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Theorems of Thron’s type for random-valued vector
functions and the Krein–Rutman theorem

by Rafał Kapica (Katowice)

Abstract. We propose stochastic versions of some theorems of W. J. Thron [14] on
the speed of convergence of iterates for random-valued functions on cones in Banach spaces.

1. Introduction. In the deterministic case we have very useful theo-
rems of W. J. Thron [14] which say how fast the sequence of iterates con-
verges to zero for functions of the form

f(x) = sx+ x1+αF (x),

where α is a positive number, F is a bounded function and s ∈ [0, 1]. An
attempt to get stochastic versions of Thron’s theorems was made in [2]
for scalar functions; cf. also [11]. In the deterministic case some versions of
Thron’s theorem for more general spaces were obtained in [13], [15] and [16].
In the present paper we examine the speed of convergence of iterates of
random-valued vector functions. We follow the general idea of J. Walorski to
apply the theorem of Krein–Rutman. We use part of his reasoning presented
in [15] and [16] (cf. also [6]). The iterates of random-valued functions were
defined independently in [4] and [5] and then studied also in [2], [11] in the
scalar case and in [8] in the vector case. They are useful for instance in
solving functional-integral equations (see, e.g., [3], [7] and [9]).

Fix a Banach lattice E and a compact linear operator L : E → E, denote
by E+ the positive cone of E, i.e. E+ = {x ∈ E : x ≥ 0}, and assume that
IntE+ 6= ∅,

LE+ ⊂ E+

and for every x > 0 there exists a positive integer n with Lnx ∈ IntE+.
Let % denote the spectral radius of L. According to the Krein–Rutman

theorem [10; Theorem 6.3] there are uniquely determined u ∈ IntE+ and
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x∗ ∈ E∗ for which

Lu = %u, ‖u‖ = 1,

x∗Lx = %x∗x for x ∈ E,
x∗u = 1, x∗x > 0 for x > 0;

moreover (see [10; pp. 269–270]) the spectral radius of the operator S :
E → E defined by

Sx = Lx− %ux∗x
is strictly less than %, and

(1.1) ‖%−nLnx− ux∗x‖ ≤ %−n‖Sn‖ ‖x‖ for x ∈ E and n ∈ N.
Consider a subset X of E+ such that 0 ∈ clX \ X and, for n ∈ N, an

arbitrary nonempty set Ωn. Let ϕn : X ×Ωn → X be functions such that

(1.2) lim
x→0

sup
n∈N

sup
ω∈Ωn

‖ϕn(x, ω)− Lx‖
‖x‖ = 0.

Moreover assume that there exists a positive constant c such that

(1.3) x∗x ≥ c‖x∗‖ ‖x‖ for x ∈ X0 :=
∞⋃

n=1

ϕn(X ×Ωn).

Remark 1.1. If E is finite-dimensional, then c defined by

c = inf
{
x∗x
‖x‖ : x ∈ E+, ‖x‖ = 1

}

is positive and
x∗x ≥ c‖x∗‖ ‖x‖ for x ∈ E+.

In particular (1.3) holds.

Remark 1.2 (cf. [10; p. 210, Lemma 1.2]). If c is a positive constant
such that the closed ball centered at ϕn(x, ω)/‖ϕn(x, ω)‖ with radius c is
contained in E+ for all x ∈ X, ω ∈ Ωn and n ∈ N, then (1.3) holds.

Example 1.1. Assume that E is the Banach lattice of all continuous
real functions on the unit interval I with the supremum norm and the coor-
dinatewise ordering, let X = E+ \{0} and Ωn = Ω for n ∈ N. Fix a positive
continuous function λ on I2 and define L : E → E by

Lx(t) =
1�

0

λ(s, t)x(s) ds.

Clearly, L is linear and compact. For every ω ∈ Ω and x ∈ X consider also
a nonnegative and continuous function λx,ω on I2. We assume that for some
α > 0 the function

x 7→ max{1, ‖x‖α} sup{λx,ω(s, t) : (s, t) ∈ I2, ω ∈ Ω}, x ∈ X,
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is bounded. Then the function ϕ : X ×Ω → X defined by

ϕ(x, ω)(t) = Lx(t) +
1�

0

λx,ω(s, t)x(s)1+α ds

satisfies

lim sup
x→0

sup
ω∈Ω

‖ϕ(x, ω)− Lx‖
‖x‖1+α <∞

and
ϕ(x, ω)
‖ϕ(x, ω)‖ ≥ c for all x ∈ X, ω ∈ Ω

with a positive constant c. On account of Remark 1.2 we obtain

x∗x ≥ c‖x∗‖ ‖x‖ for x ∈ ϕ(X ×Ω).

We shall examine the speed of convergence of the sequence fn : X×Ω∞
→ X defined by

f0(x, ω1, ω2, . . .) = x,

fn(x, ω1, ω2, . . .) = ϕn(fn−1(x, ω1, ω2, . . .), ωn)

for x ∈ X and (ω1, ω2, . . .) ∈ Ω∞ :=
∏∞
n=1Ωn.

In the special case where ϕ1 = ϕ2 = · · · = f , we have the iterates fn

of f in the sense of [4] and [5]. Moreover, if (Ω,A) is a measure space and
f : X × Ω → X is a random-valued (vector) function, i.e. it is measurable
with respect to the product σ-algebra B(X) ⊗ A, where B(X) denotes the
σ-algebra of all Borel subsets of X, then (cf. Remark 3.1) fn : X×Ω∞ → X
is a random-valued function on the product (Ω∞,A∞). More exactly, the
nth iterate fn is B(X)⊗Fn-measurable, where Fn denotes the σ-algebra of
all sets of the form

{(ω1, ω2, . . .) ∈ Ω∞ : (ω1, . . . , ωn) ∈ A}
with A in the product σ-algebra An. It may be shown that these iterates
form a random dynamical system (see [1]). For their intuitive probabilistic
description let us imagine a mechanism which for each discrete time n throws
a “die” in order to select a mapping Sn according to which a point xn moves
to xn+1 = Sn(xn). The selection mechanism is permitted to remember all
past decisions. The only thing of importance is that at each step the same
mechanism is applied. Clearly, it is the procedure connected with iterated
function systems (see [12]): If Ω = {1, . . . , N} and ξn on Ω∞ are given by
ξn(ω1, ω2, . . .) = ωn+1, then with f(x, n) = Sn(x) we have

xn+1(ω) := Sξn(ω)(xn(ω)) = f(xn(ω), ωn+1) = fn+1(x0, ω).

In this special (but in fact the most important) case, in [8] some con-
ditions are established which guarantee the convergence (a.s. and in L1)
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of (fn(x, ·)). It is the aim of the present paper to examine the speed of this
convergence.

2. Auxiliary results: the Joffe–Spitzer sequence. Following [15]
(cf. also [6]), we consider the sequence

(2.1)
fn(x0, ·)
x∗fn(x0, ·)

which will be used in the main part of this paper. Here and in what follows,
x0 is an arbitrarily fixed point of X.

Proposition 2.1. Assume that either % < 1, or % = 1 and ϕn(x, ω)
≤ Lx for x ∈ X, ω ∈ Ωn, n ∈ N. If the sequence (fn(x0, ·)) converges
to zero uniformly on a nonempty subset A of Ω∞, then the sequence (2.1)
converges to the eigenvector u uniformly on A.

Proof. Let r0 be a positive number such that the closed ball centered at
u and with radius r0 is contained in the positive cone E+. Then

(2.2) x ≤ 1
r0
‖x‖u for x ∈ E.

Put

αn =
‖Sn‖

%ncr0‖x∗‖
.

Since the spectral radius of S is less than % it follows that

lim
n→∞

αn = 0.

Moreover, from (2.2) and (1.1) we obtain

±(%nux∗x− Lnx) ≤ 1
r0
‖Sn‖ ‖x‖u,

which jointly with (1.3) gives

(2.3) ±(%nux∗x− Lnx) ≤ αn%nux∗x for x ∈ X0 and n ∈ N.
Consider functions Fn : X ×Ωn → E and fm,m+k : X ×Ω∞ → X given by

Fn(x, ω) = ϕn(x, ω)− Lx
and

fm,m(x, ω) = ϕm(x, ωm), fm,m+k(x, ω) = ϕm+k(fm,m+k−1(x, ω), ωm+k).

Then

fm,m+n(x, ω) = Lnfm,m(x, ω)(2.4)

+
n−1∑

k=0

Ln−k−1Fm+k+1(fm,m+k(x, ω), ωm+k+1)
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and

(2.5) fm,m+n(fm−1(x, ω), ω) = fm+n(x, ω).

Applying (2.3) and (2.4) we get

(2.6) ±
(
%nux∗fm,m(x, ω)

+
n−1∑

k=0

Ln−k+1Fm+k+1(fm,m+k(x, ω), ωm+k+1)− fm,m+n(x, ω)
)

≤ αn%nux∗fm,m(x, ω).

We shall show that there exists a positive integer m0 such that

(2.7) x∗fm+k(x0, ω) ≤ x∗fm(x0, ω) for ω ∈ A and m ≥ m0.

To this end assume first that % < 1. Then there exists a δ > 0 such that

‖Fn(x, ω)‖
‖x‖ ≤ (1− %)cr0‖x∗‖

for ω ∈ Ωn, n ∈ N and x ∈ X with ‖x‖ ≤ δ. Hence and from (1.3) we get

‖Fn(x, ω)‖ ≤ (1− %)r0x
∗x

for ω ∈ Ωn, n ∈ N and x ∈ X0 with ‖x‖ ≤ δ. Consequently, by (2.2)

Fn(x, ω) ≤ (1− %)ux∗x,

whence

x∗ϕn(x, ω) = x∗Lx+ x∗Fn(x, ω) ≤ %x∗x+ (1− %)x∗ux∗x = x∗x

for ω ∈ Ωn, n ∈ N and x ∈ X0 with ‖x‖ ≤ δ. This shows that (2.7) holds
whenever m0 is a positive integer such that ‖fm(x0, ω)‖ ≤ δ for m ≥ m0

and ω ∈ A. In the case where % = 1 and ϕn(x, ω) ≤ Lx for x ∈ X,ω ∈ Ωn
and n ∈ N we have

x∗ϕn(x, ω) ≤ x∗x
for all x ∈ X and so it is enough to take m0 = 1.

Define now functions βn : Ω∞ → [0,∞) by

βn(ω) =
‖Fn+1(fn(x0, ω), ωn+1)‖
cr0‖x∗‖ ‖fn(x0, ω)‖ .

Since the sequence (fn(x0, ·)) is uniformly convergent on the set A,
from (1.2) it follows that (βn) converges to zero uniformly on A. Moreover,
from (2.2) and (1.3) we have

±Fm+k+1(fm+k(x0, ω), ωm+k+1) ≤ βm+k(ω)‖fm+k(x0, ω)‖c‖x∗‖u
≤ βm+k(ω)ux∗fm+k(x0, ω).
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Consequently, the monotonicity of L yields

± (Ln−k−1Fm+k+1(fm+k(x0, ω), ωm+k+1))

≤ %n−k−1uβm+k(ω)x∗fm+k(x0, ω)

on Ω∞. This jointly with (2.5), (2.6) and (2.7) gives

± (%nux∗fm(x0, ω)− fm+n(x0, ω))

≤ %nαnux∗fm(x0, ω) +
n−1∑

k=0

%n−k−1uβm+k(ω)x∗fm(x0, ω),

whence
(
%n(1− αn)−

n−1∑

k=0

%n−k−1βm+k(ω)
)
ux∗fm(x0, ω) ≤ fm+n(x0, ω)

≤
(
%n(1 + αn) +

n−1∑

k=0

%n−k−1βm+k+1(ω)
)
ux∗fm(x0, ω)

and
(
%n(1− αn)−

n−1∑

k=0

βm+k(ω)
)
x∗fm(x0, ω) ≤ x∗fm+n(x0, ω)

≤
(
%n(1 + αn) +

n−1∑

k=0

%n−k−1βm+k(ω)
)
x∗fm(x0, ω)

for m ≥ m0 and ω ∈ A. Let n0 be a positive integer such that αn < 1 for
n ≥ n0, and for every n ≥ n0 let mn ≥ m0 be an integer such that

sup
ω∈A

n−1∑

k=0

%−k−1βm+k(ω) < 1− αn for m ≥ mn.

Then

−2
αn +

∑n−1
k=0 %

−k−1βm+k(ω)

1− αn −
∑n−1
k=0 %

−k−1βm+k(ω)
≤ −2

αn +
∑n−1
k=0 %

−k−1βm+k(ω)

1 + αn +
∑n−1
k=0 %

−k−1βm+k(ω)

≤ fm+n(x0, ω)
x∗fm+n(x0, ω)

u ≤ 2
αn +

∑n−1
k=0 %

−k−1βm+k(ω)

1− αn −
∑n−1
k=0 %

−k−1βm+k(ω)

and, consequently,
∥∥∥∥
fm+n(x0, ω)
x∗fm+n(x0, ω)

− u
∥∥∥∥ ≤ 6

αn +
∑n−1
k=0 %

−k−1βm+k(ω)

1− αn −
∑n−1
k=0 %

−k−1βm+k(ω)

for m ≥ mn and n ≥ n0, which ends the proof.

Corollary 2.1. Assume that either % < 1, or % = 1 and ϕn(x, ω) ≤ Lx
for x ∈ X, ω ∈ Ωn, n ∈ N. If the sequence (fn(x0, ·)) converges to zero
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uniformly on a nonempty subset A of Ω∞, then the sequence
(

fn(x0, ·)
‖fn(x0, ·)‖

)

converges to u uniformly on A and the sequence
(‖fn+1(x0, ·)‖
‖fn(x0, ·)‖

)

converges to % uniformly on A.

Proof. The first part follows immediately from Proposition 2.1. To get
the second one it is enough to observe that

‖fn+1(x0, ω)‖
‖fn(x0, ω)‖ =

‖fn+1(x0, ω)‖
x∗fn+1(x0, ω)

x∗fn+1(x0, ω)
x∗fn(x0, ω)

x∗fn(x0, ω)
‖fn(x0, ω)‖

and

lim
x∈X0, x→0

sup
n∈N

sup
ω∈Ωn

x∗ϕn(x, ω)
x∗x

= lim
x∈X0, x→0

sup
n∈N

sup
ω∈Ωn

(
%+ x∗

ϕn(x, ω)− Lx
‖x‖

‖x‖
x∗x

)
= 0

and to apply Proposition 2.1 again.

3. Main theorems. We start with the following analogue of [16; The-
orem 2] concerning the sequence

(3.1)
fn(x0, ·)
%n

.

Theorem 3.1. Assume that % < 1 and there exists a positive constant
α such that

(3.2) lim sup
x→0

sup
n∈N

sup
ω∈Ωn

‖ϕn(x, ω)− Lx‖
‖x‖1+α <∞.

If the sequence (fn(x0, ·)) converges to zero uniformly on a nonempty subset
A of Ω∞, then there exists a bounded function ξ : A→ (0,∞) such that the
sequence (3.1) converges to ξu uniformly on A.

Proof. According to Proposition 2.1 it is enough to show that the se-
quence

x∗fn(x0, ·)
%n

converges uniformly on A to a bounded function ξ. Let

βn(ω) =
x∗(fn+1(x0, ω)− Lfn(x0, ω))

x∗fn(x0, ω)1+α , γn(ω) = x∗fn(x0, ω).
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It follows from (3.2) and Proposition 2.1 that supn≥N supω∈A |βn(ω)| is finite
for large N . Moreover,

γn+1(ω)
γn(ω)

= %+ γαn (ω)βn(ω).

Hence the series
∑∞
n=1 γ

α
n converges uniformly on A and

γn
%n

= γ0

n−1∏

k=0

(
1 +

γαk βk
%

)
.

Consequently, (%−nγn) converges uniformly on A to a bounded function as
desired.

The following shows a possible realization of the assumptions of Theo-
rem 3.1.

Example 3.1. Let 0 ≤ a < b < ∞, consider the function ϕ defined in
Example 1.1 with Ω = [a, b] and

λx,ω(s, t) =
ωx(s)

max{1, ‖x‖α}(1 + x(s))

and put ϕn = ϕ for n ∈ N. Setting η = maxλ(I2) we have

0 ≤ ϕ(x, ω) ≤ (η + b)
1�

0

x(s) ds for x ∈ X and ω ∈ [a, b],

whence

‖fn(x, ω)‖ ≤ (η + b)n
1�

0

x(s) ds for x ∈ X, ω ∈ [a, b] and n ∈ N.

Consequently, if η + b < 1, then (fn(x, ·)) converges to zero uniformly
on Ω∞. It follows from Theorem 3.1 that there exists a (bounded) function
ξ : Ω∞ → (0,∞) such that the sequence (3.1) converges to ξu uniformly
on Ω∞. Due to the continuity of the function (3.1), the function ξ is in fact
continuous. In particular, ξ(Ω∞) is a compact interval.

Assume now that we also have a finite measure on a σ-algebra of sub-
sets of Ω∞. Applying Egorov’s Theorem we obtain from Theorem 3.1 the
following corollary.

Corollary 3.1. Suppose that % < 1 and (3.2) holds with a positive con-
stant α. If (fn(x0, ·)) is a sequence of measurable functions which converges
a.s. to zero, then there exists a measurable function ξ : Ω∞ → (0,∞) such
that the sequence (3.1) converges a.s. to ξu.

Remark 3.1. Suppose that (Ωn,An) is a measure space for every n ∈ N
and consider the product σ-algebra

⊗∞
n=1An inΩ∞ and the σ-algebra B(X)
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of all Borel subsets of X. If ϕn : X ×Ωn → X are measurable with respect
to the product σ-algebra B(X)⊗An, then (cf. [2; Lemma 3], [8]) the iterates
fn : X ×Ω∞ → X are measurable with respect to B(X)⊗⊗∞n=1An.

Passing to the case where % = 1 we assume that Ωn is a probability
space for every n ∈ N and in the product Ω∞ we consider both the product
σ-algebra and the product probability measure. In this case we have the
following result.

Theorem 3.2. Assume that % = 1 and ϕn(x, ω) ≤ Lx for every x ∈ X,
ω ∈ Ωn and n ∈ N. Suppose also that α is a positive constant and (Φn)
is a sequence of function Φn : Ωn → E+ such that x∗Φn is measurable,
supn∈N ess sup |x∗Φn| <∞ and

(3.3) lim
x→0

sup
n∈N

sup
ω∈Ωn

∥∥∥∥
ϕn(x, ω)− Lx
‖x‖1+α + Φn(ω)

∥∥∥∥ = 0.

If limn→∞ fn(x0, ·) = 0 a.s., then

(3.4) lim
n→∞

(
1

n(x∗fn(x0, ·))α
− α

n

n∑

k=1

Ex∗Φk

)
= 0 a.s.

Moreover , if additionally

(3.5) lim inf
n→∞

1
n

n∑

k=1

Ex∗Φk > 0,

then

(3.6) lim
n→∞

(
n1/αfn(x0, ·)−

(
α

n

n∑

k=1

Ex∗Φk

)−1/α

u

)
= 0 a.s.

Proof. Let M be a positive constant such that

(3.7) |(1 + t)α − 1− αt| ≤Mt2 for t ∈ [0, 1].

Fix an ω ∈ Ω∞ such that

lim
n→∞

fn(x0, ω) = 0, sup
n∈N
|x∗Φn(ωn)| <∞

and

lim
n→∞

1
n

n∑

k=1

(x∗Φk(ωk)− Ex∗Φk) = 0,

and for this ω define βn and γn as in the proof of Theorem 3.1. Then
γn+1

γn
= 1 + γαnβn,
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whence

(3.8)
γαn
γαn+1

=
(

1− γαnβn
1 + γαnβn

)α
and

γαnβn
1 + γαnβn

≤ 0

for all n ∈ N. On the other hand,

|βn + x∗Φn+1(ωn+1)| ≤ |x∗Φn+1(ωn+1)|
(

1−
(‖fn(x0, ω)‖
x∗fn(x0, ω)

)1+α)

+
(‖fn(x0, ω)‖
x∗fn(x0, ω)

)1+α

‖x∗‖

×
∥∥∥∥
ϕn+1(fn(x0, ω), ωn+1)− Lfn(x0, ω)

‖fn(x0, ω)‖1+α + Φn+1(ωn+1)
∥∥∥∥.

From (3.3) and Proposition 2.1, we now get

lim
n→∞

(βn + x∗Φn+1(ωn+1)) = 0.

Consequently, if ε > 0 is fixed, then for n large enough, say n ≥ n0, we have

(3.9) M
γαnβ

2
n

(1 + γαnβn)2 ≤ αε and
∣∣∣∣

βn
1 + γαnβn

+ x∗Φn+1(ωn+1)
∣∣∣∣ ≤ ε.

As
( γαnβn

1+γαnβn

)
converges to zero, from (3.7) and (3.8) we infer that there

exists a positive integer n1 ≥ n0 such that
∣∣∣∣
γαn
γαn+1

− 1 + α
γαnβn

1 + γαnβn

∣∣∣∣ ≤M
(

γαnβn
1 + γαnβn

)2

for n ≥ n1. Therefore by (3.9) we obtain

1
γαn

+ αx∗Φn+1(ωn+1)− 2αε ≤ 1
γαn+1

≤ 1
γαn

+ αx∗Φn+1(ωn+1) + 2αε

for n ≥ n1. This gives

1
γαn0

+ α

n∑

k=n0+1

x∗Φk(ωk)− 2αε(n− n0) ≤ 1
γαn

≤ 1
γαn0

+ α

n∑

k=n0+1

x∗Φk(ωk) + 2αε(n− n0)

for n > n1, whence (3.4) easily follows.
To get (3.6) put

xn = fn(x0, ω), δn =
(
α

n

n∑

k=1

Ex∗Φk

)−1/α

.
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Then, as we have just proved,

lim
n→∞

((n1/αx∗xn)
−α − δn−α) = 0.

This jointly with (3.5) shows that

lim
n→∞

(n1/αx∗xn − δn) = 0.

Moreover, applying Proposition 2.1 and the boundedness of (δn) we get

lim
n→∞

(n1/αxn − δnu) = 0,

which ends the proof.

Assume now that Ω is a probability space and f maps X × Ω into X.
Defining the sequence (fn) of mappings X ×Ω∞ → X by

f0(x, ω) = x, fn(x, ω) = f(fn−1(x, ω), ωn)

we obtain the following corollary concerning the case % = 1; cf. [2; Theo-
rem 3] and [16; Theorem 3].

Corollary 3.2. Assume that % = 1 and f(x, ω) ≤ Lx for x ∈ X and
ω ∈ Ω. Suppose also that α is a positive constant and Φ : Ω → E+ is a
function such that x∗Φ is measurable, essentially bounded , not concentrated
at zero and

lim
x→0

sup
ω∈Ω

∥∥∥∥
f(x, ω)− Lx
‖x‖1+α + Φ(ω)

∥∥∥∥ = 0.

If limn→∞ fn(x0, ·) = 0 a.s., then

lim
n→∞

n1/αfn(x0, ·) = (αEx∗Φ)−1/α
u a.s.
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