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On an integral-type operator from Privalov spaces to
Bloch-type spaces

by Xiangling Zhu (Meizhou)

Abstract. Let H(B) denote the space of all holomorphic functions on the unit ball
B of Cn. Let ϕ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. We
study the integral-type operator

Cgϕf(z) =

1�

0

<f(ϕ(tz))g(tz)
dt

t
, f ∈ H(B).

The boundedness and compactness of Cgϕ from Privalov spaces to Bloch-type spaces and
little Bloch-type spaces are studied.

1. Introduction. Let D be the unit disk in the complex plane and B
be the unit ball of Cn. Let z = (z1, . . . , zn) and w = (w1, . . . , wn) be points
in Cn. We write

〈z, w〉 = z1w̄1 + · · ·+ znw̄n, |z| =
√
|z1|2 + · · ·+ |zn|2.

Thus B = {z ∈ Cn : |z| < 1}. Let ∂B be the unit sphere in Cn and dσ
be the normalized Lebesgue measure on ∂B. We denote by H(B) the class
of all holomorphic functions on B. It is a Fréchet space (locally convex,
metrizable and complete) with respect to the compact-open topology. By
Montel’s theorem, bounded sets in H(B) are relatively compact and hence
bounded sequences in H(B) admit convergent subsequences. Convergence
in this space will be referred to as locally uniform (l.u.) convergence.

For f ∈ H(B), z = (z1, . . . , zn) ∈ B, let ∇f(z) = (∂f/∂z1, . . . , ∂f/∂zn)
denote the complex gradient of f . Let <f stand for the radial derivative
of f , that is,

<f(z) =
n∑
j=1

zj
∂f

∂zj
(z), z = (z1, . . . , zn) ∈ B.
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A positive continuous function µ on the interval [0, 1) is called normal if
there exist δ ∈ [0, 1) and s and t with 0 < s < t such that (see, e.g., [16])

µ(r)
(1− r)s

is decreasing on [δ, 1) and lim
r→1

µ(r)
(1− r)s

= 0;

µ(r)
(1− r)t

is increasing on [δ, 1) and lim
r→1

µ(r)
(1− r)t

=∞.

Throughout this paper, µ will denote a normal function on [0, 1). An f ∈
H(B) is said to belong to the Bloch-type space, denoted by Bµ = Bµ(B), if

bµ(f) := sup
z∈B

µ(|z|)|<f(z)| <∞.

The Bloch-type space is a Banach space with the norm ‖f‖Bµ = |f(0)| +
bµ(f). Let Bµ,0 denote the subspace of Bµ consisting of those f ∈ Bµ for
which

lim
|z|→1

µ(|z|)|<f(z)| = 0.

This space is called the little Bloch-type space (see, e.g., [20]). When µ(r) =
1 − r2, we get the classical Bloch space and little Bloch space respectively.
For more information on the Bloch space, see for example [24].

Let 1 < p < ∞ and f ∈ H(B). We say that f belongs to the Privalov
space, denoted by N p = N p(B), if

sup
0<r<1

�

∂B

[log+ |f(rξ)|]p dσ(ξ) <∞.

Here log+ x is log x if x > 1 and 0 if 0 ≤ x ≤ 1. By the elementary inequalities
log+ x ≤ log(1 + x) ≤ log 2 + log+ x, we see that f ∈ N p if and only if

‖f‖pN p = sup
0<r<1

�

∂B

[log(1 + |f(rξ)|)]p dσ(ξ) <∞.

From [19], we see that the Privalov space N p is a topological vector space
with respect to the F -norm ‖ · ‖N p . Under ‖ · ‖N p , N p is a Fréchet space
and the topology of N p is stronger than that of locally uniform convergence.
This is a consequence of the estimate (see [19])

log(1 + |f(z)|) ≤ (1 + |z|)n/p

(1− |z|)n/p
‖f‖N p , f ∈ N p.(1)

If φ is an analytic self-map of D, the composition operator induced by
φ is

(Cφf)(z) = (f ◦ φ)(z), f ∈ H(D).

It is of interest to provide function-theoretic characterizations when φ in-
duces bounded or compact composition operators on various spaces. The
book [3] contains much information on this topic.
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Let φ be an analytic self-map of D and h ∈ H(D). In [9], Li and Stević
defined and studied the generalized composition operator

Chφf(z) =
z�

0

f ′(φ(ξ))h(ξ) dξ, f ∈ H(D), z ∈ D.

Composition operators from the Privalov space to the Bloch space and the
little Bloch space in the unit disk were studied in [22]. The boundedness and
compactness of the generalized composition operator on Zygmund spaces
and Bloch-type spaces were investigated in [9]. See also [10, 11, 17] for the
study of the operator Chφ .

Let ϕ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0.
For f ∈ H(B), the integral-type operator

Cgϕf(z) =
1�

0

<f(ϕ(tz))g(tz)
dt

t
(2)

was recently introduced in [25]. The operator Cgϕ is a generalization of the
generalized composition operator on the unit disk. The operator Cgϕ was
studied in [14, 18, 25, 26]. It is easy to see that Cgz = Lg, where

Lgf(z) =
1�

0

<f(tz)g(tz)
dt

t
,

which is called the Riemann–Stieltjes operator and studied in [1, 2, 5, 6, 7,
8, 12, 13, 23, 25, 26].

In this paper we study the boundedness and compactness of the operator
Cgϕ from the Privalov space to the Bloch-type space and the little Bloch-type
space in the unit ball. As a consequence, we obtain a characterization of the
action of the Riemann–Stieltjes operator Lg from the Privalov space to the
Bloch space and the little Bloch space. These results are new even in the
unit disk.

Constants are denoted by C in this paper, they are positive and may
differ from one occurrence to another.

2. Main results and proofs. In this section we will state our main
results and prove them. To carry out the proofs, the following lemmas are
needed.

Lemma 1. Suppose f, g ∈ H(B) and g(0) = 0. Then

<[Cgϕ(f)](z) = <f(ϕ(z))g(z).

Proof. A calculation with (2) gives the result (see, e.g., [4]); we omit the
details.
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Similarly to the proof of Lemma 4 of [15], we can get the following result.
We omit the details.

Lemma 2. A closed set K in Bµ is compact if and only if it is bounded
and satisfies

lim
|z|→1

sup
f∈K

µ(|z|)|<f(z)| = 0.

A subset T of N p
α is called bounded if it is bounded for the defining F -

norm ‖·‖N pα . Given a Banach space X, we say that a linear map L : N p
α → X

is bounded if L(T ) ⊂ X is bounded for every bounded subset T of N p
α . We

say that L is compact if L(T ) ⊂ X is relatively compact for every bounded
subset T ⊂ N p

α .
The following criterion for compactness follows from arguments similar,

for example, to those outlined in [3, 5, 22].

Lemma 3. Let p > 1 and ϕ be a holomorphic self-map of B, g ∈ H(B)
such that g(0) = 0. Then Cgϕ : N p → Bµ is compact if and only if Cgϕ :
N p → Bµ is bounded and for any sequence (fk)k∈N which is bounded in N p

and converges to zero l.u., limk→∞ ‖Cgϕfk‖Bµ = 0.

We are now in a position to formulate and prove the main results of this
paper.

Theorem 1. Let p > 1, ϕ be a holomorphic self-map of B, and g ∈
H(B) be such that g(0) = 0. Then the following statements are equivalent.

(i) Cgϕ : N p → Bµ is bounded.
(ii) Cgϕ : N p → Bµ is compact.
(iii)

M1 := sup
z∈B

µ(|z|)|g(z)| <∞(3)

and for every c > 0,

lim
|ϕ(z)|→1

µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

c

(1− |ϕ(z)|2)n/p

]
= 0.(4)

Proof. (ii)⇒(i). It is obvious.
(iii)⇒(ii). Assume that the conditions (3) and (4) hold. Combining (3)

with (4) we get

M2(c) := sup
z∈B

µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

c

(1− |ϕ(z)|2)n/p

]
<∞,(5)

for every c > 0. For arbitrary f ∈ N p, by (1) and the Cauchy estimate we
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have

(1− |z|2)|<f(z)| ≤ (1− |z|2)|∇f(z)|(6)

≤ C
�

∂B

∣∣∣∣f(z +
1− |z|

2
ξ

)∣∣∣∣ dσ
≤ exp

[
C‖f‖N p

(1− |z|2)n/p

]
.

Take a bounded set T ⊂ N p
α . Then there exists a positive constant M such

that ‖f‖N p ≤ M for all f ∈ T . By Lemma 1, the fact that (Cgϕf)(0) = 0
and (5) we have

‖Cgϕf‖Bµ = (Cgϕf)(0) + sup
z∈B

µ(|z|)|<(Cgϕf)(z)|(7)

= sup
z∈B

µ(|z|)|<f(ϕ(z))| |g(z)|

≤ sup
z∈B

µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

C‖f‖N p
(1− |ϕ(z)|2)n/p

]
≤ sup

z∈B

µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

CM

(1− |ϕ(z)|2)n/p

]
<∞

for every f ∈ T . This implies that Cgϕ(T ) is a bounded subset of Bµ. There-
fore Cgϕ : N p → Bµ is bounded.

Let (fk)k∈N be a sequence in N p with supk∈N ‖fk‖N p ≤ Q and fk → 0
l.u. on B. By means of (4) we arrive at the following: for every ε > 0, there
is a δ ∈ (0, 1) such that

µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

c

(1− |ϕ(z)|2)n/p

]
< ε(8)

when δ < |ϕ(z)| < 1. From (3) and (8), we have

‖Cgϕfk‖Bµ = sup
z∈B

µ(|z|)|<(Cgϕfk)(z)|

≤ ( sup
{z∈B : |ϕ(z)|≤δ}

+ sup
{z∈B : δ<|ϕ(z)|<1}

)µ(|z|)|g(z)| |<fk(ϕ(z))|

≤ sup
{z∈B : |ϕ(z)|≤δ}

M1|<fk(ϕ(z))|

+ sup
{z∈B : δ<|ϕ(z)|<1}

µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

CQ

(1− |ϕ(z)|2)n/p

]
≤M1 sup

{z∈B : |ϕ(z)|≤δ}
|<fk(ϕ(z))|+ ε.

By the Cauchy’s estimate we see that the sequence |<fk| converges to zero
l.u. on B and hence

lim
k→∞

sup
{z∈B : |ϕ(z)|≤δ}

|<fk(ϕ(z))| = 0.
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Using this fact and letting k → ∞ in the last inequality, we deduce that
limk→∞ ‖Cgϕfk‖Bµ ≤ ε. Since ε is an arbitrary positive number, we have

lim
k→∞

‖Cgϕfk‖Bµ = 0,

and the result follows from Lemma 3.
(i)⇒(iii). Suppose that Cgϕ : N p → Bµ is bounded. Take

fa(z) =
〈z, a〉
|a|2

, |a| 6= 0.

Then by the boundedness of the operator Cgϕ : N p → Bµ we get

sup
z∈B

µ(|z|)|g(z)| <∞.(9)

For w ∈ B and any c > 0, set

fw(z) = exp
[
c

{
1− |ϕ(w)|2

(1− 〈z, ϕ(w)〉)2

}n/p]
.

Using the inequality

log+ x ≤ log(1 + x) ≤ log 2 + log+ x,

we see that ‖fw‖N p ≤ C (see, e.g., [21]). In addition,

(10) <fw(z)

=
2nc
p

exp
[
c

{
1− |ϕ(w)|2

(1− 〈z, ϕ(w)〉)2

}n/p](1− |ϕ(w)|2)n/p〈z, ϕ(w)〉
(1− 〈z, ϕ(w)〉)2n/p+1

,

so that

C‖Cgϕ‖N p→Bµ ≥ ‖Cgϕfw‖Bµ = sup
z∈B

µ(|z|)|<(Cgϕfw)(z)|(11)

≥ 2nc
p

µ(|w|)|g(w)| |ϕ(w)|2

(1− |ϕ(w)|2)1+n/p
exp
[

c

(1− |ϕ(w)|2)n/p

]
.

This leads to
µ(|w|)|g(w)|
(1− |ϕ(w)|2)

exp
[

c

(1− |ϕ(w)|2)n/p

]
≤ C‖Cgϕ‖N p→Bµ

(1− |ϕ(w)|2)n/p

|ϕ(w)|2
,

which implies that (4) holds. The proof of Theorem 1 is complete.

Theorem 2. Let p > 1, ϕ be a holomorphic self-map of B, and g ∈
H(B) be such that g(0) = 0. Then the following statements are equivalent.

(i) Cgϕ : N p → Bµ,0 is bounded.
(ii) Cgϕ : N p → Bµ,0 is compact.

(iii) For every c > 0,

lim
|z|→1

µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

c

(1− |ϕ(z)|2)n/p

]
= 0.(12)
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Proof. (iii)⇒ (ii). Suppose that (12) holds. It is clear that (12) implies
(3) and (4). From Theorem 1 we see that Cgϕ : N p → Bµ is bounded. By (7)
we have

µ(|z|)|<(Cgϕf)(z)| ≤ µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

C‖f‖N p
(1− |ϕ(z)|2)n/p

]
,(13)

which together with the boundedness of Cgϕ : N p → Bµ implies that Cgϕ :
N p → Bµ,0 is bounded. In addition, taking the supremum in (13) over the
unit ball of the space N p, then letting |z| → 1, we obtain

lim
|z|→1

sup
‖f‖Np≤1

µ(|z|)|<(Cgϕf)(z)| = 0.(14)

From Lemma 2 and (14), we see that Cgϕ : N p → Bµ,0 is compact.
(ii)⇒(i). This is obvious.
(i)⇒(iii). Suppose that Cgϕ : N p → Bµ,0 is bounded. Take

fa(z) =
〈z, a〉
|a|2

, |a| 6= 0.

Then by the boundedness of Cgϕ : N p → Bµ,0 we get

lim
|z|→1

µ(|z|)|g(z)| = 0.(15)

Suppose for contradiction that (iii) is not true. Then there are c1, ε1 and a
sequence {zj} tending to ∂B such that

µ(|zj |)|g(zj)|
1− |ϕ(zj)|2

exp
[

c1

(1− |ϕ(zj)|2)n/p

]
≥ ε1.(16)

Since lim|z|→1 µ(|z|)|g(z)| = 0, (16) shows that {zj} has a subsequence {zjk}
with |ϕ(zjk)| → 1. Again using the boundedness of Cgϕ : N p → Bµ, we
have (4), thus

lim
|ϕ(zjk )|→1

µ(|zjk |)|g(zjk)|
1− |ϕ(zjk)|2

exp
[

c

(1− |ϕ(zjk)|2)n/p

]
= 0,(17)

contradicting (16). This completes the proof of the theorem.

Remark 1. For every c > 0,

lim
|z|→1

µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

c

(1− |ϕ(z)|2)n/p

]
= 0(18)

is equivalent to lim|z|→1 µ(|z|)|g(z)| = 0 and

lim
|ϕ(z)|→1

µ(|z|)|g(z)|
1− |ϕ(z)|2

exp
[

c

(1− |ϕ(z)|2)n/p

]
= 0.(19)

The above equivalence shows that Cgϕ : N p → Bµ,0 is bounded if and only if
Cgϕ : N p → Bµ is bounded and lim|z|→1 µ(|z|)|g(z)| = 0.
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Remark 2. From Theorems 1 and 2, we see that the following state-
ments are equivalent.

(i) Lg : N p → B is bounded;
(iii) Lg : N p → B is compact;
(iii) Lg : N p → B0 is bounded;
(iv) Lg : N p → B0 is compact;
(v) g ≡ 0.
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