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Permanence for a delayed Nicholson’s blowflies model with a
nonlinear density-dependent mortality term

by Bingwen Liu (Changde)

Abstract. We study a generalized Nicholson’s blowflies model with a nonlinear den-
sity-dependent mortality term. Under appropriate conditions, we employ a novel proof to
establish some criteria guaranteeing the permanence of this model. Moreover, we give an
example to illustrate our main result.

1. Introduction. In a classic study of population dynamics, Nichol-
son [8] and W. S. Gurney et al. [2] proposed the following delay differential
equation model:

(1.1) x′(t) = −δx(t) + Px(t− τ)e−ax(t−τ),

where x(t) is the size of the population at time t, P is the maximum per
capita daily egg production, 1/a is the size at which the population repro-
duces at its maximum rate, δ is the per capita daily adult death rate, and
τ is the generation time.

As a class of biological systems, Nicholson’s blowflies model and the
corresponding equation have attracted much attention. In particular, the
existence of positive solutions, persistence, permanence, oscillation and sta-
bility of Nicholson’s blowflies model have been extensively studied. We refer
the reader to [4, 5, 6, 7, 10] and the references cited therein.

Recently, L. Berezansky et al. [1] pointed out that new studies in popu-
lation dynamics indicate that a linear model of density-dependent mortality
will be most accurate for populations at low densities, and marine ecolo-
gists are currently in the process of constructing new fishery models with
nonlinear density-dependent mortality rates. However, few authors have con-
sidered dynamics of Nicholson’s blowflies model with a nonlinear density-
dependent mortality term. Therefore, L. Berezansky et al. [1] asked about
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the dynamic behavior of the following Nicholson’s blowflies model with a
nonlinear density-dependent mortality term:

(1.2) x′(t) = −D(x(t)) + Px(t− τ)e−x(t−τ),

where the nonlinear density-dependent mortality term D(x) might have one
of the following forms: D(x) = ax/(b+ x) or D(x) = a−be−x with constants
a, b > 0.

The main purpose of this paper is to give conditions ensuring the per-
manence of (1.2) with D(x) = ax/(b+ x). Since the coefficients and de-
lays in differential equations of population and ecology problems are usually
time-varying in the real world, we shall consider the following Nicholson’s
blowflies model with a nonlinear density-dependent mortality term:

(1.3) x′(t) = − a(t)x(t)
b(t) + x(t)

+ β(t)x(t− τ(t))e−γ(t)x(t−τ(t)),

where a(t), b(t), β(t) and γ(t) are continuous functions bounded above and
below by positive constants, and τ(t) ≥ 0 is a bounded continuous function.
Obviously, when D(x) = ax/(b+ x), (1.2) is a special case of (1.3).

Throughout this paper, let r = supt∈R τ(t), let C = C([−r, 0],R) be
the space of continuous functions equipped with the usual supremum norm
‖ · ‖, and let C+ = C([−r, 0],R+). If x(t) is continuous and defined on
[−r+ t0, σ) with t0, σ ∈ R, then we define xt ∈ C by xt(θ) = x(t+ θ) for all
θ ∈ [−r, 0].

Due to the biological interpretation of model (1.3), only positive solutions
are meaningful and therefore admissible. Thus we just consider admissible
initial conditions

(1.4) xt0 = ϕ, ϕ ∈ C+ and ϕ(0) > 0.

Define a continuous map f : R× C+ → R by setting

f(t, ϕ) = − a(t)ϕ(0)
b(t) + ϕ(0)

+ β(t)ϕ(−τ(t))e−γ(t)ϕ(−τ(t)).

Then f is a locally Lipschitz map with respect to ϕ ∈ C+, which ensures
the existence and uniqueness of the solution of (1.3) with admissible initial
conditions (1.4).

We write xt(t0, ϕ) or x(t; t0, ϕ) for a solution of the admissible initial
value problem (1.3), (1.4). Also, let [t0, η(ϕ)) be the maximal right-interval
of existence of xt(t0, ϕ).

The paper is organized as follows. In Section 2, we shall derive new
sufficient conditions for the permanence of model (1.3). In Section 3, we
shall give an example and a remark to illustrate our results obtained in the
previous sections.
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2. The permanence

Lemma 2.1. Suppose inft∈R a(t)γ(t)e/β(t)>1.Then the solution xt(t0, ϕ)
∈ C+ for all t ∈ [t0, η(ϕ)), the set of {xt(t0, ϕ) : t ∈ [t0, η(ϕ))} is bounded,
and η(ϕ) = +∞. Moreover, x(t; t0, ϕ) > 0 for all t ≥ t0.

Proof. Since ϕ ∈ C+, using Theorem 5.2.1 in [9, p. 81], we have xt(t0, ϕ)
∈ C+ for all t ∈ [t0, η(ϕ)). Let x(t) = x(t; t0, ϕ). From (1.3) and the fact
that a(t)x

b(t)+x ≤
a(t)x
b(t) for all t ∈ R and x ≥ 0, we get

x′(t) = − a(t)x(t)
b(t) + x(t)

+ β(t)x(t− τ(t))e−γ(t)x(t−τ(t))(2.1)

≥ −a(t)
b(t)

x(t) + β(t)x(t− τ(t))e−γ(t)x(t−τ(t)).

In view of x(t0) = ϕ(0) > 0, integrating (2.1) from t0 to t, we have

x(t) ≥ e−
	t
t0

a(u)
b(u)

du
x(t0)(2.2)

+ e
−

	t
t0

a(u)
b(u)

du
t�

t0

e
	s
t0

a(v)
b(v)

dv
β(s)x(s− τ(s))e−γ(s)x(s−τ(s)) ds

> 0 for all t ∈ [t0, η(ϕ)).

For each t ∈ [t0 − r, η(ϕ)), we define

M(t) = max{ξ : ξ ≤ t, x(ξ) = max
t0−r≤s≤t

x(s)}.

We now show that x(t) is bounded on [t0, η(ϕ)). In the contrary case, ob-
serving that M(t)→ η(ϕ) as t→ η(ϕ), we have

(2.3) lim
t→η(ϕ)

x(M(t)) = +∞.

But x(M(t)) = maxt0−r≤s≤t x(s), and so x′(M(t)) ≥ 0. Thus,

0 ≤ x′(M(t))

= − a(M(t))x(M(t))
b(M(t)) + x(M(t))

+ β(M(t))x(M(t)− τ(M(t)))e−γ(M(t))x(M(t)−τ(M(t))),

and consequently

(2.4)
a(M(t))x(M(t))
b(M(t)) + x(M(t))

≤ β(M(t))x(M(t)− τ(M(t)))e−γ(M(t))x(M(t)−τ(M(t))).

By the continuity and boundedness of the functions a(t), b(t), β(t) and γ(t),
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we can select a sequence {Tn}+∞n=1 such that

(2.5)


lim

n→+∞
Tn = η(ϕ), lim

n→+∞
x(M(Tn)) = +∞,

lim
n→+∞

a(M(Tn)) = a∗, lim
n→+∞

b(M(Tn)) = b∗,

lim
n→+∞

β(M(Tn)) = β∗, lim
n→+∞

γ(M(Tn)) = γ∗.

In view of (2.4) and the fact that supu≥0 ue
−γ(t)u = 1/(γ(t)e), we get

(2.6)
a(M(Tn))x(M(Tn))
b(M(Tn)) + x(M(Tn))

≤ β(M(Tn))x(M(Tn)− τ(M(Tn)))e−γ(M(Tn))x(M(Tn)−τ(M(Tn)))

≤ β(M(Tn))
1

γ(M(Tn))e
.

Letting n→ +∞, (2.5) and (2.6) imply that

lim
n→+∞

a(M(Tn)γ(M(Tn))e
β(M(Tn))

=
a∗γ∗e

β∗
≤ 1,

which contradicts the fact that inft∈R a(t)γ(t)e/β(t) > 1. This implies that
x(t) is bounded on [t0, η(ϕ)). From Theorem 2.3.1 in [3], we easily obtain
η(ϕ) = +∞. This ends the proof of Lemma 2.1.

Theorem 2.1. Let

(2.7) inf
t∈R

a(t)γ(t)e
β(t)

> 1 and inf
t∈R

β(t)b(t)
a(t)

> 1.

Then system (1.3) is permanent, i.e., there exist two positive constants k
and K such that

(2.8) k ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ K.

Proof. From Lemma 2.1, the set {xt(t0, ϕ) : t ∈ [t0,+∞)} is bounded,
and there exists a positive constant K such that

(2.9) 0 < x(t) ≤ K for all t > t0.

It follows that

(2.10) lim sup
t→+∞

x(t) ≤ K.

We next prove that there exists a positive constant k such that

(2.11) lim inf
t→+∞

x(t) ≥ k.

Suppose, for the sake of contradiction, lim inft→+∞ x(t) = 0. For each t ≥ t0,
we define

m(t) = max{ξ : ξ ≤ t, x(ξ) = min
t0≤s≤t

x(s)}.
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Observe that m(t)→ +∞ as t→ +∞ and that

(2.12) lim
t→+∞

x(m(t)) = 0.

However, x(m(t)) = mint0≤s≤t x(s), and so x′(m(t)) ≤ 0. According to (2.9),
we have

0 ≥ x′(m(t))

= − a(m(t))x(m(t))
b(m(t)) + x(m(t))

+ β(m(t))x(m(t)− τ(m(t)))e−γ(m(t))x(m(t)−τ(m(t)))

≥ −a(m(t))x(m(t))
b(m(t)))

+ β(m(t))x(m(t)− τ(m(t)))e−γ(m(t))x(m(t)−τ(m(t))),

and consequently

(2.13)
a(m(t))x(m(t))

b(m(t)))

≥ β(m(t))x(m(t)− τ(m(t)))e−γ(m(t))x(m(t)−τ(m(t))).

This together with (2.12) implies that

(2.14) lim
t→+∞

x(m(t)− τ(m(t))) = 0.

Now we select a sequence {tn}+∞n=1 such that

(2.15)


lim

n→+∞
tn = +∞, lim

n→+∞
x(m(tn)) = 0,

lim
n→+∞

a(m(tn)) = a∗, lim
n→+∞

b(m(tn)) = b∗,

lim
n→+∞

β(m(tn)) = β∗, lim
n→+∞

γ(m(tn)) = γ∗.

In view of (2.13), we get

(2.16)
a(m(tn))
b(m(tn))

≥ β(m(tn))
x(m(tn)− τ(m(tn)))e−γ(m(tn))x(m(tn)−τ(m(tn)))

x(m(tn))

≥ β(m(tn))
x(m(tn)− τ(m(tn)))e−γ(m(tn))x(m(tn)−τ(m(tn)))

x(m(tn)− τ(m(tn)))

= β(m(tn))e−γ(m(tn))x(m(tn)−τ(m(tn))).

Letting n→ +∞, (2.14)–(2.16) imply that

lim
n→+∞

β(m(tn))b(m(tn))
a(m(tn))

=
β∗b∗
a∗
≤ 1,

which contradicts (2.7). Hence, (2.11) holds. This completes the proof of
Theorem 2.1.
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3. An example. In this section, we present an example illustrating our
results of the previous sections.

Example 3.1. Consider the following Nicholson’s blowflies model with
a nonlinear density-dependent mortality term:

x′(t) = −(3 + |sin
√

2t|)x(t)
(5 + t

t2+1
) + x(t)

(3.1)

+ (1 + cos2 t)x(t− 2e|arctan t|)e−(1+|arctan t|)x(t−2e|arctan t|).

Then r = 2eπ/2,

inf
t∈R

a(t)γ(t)e
β(t)

= inf
t∈R

(3 + |sin
√

2t|)(1 + |arctan t|)e
1 + cos2 t

> 1,

and

inf
t∈R

β(t)b(t)
a(t)

= inf
t∈R

(1 + cos2 t)(5 + t
t2+1

)

3 + |sin
√

2t|
> 1.

It follows that the model (3.1) satisfies all the conditions in Theorem 2.1.
Hence, it is permanent.

Remark 3.1. It is clear that the results in [1, 4, 5, 6, 7, 10] and the
references therein cannot be applied to prove the permanence of (3.1). This
implies that the results of this paper are new and they complement previ-
ously known results.
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