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Piecewise-deterministic Markov processes

by Jolanta Kazak (Katowice)

Abstract. Poisson driven stochastic differential equations on a separable Banach
space are examined. Some sufficient conditions are given for the asymptotic stability of a
Markov operator P corresponding to the change of distribution from jump to jump. We
also give criteria for the continuous dependence of the invariant measure for P on the
intensity of the Poisson process.

1. Introduction. We will consider the stochastic differential equation
of the form
(1.1) dξ(t) = a(ξ(t))dt+

�

Θ

σ(ξ(t), θ)Np(Λξ(dt), dθ) for t ≥ 0

with the initial condition
(1.2) ξ(0) = ξ0,

where

(1.3) Λξ(t) =

t�

0

λ(ξ(s)) ds

and (ξ(t))t≥0 is a stochastic process with values in a separable Banach
spaceX, the functions a and σ are deterministic, andNp is a Poisson random
counting measure. In (1.3) the function λ : X → R+, called the intensity of
the Poisson process, is bounded and Lipschitzian. The process Λξ influences
the time at which jumps occur and it depends on the solution ξ of the prob-
lem (1.1), (1.2). The process (Np(Λξ(t), A))t≥0 describes the occurrence of
jumps. The fact that Np depends on the solution is crucial.

The solution ξ is a Markov process which is piecewise-deterministic. It
evolves deterministically until a random time (depending on position) when
it jumps to a new random state. Such processes feature significantly in con-
temporary monographs devoted to Markov processes (see [3]). They have
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been used in models of numerous phenomena, such as the growth of a size-
structured population of cells [4, 5, 15], fragmentation processes [23, 24],
and in population dynamics [18]. Recently the problem (1.1), (1.2) has ap-
peared in financial investment models [1]. For further examples (short noise,
photoconductive detectors, etc.) see [25] .

In the nature of things, the probabilistic description of the solution of
(1.1), (1.2) leads us to the examination of a semigroup (P t)t≥0 of Markov
operators acting on the space of Borel measures on X. This semigroup de-
scribes the distribution of the position of a trajectory at any time. Moreover,
there exists a discrete semigroup (Pn)n≥1 defined by the jump operator P .
This operator describes the distribution of the position of a trajectory from
one perturbation moment to the next.

The aim of this paper is to give criteria for the asymptotic stability of
the discrete semigroup (Pn)n≥1. With this end in view, we will prove the
nonexpansiveness of P and its global concentration. Next, we will verify the
condition for the local concentration of P by using the asymptotic stabil-
ity of the associated operator P with constant intensity λ = supx∈X λ(x).
Moreover, we will prove a theorem on continuous dependence of the invariant
measure for P on the intensity of the Poisson process. This result strengthens
the one of [29] obtained in the case λ = const. We will examine the Markov
operator P corresponding to the change of distribution of ξ(t) from jump to
jump and not the semigroup (P t)t≥0 describing the distribution of ξ(t) at
any time.

There are many papers devoted to piecewise-deterministic Markov pro-
cesses, but usually in the case λ = const (see [8, 9, 10, 11, 28]) or in the
case X = Rd (see [2, 16, 30]). Similar problems in the space L1(Rd) were
considered in [19, 22, 20, 21].

The paper is organized as follows. Sections 2 and 3 have an introductory
character. Section 2 presents the notation and some known facts concerning
Markov operators and point processes. In Section 3 we define the solution of
the problem (1.1), (1.2) and derive a formula for the operator P . In Section 4
we give criteria for the asymptotic stability of P , and in Section 5 we prove
continuous dependence.

2. Preliminaries. Let (X, ‖·‖) be a separable Banach space. We denote
by B(X) and Bb(X) the σ-algebra of Borel subsets of X and the algebra of
bounded Borel subsets ofX, respectively. For A ∈ B(X) we denote by diamA
the diameter of A, i.e. diamA = sup{‖x − y‖ : x, y ∈ X}. Let A ⊂ X and
r > 0. We denote by O(A, r) the closed r-neighbourhood of A, i.e.

O(A, r) =
{
x ∈ X : inf

y∈A
‖x− y‖ ≤ r

}
.



Piecewise-deterministic Markov processes 281

Let B(X) denote the space of all bounded, Borel, real-valued functions
on X equipped with the supremum norm, and C(X) the subspace of B(X)
which consists of all bounded continuous functions. By Msig ⊃ M ⊃ M1

we denote, respectively, the space of all finite signed Borel measures on X;
the subset of all nonnegative finite Borel measures on X; and the subset of
all probability measures, called distributions. For any A ∈ B(X), we set

MA
1 =

{
µ ∈M1 : µ(X \A) = 0

}
.

We will use the abbreviation

〈f, µ〉 =
�

X

f(x)µ(dx) for f ∈ B(X), µ ∈Msig.

An operator P :M→M is called a Markov operator if:

(i) P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ≥ 0 and µ1, µ2 ∈M,
(ii) Pµ(X) = µ(X) for µ ∈M.

An operator U : B(X)→ B(X) is called dual to P if

(2.1) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈M.

If there exists a dual operator, it is unique. Setting µ = δx in (2.1), we obtain

(2.2) Uf(x) = 〈f, Pδx〉 for f ∈ B(X), x ∈ X.

If an operator U : B(X) → B(X) is dual to P then U is a linear operator
satisfying the following conditions:

‖U‖ = 1; U1X = 1X ; Uf ≥ 0 for f ≥ 0;

Ufn ↓ 0 for fn ↓ 0, (fn)n≥1 ⊂ B(X).

A dual operator U can be extended to the set of all, not necessarily bounded,
Borel functions f : X → R+ in such a way that the resulting operator satis-
fies (2.1). Namely, we set

Uf(x) = lim
n→∞

Ufn(x), where (fn)n≥1 ⊂ B(X) with fn ↑ f.

Given a dual operator U , its corresponding Markov operator P is of the form

Pµ(A) = 〈U1A, µ〉 for µ ∈M, A ∈ B(X).

AMarkov operator P is called a Feller operator if there exists an operator
U dual to P such that U(C(X)) ⊂ C(X). InMsig we introduce the Fortet–
Mourier norm (see [17])

‖µ‖FM = sup{|〈f, µ〉| : f ∈ F},

where F = {f ∈ C(X) : |f(x)| ≤ 1, |f(x) − f(y)| ≤ ‖x − y‖ for x, y ∈ X}.
It is well known that (Msig, ‖ · ‖FM) is a normed vector space. Furthermore,
(M1, ‖ · ‖FM) is a complete space, and convergence in the Fortet–Mourier
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norm on M1 is equivalent to weak convergence. We say that a sequence
(µn)n≥1 ⊂M1 converges weakly to µ ∈M1 (written µn → µ) if

lim
n→∞

〈f, µn〉 = 〈f, µ〉 for f ∈ C(X).

Apart from the Fortet–Mourier norm, one can introduce on some subset
ofM1 another norm called the Hutchinson norm. We set

M1,H =
{
µ ∈M1 :

�

X

‖x‖µ(dx) <∞
}
.

The Hutchinson norm is defined by the formula

‖µ‖H = sup{|〈f, µ〉| : f ∈ H} for µ ∈M1,H,

where H = {f ∈ C(X) : f ≥ 0, |f(x)− f(y)| ≤ ‖x− y‖ for x, y ∈ X}. Note
that

(2.3) ‖µ1 − µ2‖FM ≤ ‖µ1 − µ2‖H for µ1, µ2 ∈M1,H.

A Markov operator P is called nonexpansive with respect to the norm ‖·‖FM
if

‖Pµ1 − Pµ2‖FM ≤ ‖µ1 − µ2‖FM for µ1, µ2 ∈M1.

A measure µ ∈M is called invariant or stationary for a Markov operator P
if Pµ = µ. A Markov operator P is called asymptotically stable if there is a
stationary distribution µ∗ ∈M1 such that

lim
n→∞

‖Pnµ− µ∗‖FM = 0 for µ ∈M1.

We now recall some concepts used for point processes [12, pp. 42–43].
Let (Ω, E ,P) be a complete probability space, and (Θ,G) be a measurable
space. A mapping p : Dp → Θ, where Dp is a countable subset of (0,∞), is
called a point function on Θ. Such a function p defines a counting measure
Np(dτ, dθ) on the measurable space (R+ ×Θ,B(R+)× G) by the formula

Np([0, t]×K) = card{s ∈ Dp : s ≤ t, p(s) ∈ K} for t ≥ 0, K ∈ G.
We assume that Np([0, t]×K) <∞ for all t ≥ 0,K ∈ G. To abbreviate, we
write Np(t,K) instead of Np([0, t] × K). For the point function p, we also
write p = (τn, θn)n≥1, where θn = p(τn), τn ∈ Dp. Let ΠΘ be the collection
of all point functions on Θ, and B(ΠΘ) be the smallest σ-algebra on ΠΘ

with respect to which all mappings {p 7→ Np(t,K) : t > 0, K ∈ G} are
measurable. A mapping p : Ω → ΠΘ which is F/B(ΠΘ)-measurable is called
a point process. A point process p is a Poisson point process if

(i) for each Z ∈ B(R+)×G, the mapping ω 7→ Np(ω)(Z) is a Poisson dis-
tributed random variable, i.e. P(Np(Z) = k) = ([np(Z)]

k/k!)e−np(Z),
where np(Z) = ENp(Z),

(ii) if Z1, . . . , Zl ∈ B(R+)×G are disjoint sets, then the random variables
Np(Z1), . . . ,Np(Zl) are mutually independent.
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The process p defines a Poisson random counting measure Np. Let κ be a
measure on (Θ,G) such that κ(Θ) = 1. The Poisson point process is station-
ary if ENp(t,K) = tκ(K) for all t > 0,K ∈ G. The measure κ is called the
characteristic measure of p.

3. Poisson driven Markov process. In this section we study the so-
lution of the problem (1.1), (1.2). Throughout the paper we assume:

(i) The function a : X → X is Lipschitzian: ‖a(x)− a(y)‖ ≤ la‖x− y‖
for x, y ∈ X.

(ii) There is a measure space (Θ,G, κ) with κ(Θ) = 1 such that the per-
turbation coefficient σ : X×Θ → X is a B(X)×G/B(X)-measurable
function such that σ(z, ·) ∈ L2(κ) for each z ∈ X and

‖σ(x, ·)− σ(y, ·)‖L2(κ) ≤ lσ‖x− y‖ for x, y ∈ X.

(iii) The function λ : X → R+ is Lipschitzian:

‖λ(x)− λ(y)‖ ≤ lλ‖x− y‖ for x, y ∈ X,

and
0 < λ = inf

x∈X
λ(x), λ = sup

x∈X
λ(x) <∞.

(iv) There are given a probability space (Ω,F ,P), a sequence (τn)n≥0 of
nonnegative random variables, and a sequence (θn)n≥0 of random
elements with values in Θ. The variables %n = τn+1 − τn (τ0 = 0)
are nonnegative, independent and have the same distribution with
density function e−r for r ≥ 0. The elements θn are independent,
and have the same distribution κ. Moreover, the sequences (τn)n≥0
and (θn)n≥0 are independent.

By a solution of (1.1), (1.2) we mean a process (ξ(t))t≥0 with values in X
such that the following two conditions are satisfied with probability one:

(a) the sample path is a right-continuous function such that for every
t > 0 the limit ξ(t−) = lims→t, s<t ξ(s) exists;

(b) ξ(t) = ξ0 +

t�

0

a(ξ(s)) ds+

t�

0

�

Θ

σ(ξ(s−), θ)Np(Λξ(ds), dθ) for t ≥ 0.

Assumption (iv) implies that the mapping

Ω 3 ω 7→ p(ω) = (τn(ω), θn(ω))n≥1

defines a stationary Poisson point process with characteristic measure κ, and
Np given by this process is a Poisson random counting measure. The sample
path of Np has jumps at times (τn)n≥1, whereas Nr(t, A) = Np(Λξ(t), A) for
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A ∈ G have jumps at (tn)n≥1 such that
tn�

0

λ(ξ(s)) ds = τn, n = 1, 2, . . . .

The sequence (tn)n≥1 is well defined because λ(·) ≥ λ > 0. The point process
r is of the form r = (tn, θn)n≥1. The definition of integral now implies

t�

0

�

Θ

σ(ξ(s−), θ)Np(Λξ(ds), dθ) =
∑
tn≤t

σ(ξ(tn−), θn) for t ≥ 0.

We can understand this integral both as a stochastic integral and as an inte-
gral on sample paths. For every fixed ω ∈ Ω, we can write an explicit formula
for the unique solution of (1.1), (1.2). Namely, we consider the Cauchy prob-
lem

v′(t) = a(v(t)) for t ∈ R, v(0) = x, x ∈ X.(3.1)

We denote the solution of (3.1) by v(t) = πtx, t ∈ R. Then for every fixed
value of r(ω) = (tn(ω), θn(ω))n≥1 the solution of (1.1), (1.2) is of the form

ξ(tn) = ξ(tn−) + σ(ξ(tn−), θn), n ∈ N, ξ(0) = ξ0,(3.2)

ξ(t) = πt−tnξ(tn) for t ∈ [tn, tn+1), n ∈ N0,(3.3)

where tn+1 is such that

(3.4)
tn+1�

tn

λ(πs(ξ(tn))) ds = %n.

Define the mappings L,H by

(3.5) L(t, z) =

t�

0

λ(πsz) ds, H(t, z) = L−1(t, z) for t ∈ R+, z ∈ X,

where L−1 is the inverse with respect to t. Let

(3.6) q(z, θ) = z + σ(z, θ) for z ∈ X, θ ∈ Θ.

We denote ξn = ξ(tn). Taking into account (3.4), we obtain

L(tn+1 − tn, ξn) = %n, 4tn = tn+1 − tn = H(%n, ξn).

Hence formulae (3.2), (3.3) may be rewritten as

ξn+1 = q(πH(%n, ξn)ξn, θn+1),(3.7)

ξ(t) =

∞∑
n=0

πt−tnξn1[0,H(%n, ξn))(t− tn).(3.8)
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Assumption (i) implies that there exists a constant α ∈ R such that the
solution πtx of (3.1) satisfies

(3.9) ‖πtx− πty‖ ≤ eαt‖x− y‖ for x, y ∈ X, t ≥ 0.

Analogously, from assumption (ii) it follows that the function q : X×Θ → X
given by (3.6) is measurable, q(x, ·) ∈ L1(κ), and there exists a constant
lq ≥ 0 such that

(3.10) ‖q(x, ·)− q(y, ·)‖L1(κ) ≤ lq‖x− y‖ for x, y ∈ X.
Now we are going to derive an explicit formula for the operator P which

describes the change of the distribution of ξ(t) from a perturbation moment
to the next. Denote by µk the distribution of ξk. Take an arbitrary function
h ∈ B(X). The expectation of h(ξk+1) is given by

(3.11) E (h(ξk+1)) =
�

X

h(x)µk+1(dx).

Applying (3.7), independence of %k, θk, ξk, and (3.5) we obtain

E(h(ξk+1)) =
�

Ω

h(q(πH(%k ξk)ξk, θk+1)) dP(3.12)

=
�

X

∞�

0

�

Θ

h(q(πH(t, x)x, θ))e−t κ(dθ) dt µk(dx)

=
�

X

∞�

0

�

Θ

h(q(πtx, θ))e−L(t,x)λ(πtx)κ(dθ) dt µk(dx).

If we pick h = 1D, where 1D denotes the indicator function of D, and equate
(3.11) with (3.12), we have

(3.13) µk+1(D) =
�

X

∞�

0

�

Θ

1D(q(π
tx, θ))e−L(t,x)λ(πtx)κ(dθ) dt µk(dx)

for D ∈ B(X). Define the operator P by

(3.14) Pµ(D) =
�

X

∞�

0

�

Θ

1D(q(π
tx, θ))e−L(t,x)λ(πtx)κ(dθ) dt µ(dx).

Then (3.13) may be rewritten as µk+1 = Pµk.
The operator P is called the jump operator. It is a linear operator in the

spaceM, and it maps every probability measure to a probability measure,
so it is a Markov operator.

A straightforward calculation by applying (2.2) shows that the operator
U dual to P is of the form

(3.15) Uf(x) =

∞�

0

�

Θ

f(q(πtx, θ))e−L(t,x)λ(πtx)κ(dθ) dt for f ∈ C(X).
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4. The asymptotic stability of the Markov operator. In this sec-
tion we present theorems which give conditions for the asymptotic stability
of the Markov operator P. The proof is based on the criterion developed
by Szarek [26, Theorem 3.1]. Let us recall the notions which appear in this
criterion.

A Markov operator P is called globally concentrating if for every ε > 0
and every A ∈ Bb(X) there exist B ∈ Bb(X) and n0 ∈ N such that

(4.1) Pnµ(B) ≥ 1− ε for n ≥ n0, µ ∈MA
1 .

A Markov operator P is called locally concentrating if for every ε > 0
there exists γ > 0 such that for every A ∈ Bb(X) there exist C ∈ Bb(X)
with diamC < ε and n0 ∈ N such that

(4.2) Pnµ(C) ≥ γ for n ≥ n0, µ ∈MA
1 .

Theorem 4.1. If a nonexpansive Markov operator is globally and locally
concentrating then it is asymptotically stable.

We introduce a new norm on the space X:

X 3 x 7→ c‖x‖ ∈ [0,∞),

where c is an arbitrary constant satisfying

c ≥ lλ(λ+ λ)

λ(λ− α− λlq)
.

This norm gives the same topology and the same class of bounded sets.
Denote by ‖ · ‖c the Fortet–Mourier norm given by the formula

‖µ‖c = sup{|〈f, µ〉| : f ∈ Fc} for µ ∈Msig,

where Fc = {f ∈ C(X) : |f(x)| ≤ 1, |f(x)− f(y)| ≤ c‖x− y‖ for x, y ∈ X
}
.

For all measures µn, µ ∈M1, we have

lim
n→∞

‖µn − µ‖c = 0 ⇔ lim
n→∞

‖µn − µ‖FM = 0.

We now prove a theorem on the nonexpansiveness of P .

Theorem 4.2. Assume that conditions (3.9) and (3.10) are satisfied. If
additionally

(4.3) λlq + α < λ

then P given by (3.14) is nonexpansive with respect to the norm ‖ · ‖c.

Proof. We will show that Uf ∈ Fc for every f ∈ Fc. Then
‖Pµ1 − Pµ2‖c := sup

f∈Fc
|〈f, Pµ1 − Pµ2〉| = sup

f∈Fc
|〈Uf, µ1 − µ2〉| ≤ ‖µ1 − µ2‖c

implies the nonexpansiveness of P with respect to the norm ‖ · ‖c.



Piecewise-deterministic Markov processes 287

Fix f ∈ Fc. From the definition of U it follows that Uf ∈ C(X) and
|Uf | ≤ 1. Moreover, using (3.15) we obtain

|Uf(x)− Uf(y)| ≤
∞�

0

�

Θ

|f(q(πtx, θ))− f(q(πty, θ))|λ(πty)e−L(t,y) κ(dθ) dt

+

∞�

0

�

Θ

|f(q(πtx, θ))| |λ(πtx)e−L(t,x) − λ(πty)e−L(t,y)|κ(dθ) dt

= I1 + I2.

Taking into consideration f ∈ Fc, (3.10), (3.9), the boundedness of λ, and
the inequality λ > α, we obtain

(4.4) I1 ≤ c
λlq
λ− α

‖x− y‖.

Now we will estimate the integral I2. In view of |f | ≤ 1, we have

I2 ≤
∞�

0

|λ(πtx)− λ(πty)|e−L(t,x) dt+
∞�

0

|e−L(t,x) − e−L(t,y)|λ(πty) dt.

Since
(4.5) |e−β − e−γ | ≤ e−c|β − γ| for β, γ ≥ c > 0,

we have |e−L(t,x) − e−L(t,y)| ≤ e−λt|L(t, x) − L(t, y)|. Definition (3.5), as-
sumption (iii), and condition (3.9) now imply that

(4.6) |e−L(t,x) − e−L(t,y)| ≤
(
lλ
α
e−(λ−α)t − lλ

α
e−λt

)
‖x− y‖.

By the properties of λ, (3.9), (4.6), and since λ > α, λ > 0, we have

I2 ≤
lλ(λ+ λ)

λ(λ− α)
‖x− y‖.(4.7)

Combining (4.4) with (4.7) we get

|Uf(x)− Uf(y)| ≤ c λlq
λ− α

‖x− y‖+ lλ(λ+ λ)

λ(λ− α)
‖x− y‖.

From the choice of the constant c it follows that

c
λlq
λ− α

+
lλ(λ+ λ)

λ(λ− α)
≤ c.

Therefore |Uf(x)− Uf(y)| ≤ ‖x− y‖c, which concludes the proof.
We now show global concentration for the jump operator P . A condition

which guarantees this property can be formulated by applying the Lyapunov
function. Recall that a continuous function V : X → [0,∞) is called a Lya-
punov function if

lim
‖x‖→∞

V (x) =∞.
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The following lemma connects the existence of a Lyapunov function satisfy-
ing a certain inequality with a condition which implies global concentration.

Lemma 4.3. Let P be a Feller operator and U its dual. Assume that there
exists a Lyapunov function V , bounded on bounded sets and such that

(4.8) UV (x) ≤ aV (x) + b for x ∈ X,

where a, b are nonnegative constants and a < 1. Then for every ε > 0 there
exists a set B ∈ Bb(X) (depending only on a, b and V ) such that for every
set A ∈ Bb(X) there is n0 ∈ N satisfying

(4.9) Pnµ(B) ≥ 1− ε for n ≥ n0, µ ∈MA
1 .

The proof of this lemma is the same as the proof of [26, Lemma 4.1].
Analysing that reasoning we can see that the set B does not depend on A.
Clearly, a Markov operator satisfying (4.9) is globally concentrating.

The operator U given by (3.15) can be extended to the set of all Borel
nonnegative functions, not necessarily bounded, in such a way that condition
(2.1) is satisfied. Let V : X → [0,∞) be given by

V (x) = ‖x‖ for x ∈ X.

Theorem 4.4. Assume that (3.9), (3.10), and (4.3) hold, and

(4.10) λ > la.

Then for any nonnegative constants d1, d2 such that

λlq
λ− α

≤ d1 < 1,(4.11)

d2 ≥
λlq‖a(0)‖
λ(λ− la)

+ ‖q(0, ·)‖L1(κ),(4.12)

the following inequality is satisfied:

UV (x) ≤ d1V (x) + d2 for x ∈ X.

Proof. By (3.10), (3.9), the boundedness of λ, and (4.3) we obtain

UV (x) ≤
∞�

0

�

Θ

‖q(πtx, θ)− q(πt0, θ)‖λ(πtx)e−L(t,x) κ(dθ) dt

+

∞�

0

�

Θ

‖q(πt0, θ)‖λ(πtx)e−L(t,x) κ(dθ) dt

≤ λlq
λ− α

V (x) +

∞�

0

�

Θ

‖q(πt0, θ)‖λ(πtx)e−L(t,x) κ(dθ) dt.
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From the fact that
	∞
0 e−L(t,x)λ(πtx) dt = 1 for every x ∈ X, and the prop-

erties of λ and q, it follows that
∞�

0

�

Θ

‖q(πt0, θ)‖λ(πtx)e−L(t,x) κ(dθ) dt ≤ λlq
∞�

0

‖πt0‖e−λt dt+ ‖q(0, ·)‖L1(κ).

We now estimate ‖πt0‖. We have

‖πt0‖ ≤
t�

0

‖a(πs0)− a(0)‖ ds+ ‖a(0)‖t ≤ la
t�

0

‖πs0‖ ds+ ‖a(0)‖t.

An application of Gronwall’s inequality gives

‖πt0‖ ≤ ‖a(0)‖
la

(elat − 1).

Inequality (4.10) now implies
∞�

0

�

Θ

‖q(πt0, θ)‖λ(πtx)e−L(t,x) κ(dθ) dt ≤ λlq‖a(0)‖
λ(λ− la)

+ ‖q(0, ·)‖L1(κ).

Taking into consideration (4.11) and (4.12), we obtain

UV (x) ≤ d1V (x) + d2 for x ∈ X.
From Theorem 4.4 and Lemma 4.3 we obtain:

Remark 4.5. If conditions (3.9), (3.10), (4.3), and (4.10) hold, then the
jump operator P is globally concentrating.

In the proof of local concentration we will apply

Lemma 4.6 ([27, Lemma 3.1]). Let µ1, µ2∈M1 and ε>0. If ‖µ1−µ2‖FM
≤ ε2 then µ1 (O(A, ε)) ≥ µ2(A)− ε for A ∈ B(X).

Now, we will prove that an operator P associated with P is asymptoti-
cally stable. The operator P is derived from P by substituting the constant
λ for the function λ. Thus the Markov operator P is given by the formula

Pµ(A) =
�

X

∞�

0

�

Θ

1A(q(π
tx0, θ))λe

−λt κ(dθ) dt µ(dx).

We will deduce the asymptotic stability of P from the following theorem of
A. Lasota.

Theorem 4.7 ([13, Theorem 3.2]). Let P :M→M be a Markov Feller
operator and U its dual. Assume that there is a constant b < 1 such that

(4.13) |Uf(x)− Uf(y)| ≤ b‖x− y‖ for x, y ∈ X, f ∈ H.
Moreover, assume that

Ug(0) <∞, where g(x) = ‖x‖.
Then P is asymptotically stable.
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Theorem 4.8. Assume that (3.9) and (3.10) hold, and

(4.14) λlq + α < λ, la < λ.

Then P is asymptotically stable.

Proof. We will show that the assumptions of Theorem 4.7 are satisfied.
Fix f ∈ H. Using (3.9), (3.10), and λ− α > 0 we obtain

|Uf(x)− Uf(y)| ≤
∞�

0

�

Θ

|f(q(πtx, θ))− f(q(πty, θ))|λe−λt κ(dθ) dt

≤ λlq

λ− α
‖x− y‖.

Condition (4.14) implies that inequality (4.13) holds with b = λlq/(λ− α)
< 1. Now we check that Ug(0) <∞. Estimating as in Theorem 4.4 we obtain

Ug(0) =

∞�

0

�

Θ

‖q(πt0, θ)‖λe−λt κ(dθ) dt ≤ lq‖a(0)‖
λ− la

+ ‖q(0, ·)‖L1(κ).

Now Theorem 4.7 yields the asymptotic stability of P .

Observe that if the assumptions of Theorem 4.4 are satisfied, then the
operator P is asymptotically stable.

From Theorems 4.7 and 4.8 it follows that P has the following properties:

P (M1,H) ⊂M1,H,(4.15)
‖Pµ1 − Pµ2‖H ≤ b‖µ1 − µ2‖H for µ1, µ2 ∈M1,H.(4.16)

We now show the local concentration of P.

Theorem 4.9. Assume that all assumptions (3.9), (3.10), (4.3), and
(4.10) hold. Then P is locally concentrating.

Proof. From Theorem 4.4 and Lemma 4.3 it follows that there exists
B ∈ Bb(X) such that for every A ∈ Bb(X) one can find n0 ∈ N such that

(4.17) Pnµ(B) ≥ 1/2 for n ≥ n0, µ ∈MA
1 .

Fix ε > 0. Fix A ∈ B(X) and choose n0 ∈ N such that (4.17) is satisfied.
Fix µ ∈MA

1 . We claim that

Uf(x) ≥ λ

λ
Uf(x) for f ∈ B(X).
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Indeed, applying the boundedness of λ, we obtain

Uf(x) ≥
∞�

0

�

Θ

f(q(πtx, θ))λe−λt κ(dθ) dt

=
λ

λ

∞�

0

�

Θ

f(q(πtx, θ))λe−λt κ(dθ) dt =
λ

λ
Uf(x).

Then for any D ∈ B(X), n ∈ N, we have

Pnµ(D) =
�

X

U1D(x)P
n−1µ(dx) ≥ λ

λ

�

X

U1D(x)P
n−1 µ(dx).

Thus by an induction argument,

Pnµ(D) ≥
(
λ

λ

)m �

X

U
m
1D(x)P

n−mµ(dx) for D ∈ B(X), n,m ∈ N, m ≤ n.

The operator P is asymptotically stable. Denote by µ∗ an invariant measure
for P . Take any y ∈ supp µ∗. Let B1 = B(y, ε/4). Set a := µ∗(B1). Define
C := O(B1, δ), where δ < ε/4 and δ < a. Then diamC ≤ ε. From the
asymptotic stability of P it follows that

(4.18) P
n
δx → µ∗ for x ∈ X.

We will show

(4.19) lim
n→∞

‖Pnδx − µ∗‖FM = 0 uniformly in x ∈ B.

Fix x0 ∈ B. Take an arbitrary x ∈ B. For n ∈ N we have

‖Pnδx − µ∗‖FM ≤ ‖P
n
δx − P

n
δx0‖FM + ‖Pnδx0 − µ∗‖FM.

Applying (2.3), (4.16), and (4.15) we obtain

‖Pnδx − P
n
δx0‖FM ≤ ‖P

n
δx − P

n
δx0‖H

≤ bn‖δx − δx0‖H ≤ bn‖x− x0‖ ≤ bn diamB.

Taking into account b < 1 and diamB <∞, we have

(4.20) lim
n→∞

sup
x∈B
‖Pnδx − P

n
δx0‖FM = 0.

According to (4.18), we obtain

(4.21) lim
n→∞

‖Pnδx0 − µ∗‖FM = 0.

Combining (4.20) and (4.21) immediately yields (4.19). Let m ∈ N be such
that

‖Pmδx − µ∗‖FM ≤ δ2 for x ∈ B.
Using Lemma 4.6, we obtain

(4.22) P
m
δx(C) ≥ µ∗(B1)− δ = a− δ for x ∈ B.
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Take n ≥ m+ n0. Then

Pnµ(C) ≥
(
λ

λ

)m �

X

U
m
1C(x)P

n−mµ(dx).

From this, and from (4.22) and (4.17), it follows that

Pnµ(C) ≥
(
λ

λ

)m �

B

P
m
δx(C)P

n−mµ(dx) ≥
(
λ

λ

)m
(a− δ)Pn−mµ(B)

≥ 1

2

(
λ

λ

)m
(a− δ),

completing the proof.

Combining Theorems 4.2 and 4.9 and Corollary 4.5 we obtain

Theorem 4.10. Assume that all hypotheses of Theorem 4.4 are satisfied.
Then the operator P is asymptotically stable.

5. Continuous dependence. In this section we prove the continuous
dependence of the invariant measure for Pλ on the function λ. Denote by Pλ
the jump operator defined by (3.14), which varies with λ. Similarly denote
by Uλ the dual operator for Pλ.

In the proof we are going to use

Lemma 5.1 ([26, Theorem 3.1, Step 3]). If a nonexpansive Markov op-
erator P is locally and globally concentrating, then for every A ∈ Bb(X) and
ε > 0 there exists N ∈ N such that

‖PNµ1 − PNµ2‖FM ≤ ε for µ1, µ2 ∈MA
1 .

To formulate the main theorem of this section we define the family of
functions

A = {λ(·) : λlq + α < λ, la < λ},
where α, lq, and la are determined by conditions (3.9), (3.10), and assumption
(i) respectively. Moreover, λ, λ depend on λ(·). By the previous section, for
each λ ∈ A there exists a unique invariant distribution for Pλ. Denote it
by µλ. Thus we can define function Λ : A →M1 by

(5.1) Λ(λ(·)) = µλ for λ ∈ A.
We will show the continuity of Λ, where the convergence on M1 is in the
Fortet–Mourier norm, and in A we have uniform convergence, denoted by
λn ⇒ λ0.

Lemma 5.2. Let λ0 ∈ A, suppose (λn)n∈N converges uniformly to λ0.
Then for every ε > 0 there exists Z0 ∈ Bb(X) such that

µλn(Z0) ≥ 1− ε for n ∈ N.
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Proof. From the assumption it follows that there exist k1, k2 > 0 and
n0 ∈ N such that

(5.2) k1 < λn, λn < k2, λn ∈ A for n ≥ n0.

The proof of Theorem 4.4 now implies that there exist a Lyapunov function
V : X → [0,∞), bounded on bounded sets, and nonnegative constants d1, d2
such that

λnlq
λn − α

≤ d1 < 1, d2 ≥
λnlq‖a(0)‖
λn(λn − la)

+ ‖q(0, ·)‖L1(κ),

UλnV (x) ≤ d1V (x) + d2 for x ∈ X,n ≥ n0.

Thus Lemma 4.3 shows that for every ε > 0 there exists Z ∈ Bb(X) such
that

lim inf
m→∞

Pmλnδx(Z) ≥ 1− ε for n ≥ n0, x ∈ X.

Without loss of generality, we may assume that Z is closed. The asymptotic
stability of Pλn for n ≥ n0 and the Aleksandrov theorem yield

µλn(Z) ≥ lim inf
m→∞

Pmλnδx(Z) ≥ 1− ε for n ≥ n0.

The Ulam theorem implies that there exists a compact set K ⊂ X such that

µi(K) ≥ 1− ε for i ∈ {1, . . . , n0 − 1}.

Setting Z0 = Z ∪K we obtain the conclusion of the theorem.

Now, we prove the continuous dependence of the invariant measure for
Pλ on the function λ. The first part of the proof will be analogous to the
argument of Szarek and Wędrychowicz ([29, Theorem 4.5]).

Theorem 5.3. The function Λ : A →M1 defined by (5.1) is continuous.

Proof. Fix ε > 0 and λ0 ∈ A. By Theorem 4.2, Corollary 4.5, and Theo-
rem 4.9 the operator Pλ0 is nonexpansive, globally and locally concentrating.
Suppose λn ⇒ λ0. From Lemma 5.2 it follows that there exists Z0 ∈ Bb(X)
satisfying

µλn(Z0) ≥ 1− ε/6 for n ∈ N0.

Define µZ0
λn
, νZ0
λn
∈MZ0

1 for n ∈ N0 by

µZ0
λn
(B) =

µλn(B ∩ Z0)

µλn(Z0)
,

νZ0
λn

(B) =
6

ε
[µλn(B)− (1− ε/6)µZ0

λn
(B)] for B ∈ B(X), n ∈ N0.

Then
µλn = (1− ε/6)µZ0

λn
+ (ε/6)νZ0

λn
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and

‖Pmλ0µλn − P
m
λ0µλ0‖FM

≤ (1− ε/6)‖Pmλ0µ
Z0
λn
− Pmλ0µ

Z0
λ0
‖FM + (ε/6)‖Pmλ0ν

Z0
λn
‖FM + (ε/6)‖Pmλ0ν

Z0
λ0
‖FM

≤ (1− ε/6)‖Pmλ0µ
Z0
λn
− Pmλ0µ

Z0
λ0
‖FM + ε/3 for m,n ∈ N0.

From Lemma 5.1 it follows that there exists N ∈ N such that

‖PNλ0µ
Z0
λn
− PNλ0µ

Z0
λ0
‖FM ≤ ε/3 for n ∈ N0.

Hence

‖PNλ0µλn − P
N
λ0µλ0‖FM ≤ 2ε/3 for n ∈ N0.

For n ∈ N0 we have

‖µλn − µλ0‖FM = ‖PNλnµλn − P
N
λ0µλ0‖FM(5.3)

≤ ‖PNλnµλn − P
N
λ0µλn‖FM + ‖PNλ0µλn − P

N
λ0µλ0‖FM

≤ sup
f∈F

sup
x∈X
|UNλnf(x)− U

N
λ0f(x)|+ 2ε/3

≤ sup
‖f‖≤1

sup
x∈X
|UNλnf(x)− U

N
λ0f(x)|+ 2ε/3

= ‖UNλn − U
N
λ0‖+ 2ε/3.

In the second part of the proof, we will estimate ‖UNλn − U
N
λ0
‖. Applying

‖Uλn‖ = 1 for n ∈ N0 we obtain

(5.4) ‖UNλn − U
N
λ0‖

= ‖(Uλn − Uλ0)U
N−1
λn

+ Uλ0(Uλn − Uλ0)U
N−2
λn

+ · · ·+ UN−1λ0
(Uλn − Uλ0)‖

≤ N‖Uλn − Uλ0‖.

Take any f ∈ C(X) such that ‖f‖ ≤ 1. According to (3.15), we obtain

|Uλnf(x)− Uλ0f(x)| ≤
∞�

0

|λn(πtx)e−Lλn (t,x) − λ0(πtx)e−Lλ0 (t,x)| dt = hn(x),

where Lλ given by (3.5) depends on λ. We will show that hn ⇒
X

0. The

convergence λn ⇒ λ0 implies that there exists k > 0 such that λn ≥ k for
n ∈ N0, and there exists n0 ∈ N such that |λn(x) − λ0(x)| < εk2/(k + λ0)
for n ≥ n0, x ∈ X. Hence inequality (4.5) yields
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hn(x) ≤
∞�

0

e−Lλn (t,x)|λn(πtx)− λ0(πtx)| dt

+

∞�

0

λ0(π
tx)|e−Lλn (t,x) − e−Lλ0 (t,x)| dt

<

∞�

0

εk2

k + λ0
e−kt dt+ λ0

∞�

0

e−kt|Lλn(t, x)− Lλ0(t, x)| dt

<
εk

k + λ0
+ λ0

∞�

0

εk2

k + λ0
te−kt dt = ε for n ≥ n0.

This estimate depends neither on x nor on f . Therefore,
lim
n→∞

‖Uλn − Uλ0‖ = 0.

Hence there exists n1 ∈ N such that

(5.5) ‖Uλn − Uλ0‖ <
ε

3N
for n ≥ n1.

Combining (5.5) and (5.4), we conclude that condition (5.3) is satisfied, and
the proof of the theorem is complete.
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