = {0}, then for every linear lifting L of n-forms
to 0-forms on TA there is a D ∈ CnA such that L = Dn,0, and so the
vector space of linear liftings of n-forms to 0-forms on TA is isomorphic to
CnA/ker ∂n.

Thus Theorem 2 gives a classification of linear liftings of n-forms to 0-
forms on TA under the condition that A is acyclic. Clearly, ker ∂−1 = R and
im ∂0 = R. However, computing ker ∂s and im ∂s+1 for all s ≥ −1 and an
arbitrary Weil algebra A seems difficult. In the next section we will solve
this problem for some special (but important) Weil algebras.

ker ∂s and im ∂s+1 for the algebras Dr
k. Let r and k be non-negative

integers. We will denote by Dr
k the Weil algebra of r-jets at 0 of smooth
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functions Rk → R. It is worth pointing out that each Weil algebra A is a
factor algebra of Dr

k for some r and k (see [8]), so the chain complex CA is
isomorphic to a subcomplex of CDr

k.
If r = 0 or k = 0, then Dr

k = R, and it is a simple matter to check that
HsR = {0} for every s ≥ −1.

From now on we make the assumption that r ≥ 1 and k ≥ 1.
We will denote by xi for i ∈ {1, . . . , k} the r-jet at 0 of the projection

Rk 3 x 7→ xi ∈ R and write xα = (x1)α
1
. . . (xk)α

k and |α| = α1 + · · · + αk

for α ∈ Nk, where N stands for the set of non-negative integers.
For s ≥ 1 we denote by Zs the set of (i1, . . . , is, α) ∈ {1, . . . , k}s × Nk

with the properties that i1 < · · · < is, and either |α| < r or |α| = r and
is < max{l ∈ {1, . . . , k} : αl > 0}. Moreover, let Z0 denote the set of α ∈ Nk

such that |α| ≤ r. In [2] it is proved that the map Is : CsDr
k → RZs given

by Is(D)(i1, . . . , is, α) = D(xi1 , . . . , xis)(xα) for every D ∈ CsDr
k and every

(i1, . . . , is, α) ∈ Zs is an isomorphism of vector spaces for every non-negative
integer s.

For s ≥ 1 we denote by Ws the set of (i1, . . . , is, α) ∈ {1, . . . , k}s × Nk

such that i1 < · · · < is, |α| ≤ r, α 6= 0 and is < max{l ∈ {1, . . . , k} : αl > 0}.
Moreover, let W0 denote the set of α ∈ Nk such that |α| ≤ r and α 6= 0. Of
course, Ws ⊂ Zs for every non-negative integer s.

Suppose now that s ≥ 1.
For (i1, . . . , is−1, β) ∈ Ws−1 we put is = max{l ∈ {1, . . . , k} : βl > 0}

and α = β − eis , where e1, . . . , ek is the standard basis of the module Zk.
It is easily seen that (i1, . . . , is, α) ∈ Zs \Ws. Writing ϕs(i1, . . . , is−1, β) =
(i1, . . . , is, α) we get ϕs : Ws−1 → Zs \Ws.

For (i1, . . . , is, α) ∈ Zs \Ws we put β = α + eis . It is easily seen that
(i1, . . . , is−1, β) ∈ Ws−1. Writing ψs(i1, . . . , is, α) = (i1, . . . , is−1, β) we get
ψs : Zs \Ws →Ws−1.

Lemma 2. ψs ◦ ϕs = idWs−1 and ϕs ◦ ψs = idZs\Ws
.

Proof. The proof is immediate.

If (i1, . . . , is) ∈ Ns and iu 6= iv for all u, v ∈ {1, . . . , s} such that u 6= v,
then we will write P (i1, . . . , is) = (iσ(1), . . . , iσ(s)) and sgn(i1, . . . , is) =
sgnσ, where σ is the permutation of {1, . . . , s} such that iσ(1) < · · · < iσ(s).

Lemma 3. If B ∈ RZs , then B ∈ Is(ker ∂s) if and only if

(19) B(i1, . . . , is, α) = − 1
αis + 1

∑
j∈{l∈{1,...,k} :αl>0}

j 6=i1,...,is

αj sgn(i1, . . . , is−1, j)

×B(P (i1, . . . , is−1, j), α+ eis − ej)
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for every (i1, . . . , is, α) ∈ Zs \Ws. Furthermore, the right hand side of (19)
contains only B(i1, . . . , is, α) such that (i1, . . . , is, α) ∈Ws.

Proof. Since every D ∈ CsDr
k is skew-symmetric, the first assertion of

our lemma may be reformulated as follows: if D ∈ CsDr
k, then D ∈ ker ∂s if

and only if

(20) D(xi1 , . . . , xis)(xα)

= − 1
αis + 1

∑
j∈{l∈{1,...,k} :αl>0}

j 6=is

αjD(xi1 , . . . , xis−1 , xj)(xα+eis−ej )

for every (i1, . . . , is, α) ∈ Zs \Ws.
On account of the above-mentioned result of [2], if D ∈ CsDr

k, then D ∈
ker ∂s if and only if (∂sD)(xi1 , . . . , xis−1)(xβ) = 0 for every (i1, . . . , is−1, β)
∈ Zs−1. Applying (8) we can rewrite this as

(21)
∑

j∈{l∈{1,...,k} :βl>0}

βjD(xi1 , . . . , xis−1 , xj)(xβ−ej ) = 0.

But (20) is equivalent to (21) with (i1, . . . , is−1, β) = ψs(i1, . . . , is, α), which
means that (20) holds if and only if (21) holds for (i1, . . . , is−1, β) ∈ Ws−1,
because of Lemma 2. Consequently, the first assertion of our lemma will be
proved as soon as we can show that (20) implies (21) with (i1, . . . , is−1, β) ∈
Zs−1 \Ws−1.

Since Z0 \W0 = {0}, this is true if s = 1. Therefore we can assume that
s ≥ 2. It is easy to see that for every (i1, . . . , is−1, β) ∈ Zs−1\Ws−1 and every
j ∈ {l ∈ {1, . . . , k} : βl > 0} \ {i1, . . . , is−1}, either β − ej = 0, or β − ej 6= 0
and max{i1, . . . , is−1, j} = is−1 ≥ max{l ∈ {1, . . . , k} : (β − ej)l > 0}, and
so (P (i1, . . . , is−1, j), β − ej) ∈ Zs \Ws. Hence (20) and the skew-symmetry
of D give

D(xi1 , . . . , xis−1 , xj)(xβ−ej ) = − 1
βis−1 + 1

×
∑

h∈{l∈{1,...,k} :βl>0}
h6=i1,...,is−1,j

βhD(xi1 , . . . , xis−2 , xh, xj)(xβ+eis−1
−eh−ej ).

Substituting this into (21) and using the skew-symmetry of D we see that
the left hand side of (21) equals

− 1
βis−1 + 1

∑
j,h∈{l∈{1,...,k} :βl>0}

j,h6=i1,...,is−1
j 6=h

βhβjD(xi1 , . . . , xis−2 , xh, xj)(xβ+eis−1
−eh−ej ),
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which vanishes because of the skew-symmetry of D. This proves the first
assertion of our lemma.

To prove the second one it suffices to notice that for every (i1, . . . , is, α) ∈
Zs \ Ws and every j ∈ {l ∈ {1, . . . , k} : αl > 0} \ {i1, . . . , is} we have
max{i1, . . . , is−1, j} < is = max{l ∈ {1, . . . , k} : (α+ eis − ej)l > 0}, and so
(P (i1, . . . , is−1, j), α+ eis − ej) ∈Ws. This completes the proof.

Note that Lemma 3 gives a description of ker ∂s. Namely, any B ∈
Is(ker ∂s) may be defined arbitrarily onWs first, and then by (19) on Zs\Ws

(the same is true for s = 0 when the right hand side of (19) vanishes). In
particular, we have the following corollary.

Corollary. For every s ≥ 0 the map ker ∂s 3 D 7→ Is(D)|Ws ∈ RWs is
an isomorphism of vector spaces.

Finally, from Lemmas 2 and 3 and the above-mentioned result of [2] we
obtain the following theorem which states that the algebras Dr

k are acyclic.

Theorem 3. HsDr
k = {0} for every s ≥ −1.

Proof. dim ker ∂s−1 = cardWs−1 = cardZs − cardWs = dimCsDr
k −

dim ker ∂s = dim im ∂s for every s ≥ 1.
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