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A class of singular fourth-order boundary value problems
with nonhomogeneous nonlinearity

by QINGLIU YAO (Nanjing)

Abstract. We study the existence of positive solutions to a class of singular nonlinear
fourth-order boundary value problems in which the nonlinearity may lack homogeneity.
By introducing suitable control functions and applying cone expansion and cone compres-
sion, we prove three existence theorems. Our main results improve the existence result
in [Z. L. Wei, Appl. Math. Comput. 153 (2004), 865-884] where the nonlinearity has a
certain homogeneity.

1. Introduction. Let « > 0,3 >0,v> 0,6 > 0and p = ay+ad + [y
> 0. The purpose of this paper is to study the existence of positive solutions
to the following nonlinear fourth-order two-point boundary value problem:

®) {u(4)(t) = f(t,u(t), —u"(t)), 0<t<1,
u(0) =u(1) =0, au”(0)—Bu"(0)=0, ~u'(1)+du"(1)=0.

Here, a function u* € C3[0,1] is called a positive solution to the problem
(P) if u*(t) satisfies (P) and u*(t) >0, 0 <t < 1.

If 5 =0 = 0, the problem (P) is the well-known elastic beam equation
with two simply supported ends. When f : [0,1] x [0, 00] x [0,00) — [0, 00)
is continuous, the nonlinear problem (P) has attracted wide attention (see
[1L 3L 17, 9L 10, [12], 14, 17, 25] and the references therein).

Throughout this paper, f : (0,1)x (0, 00)x (0, 00) — [0, 00) is continuous.
Therefore, f(t,u,v) may be singular at ¢t = 0 and/or t = 1 for any (u,v) €
[0,00) x [0,00), and at u = 0 and/or v = 0 for any t € [0, 1].

The positive solutions of the problem (P) with singularities have been
investigated by many authors (see [4], [8 11} 15 16, 22] 24]). For example,
Z. L. Wei [22] established the following existence theorem by using the upper
and lower solution method.
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THEOREM 1.1 ([22, Theorem 3.1]). Suppose that

(al) f(t,€(t),1) #0 and 0 < §, f(t,€(1),C(t)) dt < oo, where

(at + B)[v(1 —1t) + 9]
(a+B)(v+0)

(a2) There exist constants A1, Mg, pi1, o (—00 <A1, A2 <0, 0< uy, po <1,
p1 + pe < 1) such that, for any 0 < ¢ < 1 and (t,u,v) € (0,1) x
(0,00) x (0,00),

M f(t,u,v)
c? f(t,u,v)

Then the problem (P) has a positive solution u* € C3[0,1].

§t)=t(1—1), (@)=

(t,cu,v) < cAlf(t,u,v),
(t,u,cv) < 2 f(t,u,v).

<f
<f

Theorem 1.1 extends and improves some results of D. O’Regan [16] when
B =08 =0and f(t,u,v) = f(t,u). The theorem has the following advantages:

(1) The nonlinearity f(¢,u(t), —u”(t)) not only depends on the unknown
function u(t) but also on its second derivative u”(t).

(2) The function f(t,u,v) may be singular at t =0, ¢ = 1, and at u = 0,
v=20 if)\l,)\Q < 0.

(3) It is easier to verify the homogeneity condition (a2).

For the singular problem (P) satisfying the homogeneity condition (a2),
Theorem 1.1 is very effective and convenient. Consequently, the method
in [22] has been applied successfully to various singular boundary value
problems (see [4, 20} 23] 311 [32]).

However, in Theorem 1.1, the condition (a2) is also rather restrictive. As
pointed out by Z. L. Wei [22], typical functions satisfying (a2) are those of
the form

m n
f(tv u, /U) = Z Z wj,iu“j UAia
i=1 j=1
where wj; € C(0,1), w;i(t) > 0on (0,1), uj € (—00,00), \i < 1, pj+X; <1,
1=1,....m,5=1,...,n.
Additionally, Theorem 1.1 only yields the existence of one positive solu-

tion, with no information about multiple positive solutions.

The purpose of this paper is to improve Theorem 1.1. We will remove
the homogeneity condition (a2) and establish the multiplicity of positive
solutions for the singular problem (P).
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Let
B ay + oo
- 20y + 98+ 6a’
_ 3042y, B2 02 [(5—#27 _36—2&} 3
6(6 + ) (ﬂ+a) 2(6+v) 6(8+a)
!
3(6—1—04 ]
Ifa=vy=1,8=0 =0, then 6 = % .In addition, define

g(t) = min{t,1 — 1}, p(t) = min{ %?aat ) +674(r1’y— t) }

In this paper, we use the following assumption:

(H) For each pair of positive numbers r; < 72, there exists a nonnegative
function j/2 € L'[0,1] N C(0,1) such that

flt,uv) <Gr2(t), YO<t<1,mrig(t) Su<gra,mpt) Sv<r

For the singular problem (P), we will see that the assumption (H) ensures
the complete continuity of the associated integral operator T (see Section 2),
and guarantees that the solution u*(¢) belongs to C3[0,1] N C*(0,1).

In Sections 2 and 3, we will construct a proper cone and introduce two
control functions. Applying these new tools, we will prove three theorems on
the existence of single and double positive solutions to (P). In Section 4, we
will verify that the main results improve Theorem 1.1 in the great majority
of cases. In Section 5, we will give two examples.

Recently, a large number of papers on nonlinear singular boundary value
problems have appeared (see [2], [6, 13, 15, 19 21, 26-30]). Motivated by
these papers, we will apply the Guo—Krasnosel’skil fixed point theorem of
cone expansion-compression type to study the singular problem (P). In this
paper, the upper and lower solution method is not applied.

2. Preliminaries. Let Gi(t,s) and Ga(t,s) be the Green functions of
the homogeneous linear problems

—u"(t)=0, 0<t<1, u(0)=u(l)=0,
and
—u"(t)=0, 0<t<1, au(0)—pBd0)=0, ~u(l)+d(1)=0,
respectively. Then, for 0 <t < s <1,

Gi(t,s) =t(1—s), Galt,s) = (B+ at)((;""V - 75)’




314 Q. L. Yao

while for 0 < s <t <1,

Gi(t,s) =s(1—1t), Gat,s)= B+ as)(i_i_ N — ’yt).
Obviously, Gi(t,s) > 0 and Ga(t,s) > 0 for any 0 < t,s < 1.

Direct computations give that
B+al  5+~(1—0) :

e I BT

This implies 0 < 8 < 1, 0 < n < 1. Moreover,
1

_1 =1
Orgtagxl(S)Gl(t, s)ds = 3 [oax t(l—t)= 3.

Consider the Banach space C?[0,1] equipped with the norm

— " —
all = max{ljul, a1}, where ] = max fu(®)].

Let
C210,1] = {u € C*0,1] : u(0) = u(1) = 0},
K = {ue C§[0,1] s u(t) > lullq(t), —u"(t) > |[u"[lp(t), 0 < t < 1.
Then K is a cone of nonnegative functions in C2[0, 1]. Write
Ky ={ue K lull <r}, OK(r)={ueK: lull =}
For v € K \ {0}, define the associated integral operator T" as follows:

11

(Tu)(t) = \\ G1(t,5)Ga(s, 7) f(r,u(r), —u/(r))drds, 0<t<1.
00

LEMMA 2.1. Ifu € K, then |Ju|| = |u”| and nllu”|| < |lul| < ]|

Proof. Since u(0) = u(1) = 0, one has u(t) = Sé G1(t,s)[—u"(s)]ds. So
1
" S AT
Jull < ") [ G (1 ) ds = L)

Since —u"(t) > ||u”||p(t) > 0, one has
1

lul| = olg%xléGl(t’ s)[—u"(s)] ds > [nax Gi(t, s)||u"||p(s) ds

<t<1

O ey

1
> || G1(0, $)p(s) ds = nl|u"].
0

It follows that nlu”|| < [[ull < §llu"| and Jluf] = [[u"]. =
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LEMMA 2.2. Suppose that (H) holds. Then:

315

(1) T: K(ro)\ K(r1) — K is completely continuous for any 0 < ri < ra.

(2) For any u € K(r2) \ K(r1),

1

(Tu)"(t) = =\ Ga(t, ) f(s,u(s), —u"(s))ds, 0<t<L.

0

Proof. Define the operators 11, F, J as follows:

1
(Thu)(t SGQ (s,u(s), —u"(s))ds, 0<t<1,

0
(Fu)(t) = f(t, u(t), —u"(t)), 0<t<l,

1
:SGQ u(s) ds, 0<t<1.

0

STEP L Let u € K(r2) \ K(r1). Then r; < ||ul| < r2. By Lemma 2.1,

nr1 < |lull < gro and 71 < |[u”|| < ra. So, for any 0 <t <1,

mr1q(t) < Jlulla(t) < u(t) < Jlull < gre,
rip(t) < |lu”llp(t) < —u"(t) < [[u"]| = ra.

Let j;2(t) be as in (H). Then
F(tult), —u"(1) < (1), WO <t<1,
STEP II. By Step I,

1 1

1
sup [ [(Fu)(t)] dt = | £(t,ut), —u"(£)) dt < | j72(t) dt < oo.
)0

u€K (r2)\K(r1 0 0

Let up,up € K(r2) \ K(r1), n = 1,2,..., with [|uy, — uo|| — 0. Then
maxo<i<1 [un(t) — uo(t)] — 0 and maxg<i<1 |ul(t) — uj(t)] — 0. Since f :

(0,1) x (0,00) x (0,00) — [0, 00) is continuous, one has
Ftun(t),un(t) — f(t,uo(t), ug(t)) =0,  VO<t <L
By Step I, for any n =0,1,... and any 0 <t < 1,

f(t7 un(t)v —u;;(t)) < -]:f (t)7
[f(t, un(t), —up () — f(t,uo(t), —ug ()| < 2473 (2).

Applying the Lebesgue dominated convergence theorem [5, Theorem 2.1],
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we get

1
lim §|(Fup)(t) = (Fuo)(t)| dt

n—00
0

1
= lim || f(t, un(t), —up(8)) = f(t uo(t), —ug ()| di

n—00
0

1
= | T |f (8, un (1), —ur (1)) = f(8, uo(t), —ug(t))] dt = 0.
0

Therefore, F : K(rg) \ K(r1) — L[0,1] is bounded and continuous.

SteP III. Obviously, J : L[0,1] — C[0,1] is a bounded linear operator.
By the Arzela-Ascoli theorem and a standard argument, J : L0,1] —
C'[0,1] is completely continuous.

By Step I, T = Jo F' : K(r2) \ K(r1) — C]0, 1] is continuous.

If W C K(re) \ K(r1) is a bounded set, then the set F(W) C L[0,1] is
bounded by Step II. So, T1 (W) = J(F(W)) C C[0, 1] is precompact.

Therefore, T1 : K(r2) \ K(r1) — C[0,1] is completely continuous.

STEP IV. Let u € K(rg) \ K(r1). By Step III, Thu € C[0,1] and
1
(Tu)(t) = | Ga(t, s)(Thu)(s)ds, VO<t<1.
0
Since G(0,s) = G(1,s) = 0 for any 0 < s < 1, one has (Tu)(0) = (Tu)(1)
= 0. By the definition of G1(t, s), then

t 1
(Tu)(t) = (1 —1t) S s(Thu)(s)ds + tS (1—=s)(Thu)(s)ds, Y0<t<I1.
0 t

Differentiating the above equality twice, we get

1
(Tu)"(t) = —(Tyu)(t) = — S Ga(t,s)f(s,u(s), —u"(s))ds, VO<t<1.
0
Consequently, Tu € C2[0,1].
By the complete continuity of T}, we see that T': K (r2)\K (r1) — C3[0,1]
is completely continuous.

STEP V. Simple computations give, for 0 <t¢,s <1,

q(t)G1(s,s) < Gi(t,s) < Gi(s,s), p(t)Ga(s,s) < Ga(t,s) < Ga(s,s).
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So, for any u € K(r2) \ K(r;) and 0 <t <1,
11

(Tu)(t) > Q(t) S S Gy (57 S)G2(S’ T)f(T’ u(T)v _u//(T)) dr ds

00

11
012?2(188 (t,8)Ga(s,7) f(T,u(T), —u" (7)) dr ds

= 1 Tullq(?)

and
1
—(Tu)' () = p(t) | Gals, 5) (5, uls), —u"(5)) ds
0
1
> p(t) max | Ga(t, 5)f(s,u(s), —u”(s)) ds = ||(Tw)"||p(t).

0<t<1
0

It follows that T': K(r2) \ K(r1) — K.
Our study is based on the following Guo—Krasnosel’skii fixed point the-
orem of cone expansion-compression type.

LEMMA 2.3. Let X be a Banach space, let K be a cone in X, and let
Ql,gg be bounded open subsets of K with 0 € {21 C {21 C (2. Assume that
T: 829\ 21 — K is a completely continuous operator such that either

o |Tz|| < ||lzf|, z € 0821, and ||Tz|| > [|z||, z € 022, or
o |Tz|| > ||z, z € 81, and |Tz| < ||z||, = € 0.

Then T has a fized point in 25\ §21.

3. Main results. In order to state the main results, we need the fol-
lowing control functions and constants:

= Smax{f(t,u,v) nrq(t) <u < %r, rp(t) <v < r} dt,
0
1

o

S min{f(t,u,v) inrq(t) <u < %r, rp(t) <wv < r} dt,

P, = lim inf p(r)/r, P = hﬂ%}gf@(r)/ﬁ

r—+0

o = limsup(r)/r, by, = limsup(r)/r,

r—+0 7—00

A= max Gg(t s), B= min Gs(t,s),

0<t,s< 0<t,s<1l—0o

where 0 < o < is a constant. In real problems, we can choose o depending
on the propertles of f(t,u,v).
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If the assumption (H) is satisfied, then the control functions ¢(r), ¥ (r)
are well defined for any r > 0.
Direct computations show that B = %(B + oa)(d + o) and

(
WO+ B0 it ot ab >
P
A= i if —ay+ ad <6 < ay+ ad;
4oy
7ﬂ:55 if ay+ ad < vp.

In particular, if a =y =1, 3=6 =0, then A =1/4, B = o2
We obtain the following existence theorems.

THEOREM 3.1. Suppose that (H) holds and there exist 0 < a < b such
that one of the following conditions is satisfied:

(b1) @(a) < A ta, ¥(b) > B~1b.

(b2) ¢(a) > B~ 'a, (b) < A7'b.
Then the problem (P) has a positive solution u* € K such that u* € C3[0, 1]N
C*(0,1) and a < [Ju*|| < b.

THEOREM 3.2. Suppose that (H) holds and there exist 0 < a < b < ¢
such that one of the following conditions is satisfied:

(c1) p(a) < A7 ta, (b) > B7'b and o(c) < A~ lc.

(c2) ¥(a) > B~ 'a, ¢(b) < A~'b and (c) > B~ e
Then the problem (P) has two positive solutions u},u3 € K such that uj,u; €
C%[0,1]n C*(0,1) and a < [uif] < b < [luz]| <.

THEOREM 3.3. Suppose that (H) holds and one of the following condi-
tions is satisfied:

(d1) g, < A7, Yoo > B~
(d2) Yo > B~ o <A™
Then the problem (P) has a positive solution u* € C®3[0,1] N C*(0,1).
Proof of Theorem 3.1. We only prove the case (b2).
By Lemma 2.2(1), T': K(b) \ K(a) — K is completely continuous.

If u € OK(b), then [|u]| = b. By Lemma 2.1, nb < |jul| < £b, |[u”|| = b.
This implies that

nbq(t) < u(t) < b, bp(t) < —u(t) <b, VO<t <1

So, S(l] ft,u(t), —u"(t)) dt < @(b). Since Tu € K, one has ||[Tul| = [[(Tw)"||
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by Lemma 2.1. It follows that

ITull = |(Tw)”| Gat, ) f(s,u(s), —u"(s)) ds

max
0<t<1

O ey =

1
< max Ga(t, s)Sf(s,u(s), —u"(s))ds < AA™Yb = b = ||ul|.
0

0<t,s<1
If u € 0K (a), then ||u|| = a. By Lemma 2.1,
naq(t) < u(t) < %a, ap(t) < —u"(t) <a, VO<t<I.
Hence, 8(1;0 f(t,u(t), —u"(t)) dt > 1(a). It follows that

-0
= " o
Il = T > i § Galt 0,0, )
-0
i - " 71 = =
2, s, Goltss) | Slouls),—u' () ds 2 BB a = a = [lul]

According to Lemma 2.3, the operator T has a fixed point v* € K(b) \
K(a). So, v* € K, a < ||u*|| < b and u*(t) > ||u*|q(t) > naq(t) > 0
0<t<1.
Applying u* = Tu* and Lemma 2.2(1), one has, for 0 <¢ <1,
11
u*(t) = | Gi(t, 9)Gals, 7) f(r,u" (1), —(u*)" (7)) dr ds,

00

1
= — | Galt, s) f(s,u"(s), — (u")"(5)) ds.
0

)

Since f (¢, u*(t), —(u*)"(t)) is integrable on [0, 1], successively differentiating
the second equality, we get

1
/// S
0

(W)W (E) = F(t,u*(8), = ()" (1), VO<t<l
These equalities show u* € C3[0,1] N C4(0,1).
Since u* = Tu* € C2[0,1], one has u*(0) = u*(1) = 0. By the expressions
of u*(t) and (u*)"(t), it is easy to prove that
a(u”)"(0) = B(u")"(0) =0,  y(u)"(1) +d(u)"(1) = 0.

Therefore, u* € K is a positive solution of the problem (P).

Ga(t,s) f(s,u*(s), —(u*)"(s))ds, V0O<t<1,

QJ‘Q)

Proof of Theorem 3.2. We only prove the case (cl).
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Applying the conditions ¢(a) < A~ ta, 1 (b) > B~!b and imitating the
proof of Theorem 3.1, we can prove that the problem (P) has a positive
solution uj € K such that uf € C®[0,1] N C*(0,1) and a < ||u}] < b.
Similarly, since ¢(b) > B~'b, p(c) < A~ '¢c, (P) has another positive solution
u} € K such that u} € C3[0,1] N C*(0,1) and b < [|ul]| < c.

Proof of Theorem 3.3. The proof is direct from Theorem 3.1.

4. On Theorem 1.1. Proposition 4.4 below shows that Theorem 1.1
is a special case of Theorem 3.3 under some stronger conditions, and The-
orem 3.3 improves Theorem 1.1 in the great majority of cases because the
homogeneity condition (a2) is canceled.

REMARK 4.1. By Remark 1 in [22], if (a2) is satisfied, then the following
inequalities hold for any 1 < ¢ < oo and (¢, u,v) € (0,1) x (0,00) x (0, 00):
CAlf(t’ u7 v) S f(t7 Cu7 /U) S Culf(t7 u7 /U)’

A2 f(tu,v) < f(tu,ev) < 2 f(tu,v).

REMARK 4.2. If (a2) is satisfied, then

H1 H2
£t q(t), p(t) < Egg] [fggiﬂ FLE(). C(1)).

This can be derived from Remark 4.1 and the simple facts that £(t) < q(t)
and ((t) < p(t) for any 0 <t < 1.

REMARK 4.3. If (a2) holds and

1

S f(ta f(t), C(t)) dt
g (t)cre(t)

then (H) is satisfied. Indeed, let 0 < 71 < 7. By Remarks 4.1 and 4.2, for
0<t<l,

< 00,

max{ f(t,u,v) : nriq(t) < u < gro,r1p(t) < v <o}

Sm&x{< ) ( U(t)>M2f<t7nr1q<t>,np<t>>:””““S“Sé”}

nriq r1p rip(t) <v<rmry

max { ! u e Y r r nrig(t) <u < %7“27
= {7<WM®) Qm@» ﬂu1ﬂm1M®%nMw§v§m }

Y L
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< () (S ) a7 0(0),000)

M "2 (e mmaxr iy max{ry?, r{?
< (gt ) () maxrrd banaxto 7)1 600,60

Hence the function

Jrs ()
_ M r2 " 2 " K1 12 t
() (2 ) st a4 00 €00)

satisfies the assumption (H).

PROPOSITION 4.4. Theorem 1.1 is a special case of Theorem 3.3 if

(1) F(6€(t),1) £ 0 is replaced by f(t,1,1) 2 0.
(2) 0 < Séf(t,ﬁ(t),(( t)) dt < oo is replaced by So %dt < 0.
Proof. By Remark 4.3, the assumption (H) holds.

For r > 1/n > 1, one has

max{ f(t,u,v) : prq(t) <u < gr, rp(t) <v <7}

max Y " v " r r nrq(t) <u < %7’7
< {(mq(t)) () famatoy ot : 700 == }

) <
_ <1>“1f(ta777"Q(t)va(t)) ot f(te(),p(h)
8n g (t)pra(t) T ST gi(t)pr2(t)
ritEe o f(E E(t), ((t))
- 8#177#1—>\1 ,5#1 (t)(#z (t) ’

For 0 < r <1, one has

i b ) : ) /r' < <
#1 M2 <l
> min <8u> (U> £t 11", r> : nrq(t) <u < 37
" " 8 rp(t) <v<r

=g (P2 () f (¢ gryr) = (n/8)M et Thgh (4)ph2 (t) f(E,1,1).

Since f(t,1,1) # 0, there exists 0 < tg < 1 such that f(¢o,1,1) > 0. Let
0 <o < Ymin{ty, 1 — to}. Then {7 ¢* (t)p"2(t) f(t,1,1) dt > 0.
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Additionally, by (a2), 0 < 1 4+ pe < 1. It follows that

o = liminf Sé max{ f(t,u,v) :nrq(t) <u <r/8 rp(t) <v<r}idt

T—00

r

dt lim

1
< Suapui—AL ) g1 (t)pH2(t) r—oo rl=p1—ps2 =0,

1 §f<t,s<t>,<<t>>
0

B = limsup 8(1; min{ f(¢t,u,v) : nrq(t) <u < 1/8r, rp(t) < v <r}dt
0 r—+0 r

-0
> ( /8)#1 lim SU q#l (t>pu2 (t)f<t7 17 1) dt .
=\ r——+0 pl—pi—p2

By Theorem 3.3(d2), (P) has a positive solution u* € C3[0,1] N C*4(0,1).

REMARK 4.5. Theorem 1.1 is not a corollary of Theorem 3.3.
For example, consider the problem

u®(t) = t(lu—(tz)’ 0<t<1, u(0)

Here f(t,u,v) = f(t,u)

Ja

= = and ((t) = £(t) = t(1 —t). So,

1 1

dt
(S)f(t,ﬁ(t))dt=§)t(1_t) < 0

Obviously, the other conditions of Theorem 1.1 are satisfied. This implies
that the problem has a positive solution u* € C3[0, 1].
However, for any ro > r; > 0,
1

N ‘ 1 . 7“21 dt _
émax{t(l_t) inrig(t) <u < 8T2}dt— \/;(S)t(l—t) = 0.

This shows that the assumption (H) does not hold. Consequently, the above
existence conclusion cannot be derived from Theorem 3.3.

5. Two examples. Examples 5.1 and 5.2 below illustrate our improve-
ments.

EXAMPLE 5.1. Let 0 = 1/4. Consider the boundary value problem
5 1 1 ”
@)y =2 ) u(t)—u' (t)
u\t(t) = 1+ sin e , 0<t<l,
=3 < 16+/u(t) u(ﬂ)
u(0) = u(l) =u"(0) = u"(1) = 0.

In this problem, « =y =1,=0=0,n=1/24, A =1/4, B = 1/16,
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p(t) = q(t) = min{t,1 — ¢t} and

ft,u,v) = fu,v) = > (1 + 16; sin? 1)@“*“.

So, f(u,v) is singular at u = 0 for any v € [0, 00). Obviously, f(u,v) satisfies
the assumption (H).

Direct computations give

1
5 1 1 1
<= 1 Ut gt <u< =, qt) <v<1%dt
w()_gémaX{<+16\/a>e 24Q()_u_8,q()_v_}

gge9/8§[1+8\/‘/q%] dt = g 811 +v3/2] ~3.5923 <4 =A"".

Since miny /4<;<3/4 q(t) = 1/4, we obtain
£ 3/4
¥ (30) > 3 S min{e” : 30¢(t) < v < 33}dt
1/4

5
> —667-5 ~ 565.01 > 512 = 32B~ L.

By Theorem 3.1(b1), the problem has a positive solution u* € C3[0,1]
and 1 < [|Ju*|| < 30. Since the function f(u,v) does not satisfy (a2), the
conclusion cannot be derived from Theorem 1.1.

ExXAMPLE 5.2. Consider the fourth-order boundary value problem

u®(t) = sin®(u(t) — t(1 —t)) + max{O, i”(t) - 1}, 0<t<l,

u(0) = u(1) =u"(0) =u"(1) = 0.
In this problem o =~y =1, =6 =0, n = 1/24, A = 1/4, B = 1/16,
p(t) = q(t) = min{t,1 — ¢t} and

1
f(t,u,v) = sin®(u — t(1 —t)) + max{(), NG 1}.
So f(t,&(t),1) = 0. Obviously, f(t,u,v) satisfies (H).
Let 0 = 1/4. Direct computations give

1
1
@ zlimmf;g max{l + 1/v/v:rq(t) <v <r}dt
0
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3/4
1y > limsup — S min{max{0,1/vv — 1} :rp(t) <v <r}dt
r—+0 T
1/4
3/4

dt 1}_1. 1[2(\@—1) 1]200

1 [ 1
= lim —|— ——| = lim —
r—+0 7 | \/T 1§4 q(t) 2 T+0 T N 2

By Theorem 3.3(d2), the problem has a positive solution u* € C3[0, 1].

Since f(¢,£(t),1) = 0, the conclusion cannot be derived from Theorem 1.1.

Acknowledgements. This work is supported by the National Natural

Science Foundation of China (11071109).

1]

[12]

[13]

[14]

[15]

References

A. R. Aftabizadeh, Ezistence and uniqueness theorems for fourth-order boundary
value problems, J. Math. Anal. Appl. 116 (1986), 415-426.

R. P. Agarwal and D. O’Regan, Multiplicity results for singular conjugate, focal and
(n,p) problems, J. Differential Equations 170 (2001), 142-156.

Z. B. Bai and H. Y. Wang, On positive solutions of some monlinear fourth-order
beam equations, J. Math. Anal. Appl. 270 (2002), 357-368.

Y. J. Cui and Y. M. Zou, Ezistence and uniqueness theorems for fourth-order sin-
gular boundary value problems, Comput. Math. Appl. 58 (2009), 1449-1456.

R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathe-
matics, Academic Press, London, 1977.

P. W. Eloe and J. Henderson, Singular nonlinear (n—k, k) conjugate boundary value
problems, J. Differential Equations 133 (1997), 136-151.

C. P. Gupta, Ezistence and uniqueness results for the bending of an elastic beam
equation at resonance, J. Math. Anal. Appl. 135 (1988), 208-225.

D. Q. Jiang, H. Z. Liu and X. J. Xu, Nonresonant singular fourth-order boundary
value problems, Appl. Math. Lett. 18 (2005), 69-75.

F. Y. Li, Q. Zhang and Z. P. Ling, Ezistence and multiplicity of solutions of a kind
of fourth-order boundary value problems, Nonlinear Anal. 62 (2005), 803-816.

Y. X. Li, On the existence of positive solutions for the bending elastic beam equations,
Appl. Math. Comput. 189 (2007), 821-827.

X. N. Lin, D. Q. Jiang and X. Y. Li, Ezxistence and uniqueness of solutions for
singular fourth-order boundary value problems, J. Comput. Appl. Math. 196 (2006),
155-161.

B. Liu, Positive solutions of fourth-order two-point boundary value problems, Appl.
Math. Comput. 148 (2004), 407-420.

Z. Q. Liu, J. S. Ume, D. R. Anderson and M. S. Kang, Twin monotone positive
solutions to a singular nonlinear third-order differential equation, J. Math. Anal.
Appl. 334 (2007), 299-313.

J. Marcos do O, S. Lorca and P. Ubilla, Multiplicity of solutions for a class of non-
homogeneous fourth-order boundary value problems, Appl. Math. Lett. 21 (2008),
279-286.

D. O’Regan, Fourth (and higher) order singular boundary value problems, Nonlinear
Anal. 14 (1990), 1001-1038.


http://dx.doi.org/10.1016/S0022-247X(86)80006-3
http://dx.doi.org/10.1006/jdeq.2000.3808
http://dx.doi.org/10.1016/S0022-247X(02)00071-9
http://dx.doi.org/10.1016/j.camwa.2009.07.041
http://dx.doi.org/10.1006/jdeq.1996.3207
http://dx.doi.org/10.1016/0022-247X(88)90149-7
http://dx.doi.org/10.1016/j.aml.2003.05.016
http://dx.doi.org/10.1016/j.na.2005.03.054
http://dx.doi.org/10.1016/j.amc.2006.11.144
http://dx.doi.org/10.1016/j.cam.2005.08.016
http://dx.doi.org/10.1016/S0096-3003(02)00857-3
http://dx.doi.org/10.1016/j.jmaa.2006.12.067
http://dx.doi.org/10.1016/j.aml.2007.02.025
http://dx.doi.org/10.1016/0362-546X(90)90066-P

[16]

(17]

(18]
(19]

20]

(21]
22]

23]

24]

25]
(26]
27]
28]
29]
30]

31]

32]

Singular fourth-order boundary value problems 325

D. O’Regan, Solvability of some fourth (and higher) order singular boundary value
problems, J. Math. Anal. Appl. 161 (1991), 78-116.

M. del Pino and R. Mandésevich, Ezistence for a fourth-order boundary value problem
under a two-parameter nonresonance condition, Proc. Amer. Math. Soc. 112 (1991),
81-86.

I. Rachunkova, Singular mized boundary value problem, J. Math. Anal. Appl. 320
(2006), 611-618.

S. Stanék, Positive solutions of singular Dirichlet boundary value problems with time
and space singularities, Nonlinear Anal. 71 (2009), 4893-4905.

Y. P. Sun, Necessary and sufficient condition for the existence of positive solutions
of a coupled system for elastic beam equations, J. Math. Anal. Appl. 357 (2009),
77-88.

S. D. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal. 3
(1979), 897-904.

Z. L. Wei, A class of fourth order singular boundary value problems, Appl. Math.
Comput. 153 (2004), 865-884.

Z. L. Wei and C. C. Pang, The method of lower and upper solutions for fourth
order singular m-point boundary value problems, J. Math. Anal. Appl. 322 (2006),
675-692.

Y. M. Xu, L. S. Liu and L. Debnath, A necessary and sufficient condition for the
ezistence of positive solutions of singular boundary value problems, Appl. Math.
Lett. 18 (2005), 881-889.

Q. L. Yao, Ezistence of mn solutions and/or positive solutions to a semipositone
elastic beam equation, Nonlinear Anal. 66 (2007), 138-150.

Q. L. Yao, Positive solutions of nonlinear elastic beam equation rigidly fastened on
the left and simply supported on the right, Nonlinear Anal. 69 (2008), 1570-1580.
Q. L. Yao, Existence and multiplicity of positive solutions to a singular elastic beam
equation rigidly fized at both ends, Nonlinear Anal. 69 (2008), 2683-2694.

Q. L. Yao, Local existence of multiple positive solutions to a singular cantilever beam
equation, J. Math. Anal. Appl. 363 (2010), 138-154.

Q. L. Yao, Positive solutions and eigenvalue intervals of a singular third-order two-
point boundary value problem, Ann. Polon. Math. 102 (2011), 25-37.

Q. L. Yao, Positive solutions of nonlinear beam equations with time and space sin-
gularities, J. Math. Anal. Appl. 374 (2011), 681-692.

X. G. Zhang and L. S. Liu, A necessary and sufficient condition of positive solu-
tions for nonlinear singular differential systems with four-point boundary conditions,
Appl. Math. Comput. 215 (2010), 3501-3508.

J. F. Zhao, L. B. Wang and W. G. Ge, Necessary and sufficient conditions for the ex-
istence of positive solutions of fourth order multiple-point boundary value problems,
Nonlinear Anal. 72 (2010), 822-835.

Qingliu Yao

Department of Applied Mathematics

Nanjing University of Finance and Economics
Nanjing 210003, P.R. China

E-mail: yaoqingliu2002@hotmail.com

Received 20.9.2011
and in final form 14.9.2012 (2553)


http://dx.doi.org/10.1016/0022-247X(91)90363-5
http://dx.doi.org/10.1016/j.jmaa.2005.07.037
http://dx.doi.org/10.1016/j.na.2009.03.043
http://dx.doi.org/10.1016/j.jmaa.2009.04.001
http://dx.doi.org/10.1016/0362-546X(79)90057-9
http://dx.doi.org/10.1016/S0096-3003(03)00683-0
http://dx.doi.org/10.1016/j.jmaa.2005.09.064
http://dx.doi.org/10.1016/j.aml.2004.07.029
http://dx.doi.org/10.1016/j.na.2005.11.016
http://dx.doi.org/10.1016/j.na.2007.07.002
http://dx.doi.org/10.1016/j.na.2007.08.043
http://dx.doi.org/10.1016/j.jmaa.2009.07.043
http://dx.doi.org/10.4064/ap102-1-3
http://dx.doi.org/10.1016/j.jmaa.2010.08.056
http://dx.doi.org/10.1016/j.amc.2009.10.044
http://dx.doi.org/10.1016/j.na.2009.07.036




	1 Introduction
	2 Preliminaries
	3 Main results
	4 On Theorem 1.1
	5 Two examples
	References

