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Product preserving gauge bundle functors
on all principal bundle homomorphisms

by Włodzimierz M. Mikulski (Kraków)

Abstract. Let PB be the category of principal bundles and principal bundle homo-
morphisms. We describe completely the product preserving gauge bundle functors (ppgb-
functors) on PB and their natural transformations in terms of the so-called admissible
triples and their morphisms. Then we deduce that any ppgb-functor on PB admits a pro-
longation of principal connections to general ones. We also prove a “reduction” theorem
for prolongations of principal connections into principal ones by means of Weil functors.
We observe that there exist plenty of such prolongations. In Appendix, we classify the
natural operators lifting vector-valued 1-forms (or vector-valued maps) to vector-valued
1-forms on Weil bundles.

1. Introduction. All manifolds and maps we consider in this paper are
assumed to be smooth, i.e. of class C∞. Manifolds are also assumed to be
Hausdorff, finite-dimensional, second countable and without boundaries.

In this paper,Mf denotes the category of manifolds,Mfm the category
of m-dimensional manifolds and their local diffeomorphisms, FM the cate-
gory of fibred manifolds (i.e. surjective submersions between manifolds) and
fibred maps, PB the category of principal bundles and their principal bundle
homomorphisms, and PBm(G) the category of principal bundles with stan-
dard fibre being the Lie group G and m-dimensional bases and their local
principal bundle isomorphisms with the identity map of G as the Lie group
homomorphism. The tensor product ⊗ will always be over R (i.e. ⊗ := ⊗R).
Similarly, Hom := HomR and dim := dimR.

About 1953, A. Weil (see [W]) introduced the concept of a near A-point
on a manifold M as an algebra homomorphism of the algebra C∞(M,R)
of smooth functions on M into a local algebra A. Nowadays A is called a
Weil algebra and the space TA(M) of all near A-points on M is called a
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Weil bundle. About 1985, D. Eck (see [E1]), O. O. Luciano (see [L]) and
G. Kainz and P. W. Michor (see [KaMi]) proved independently that the
product preserving bundle functors F :Mf → FM (the ppb-functors F on
Mf) are the Weil functors TA : Mf → FM for Weil algebras A = F (R),
and that the natural transformations η : F → F1 between ppb-functors
on Mf are in bijection with the algebra homomorphisms ηR : F (R) →
F1(R) between the corresponding Weil algebras. Moreover, in [KaMi], it was
observed that if F = TA and F1 = TA1 , then F ◦F1 = TA⊗A1 . Consequently,
the exchange algebra isomorphism A ⊗ A1 = A1 ⊗ A defines the natural
isomorphism F ◦F1 = F1 ◦F . In particular, if F1 = T is the tangent functor,
there is the flow isomorphism F ◦ T = T ◦ F . A detailed presentation of all
the above results can also be found in the fundamental monograph [KMS].

Ppb-functors F on Mf play an important role in differential geome-
try. For example, a ppb-functor F = TA : Mf → FM can be applied
in prolongations of connections. Indeed, if Γ : Y ×M T (M) → T (Y ) is
a general connection on a fibred manifold p : Y → M , then F(Γ ) :=
F (Γ ) : F (Y ) ×F (M) T (F (M)) → T (F (Y )) (under the flow identifications
F (T (M)) = T (F (M)) and F (T (Y )) = T (F (Y ))) is a general connection
on F (p) : F (Y ) → F (M). The above connection F(Γ ) was constructed by
J. Slovák (see [S]).

For ppb-functors F onMfm one can also deduce the following results. If
G is a Lie group with the multiplication map µG : G×G→ G and the unity
eG : pt→ G, where pt = {∅} is the trivial Lie group, then F (G) is a Lie group
with the multiplication map µF (G) := F (µG) : F (G)×F (G) = F (G×G)→
F (G) and the unity eF (G) := F (eG) : F (pt) = pt→ F (G), and if ν : G→ G1

is a Lie group homomorphism, then so is F (ν) : F (G)→ F (G1). For the Lie
algebra of G we have F (L(G)) = L(F (G)) = L(G)⊗A. For the exponential
map we have ExpF (G) = F (ExpG).

If p : P → M is a principal bundle with the Lie group G and the right
action r : P × G → P then F (p) : F (P ) → F (M) is a principal bun-
dle with the Lie group F (G) and the right action F (r) : F (P ) × F (G) =
F (P ×G)→ F (P ), and if f : P → P1 is a principal bundle homomorphism
covering f : M →M1 and with the Lie group homomorphism ϕf : G→ G1

then F (f) : F (P ) → F (P1) is a principal bundle homomorphism cover-
ing F (f) : F (M)→ F (M1) and with the Lie group homomorphism F (ϕf ) :
F (G)→ F (G1). If Γ is a principal (i.e. general right invariant) connection on
a principal bundle p : P →M , then F(Γ ) (as above) is a principal connection
on F (p) : F (P ) → F (M). If η : F → F1 is a natural transformation, then
ηG : F (G)→ F1(G) is a Lie group homomorphism and ηP : F (P )→ F1(P )
is a principal bundle homomorphism covering ηM : F (M)→ F1(M) with the
Lie group homomorphism ηG : F (G)→ F1(G). A more detailed presentation
of the above results can be found in [K1]. (In the special case of F = T p,r =
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the bundle functor of pr-velocities, some of the above facts can also be found
in [GS].)

For classical linear connections Γ = ∇ on M (i.e. principal connections
on the principal bundle P 1(M) of linear frames of M), F(∇) coincides with
(or more precisely, is the reduction to TA(P 1(M)) ⊂ P 1(TA(M)) of) the
complete lift of ∇ to TA(M) in the sense of A. Morimoto [Mo]. F(∇) was
also investigated in [GMP]. ([GRS] investigates a so-called horizontal lifting
of classical linear connections onM to classical linear connections on TA(M)
by means of an additional rth order linear connection on M , i.e. a princi-
pal connection on the rth order frame bundle P r(M) of M .) In [D2], all
affine Mfm-natural operators B lifting torsion-free classical linear connec-
tions ∇ on m-manifolds M to torsion-free classical linear connections B(∇)
on TA(M) were described.

The present paper is dedicated to the study of gauge bundle functors
on principal bundles. In Section 2, we start from the definition and general
properties of gauge bundle functors (gb-functors) F : K → FM on a subcat-
egory K ⊂ PB. The definition of gb-functors covers all standard definitions
of natural bundle functors, like natural bundles by A. Nijenhuis [Ni] (on
the categoryMfm), prolongation functors by I. Kolář [K2] (on the category
Mf) and gauge-natural bundles by D. Eck [E2] (on the category PBm(G)).
We try to compare general properties of gb-functors on K with the ones
of standard natural bundle functors mentioned above. Then we restrict our
investigations to product preserving gauge bundle functors (ppgb-functors)
F : PB → FM on the whole category PB only. A simple example of such a
functor is the extended Weil functor TA : PB → FM for a Weil algebra A
sending any principal bundle p : P → M to TA(P ) → M (the composition
of TA(p) : TA(P )→ TA(M) with the Weil bundle projection TA(M)→M)
and any principal bundle homomorphism f : P → P1 covering f : M →M1

to a fibred map TA(f) : TA(P ) → TA(P1) covering f : M → M1. We
present many examples of ppgb-functors on PB. We show essential differ-
ences between ppgb-functors on PB and ppb-functors onMf . In particular,
we exhibit a ppgb-functor F : PB → FM such that there is no exchanging
isomorphism F ◦ T ∼= T ◦ F .

In Sections 3–8, we describe all ppgb-functors on PB in terms of so
called admissible triples and classify all natural transformations F → H be-
tween ppgb-functors F,H : PB → FM by means of morphisms between
admissible triples. Moreover, for ppgb-functors F,H : PB → FM, a Lie
group G and a natural number m ≥ 2, we classify all natural transfor-
mations F|PBm(G) → H|PBm(G) by means of so-called admissible pairs. In
particular, we find explicitly all natural transformations TA → TB between
the extended Weil functors TA, TB : PB → FM for Weil algebras A and B
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and all natural transformations TA|PBm(G) → TB|PBm(G) for m ∈ N, a Lie
group G and Weil algebras A and B. As an application of the description
of ppgb-functors on PB, we present (in Section 9) a canonical construction
of a general connection F(Γ ) on F (p) : F (P ) → F (M) from a principal
connection Γ on p : P →M for an arbitrary ppgb-functor F : PB → FM.

In Section 10, we prove a “reduction” theorem for PBm(G)-gauge-natural
operators lifting principal connections to Weil bundles. In Section 11, using
some results from Appendix (which consists of Sections 12 and 13), we prove
that for commutative Lie groups G and sufficiently large m, there are plenty
of affine PBm(G)-gauge-natural operators lifting principal connections to
Weil bundles (we give a lower bound on the dimension of the affine space
of such affine PBm(G)-gauge-natural operators). In Appendix, we present a
full description of all Mfm-natural operators lifting vector-valued 1-forms
(or vector-valued maps) to vector-valued 1-forms on Weil bundles.

Full descriptions of product preserving (gauge) bundle functors on some
other categories over manifolds can also be found in [KuMi], [Ku], [Mi3],
[Mi4], [Mi5], [MT], [Sh] (the list is not complete); some other reduction the-
orems for gauge-natural operators on connections can also be found in [DM],
[J1] (the list is not complete). In [JV], the reduction theorems were applied
to obtain complete descriptions of gauge-natural operators lifting principal
and classical connections to principal connections on higher order principal
prolongations of principal bundles. In Section 11 of the present paper, the
“reduction” theorem is used to obtain the estimate mentioned above.

2. Product preserving gauge bundle functors on principal bun-
dles: definitions, simple properties, examples. Let K ⊂ PB be a sub-
category such that for any K-object P → M and any open subset U ⊂ M
we have P|U ∈ Obj(K) and the inclusion iU : P|U → P is a K-morphism.

Definition 2.1. A gauge bundle functor (gb-functor for short) on K as
above is a covariant functor F : K → FM satisfying the following conditions:

(i) Base preservation. For any K-object P = (p : P → M) with the
base M the induced FM-object F (P ) = (πP : F (P ) → M) is a
fibred manifold over the same base M . For any K-morphism f :
P1 → P2 covering f : M1 → M2 the induced FM-map F (f) :
F (P1)→ F (P2) is also over f .

(ii) Locality property. For any K-object p : P →M and any open subset
U ⊂ M the FM-map F (iU ) : F (P|U ) → F (P ) (induced by the
inclusion iU : P|U → P ) is a diffeomorphism onto π−1

P (U).
(iii) Regularity property. F transforms smoothly parametrized families

of K-morphisms into smoothly parametrized families of FM-mor-
phisms. More precisely, if f : R×P → Q is a smooth map such that
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for any t ∈ R the restricted map ft : P → Q, ft(p) = f(t, p), is a
K-map then the map Ff : R× F (P )→ F (Q), Ff(t, v) = F (ft)(v),
is smooth.

Definition 2.2. Let F and H be gb-functors on K. A natural transfor-
mation η : F → H is a family of maps ηP : F (P )→ H(P ) for all K-objects
P such that H(f) ◦ ηP = ηQ ◦ F (f) for any K-map f : P → Q.

If K = Mfm, we obtain the classical concept of natural bundles in the
sense of A. Nijenhuis (see [Ni]). If K = PBm(G) we obtain the classical
concept of gauge-natural bundles on PBm(G) in the sense of D. Eck (see
[E2]). If K = Mf we obtain the classical concept of prolongation functors
on Mf in the sense of I. Kolář (see [K2]). Therefore the above concept of
gb-functors is sufficiently general. Of course, one can consider the even more
general concept of gauge bundle functors over local categories on manifolds
(see [KMS, Remark 51.4]).

In the situation of K =Mfm the regularity condition (iii) in Definition
2.1 is a consequence of conditions (i) and (ii) in that definition.This is a
very deep result by D. B. A. Epstein and W. P. Thurston [ET]. Using it
one can show that if K = PBm(G) or K =Mf then the regularity condi-
tion (iii) in Definition 2.1 also is a consequence of conditions (i) and (ii)
there (see [KMS]). A similar regularity result for infinite-dimensional (or
even topological Hausdorff) natural bundles F (M) over m-manifoldsM was
proved in [Mi6]. In general, the regularity condition (iii) in Definition 2.1
cannot be omitted (even for product preserving functors F : PB → FM):
see Example 2.20.

The locality condition (ii) in Definition 2.1 cannot be omitted either (even
for product preserving functors F : PB → FM). For example, the product
preserving functor PB → FM sending any principal bundle P → M with
the Lie group G to its Lie groupoid (P × P )/G (considered as the fibre
manifold overM with respect to the source projection) and any PB-map f :
P → Q covering f : M → N with the Lie group homomorphism ν : G→ H

to the induced FM-map f̃ : (P × P )/G→(Q×Q)/H covering f : M → N

(f̃([p1, p2]G)= [f(p1), f(p2)]H , p1, p2 ∈P ) satisfies conditions (i) and (iii) in
Definition 2.1 and it does not satisfy condition (ii) in that definition. The
theory of Lie groupoids and Lie algebroids can be found in [Ma]. From the
locality property (ii) in Definition 2.1, we get the following lemma.

Lemma 2.3. Let F,H : K → FM be gb-functors. If η : F → H is
a natural transformation, then ηP covers the identity map of M for any
K-object P →M .

Proof. Let P → M be a K-object. Suppose v ∈ Fx(P ) and ηP (v) ∈
Hy(P ), x 6= y, x, y ∈ M . Let U be an open neighbourhood of x such that
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y 6∈ U . Let iU : P|U → P be the inclusion. Then (by the definition of natural
transformations) H(iU ) ◦ ηP|U = ηP ◦ F (iU ). By the locality condition (ii)
of Definition 2.1, there exists ṽ ∈ F (P|U ) such that v = F (iU )(ṽ). Then
ηP (v) = ηP ◦ F (iU )(ṽ) = H(iU ) ◦ ηP|U (ṽ) ∈ H(P )|U . Contradiction.

We see that Lemma 2.3 essentially generalizes [KMS, Lemma 14.11].
Indeed, the proof of [KMS, Lemma 14.11] works if there are sufficiently many
K-morphisms (if K is so-called Whitney-extendable). Our proof of Lemma
2.3 works for all K as above (even if the inclusion maps are K-morphisms
only).

The locality property (ii) in Definition 2.1 ensures that if f, g : P → Q are
K-morphisms between P = (p : P →M) and Q such that f|p−1(U) = g|p−1(U)

for some open subset U ⊂ M then F (f)|π−1
P (U) = F (g)|π−1

P (U). Indeed, the
assumption means that f ◦ iU = g ◦ iU . Then F (f) ◦ F (iU ) = F (g) ◦ F (iU ).

Definition 2.4. Let f1, f2 : P → Q be principal bundle morphisms
covering f

1
, f

2
: M → N and with Lie group homomorphisms ν1, ν2 : G→ H

and let x ∈ M . We say that jrx(f1) = jrx(f2) if the following equivalent
conditions are satisfied:

(i) jrp(f1) = jrp(f2) for all p ∈ Px = the fibre of P over x.
(ii) jrp(f1) = jrp(f2) for some p ∈ Px and ν1 = ν2.

Just as the order of gauge-natural bundles (see [KMS]), one can define
the order of gb-functors.

Definition 2.5. We say that a gb-functor F : K → FM is of order r if
the following condition is satisfied:

• For any K-morphisms f1, f2 : P → Q between K-objects P → M
and Q and any x ∈ M , from jrx(f1) = jrx(f2) it follows F (f1)|Fx(P ) =
F (f2)|Fx(P ).

If F :Mfm → FM is a natural bundle, then F is of finite order ord(F ) ≤
2f + 1, where f = dim(SF ) is the dimension of the so-called standard fibre
SF = F0(Rm) of F . This nice result was proved by R. Palais and C.-L.
Terng in [PT]. In [ET], D. B. A Epstein and W. P. Thurston proved that
ord(F ) ≤ 2f + 1 and that this estimate is sharp for m = 1. In [Z], A. Zajtz
showed that ifm ≥ 2, then ord(F ) ≤ max(f/(m− 1), f/m+1) and that this
estimate is sharp. If F : PBm(G) → FM is a gauge-natural bundle, then
F is also of finite order. This fact was proved by D. Eck in [E2] (see also
[KMS, Theorem 51.7]). On the other hand, there are gauge bundle functors
F : PB → FM of strictly infinite order. For example, let H :Mf → FM
be a bundle functor of strictly infinite order (see [Mi1]). Then the gb-functor
F : PB → FM defined by F (P ) = H(M) for any PB-object P → M and
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F (f) = H(f) : H(M) → H(N) for any PB-morphism f : P → Q with the
underlying map f : M → N is of strictly infinite order.

In all the above-mentioned standard theories of natural bundle functors
one of the most important properties of these functors is that they are in one-
to-one correspondence with standard fibres. In the cases of fixed dimension
of base manifolds (natural bundles on Mfm and gauge-natural bundles on
PBm(G)) standard fibres are uniquely determined, they are manifolds with
a left action of a certain Lie group, and natural bundles are fibred manifolds
associated with a principal bundle (see the papers by D. Krupka [Kru] for
the categoryMfm and D. Eck [E2] for the category PBm(G)). In the case
of prolongation functor of finite order r on the categoryMf of all manifolds
the standard fibres form a sequence S = (S0, . . . , Sn, . . .) for any dimension
with the action of the category Lr; see for instance [KMS] or the original
paper by J. Janyška [J2]. What is the corresponding situation in the case
of general definition? Even in the case of gb-functors on the whole PB an
answer to this question is unknown.

Remark 2.6. The reviewer of the present paper supposes that in the
case of gb-functors on the whole PB the sequence of standard fibres will
be S = (SGr0 , . . . , SGrn , . . .) and he supposes there is an action of Lr × Gr
on S. But (in the author’s opinion) to realize this idea we need to introduce
canonical smooth manifold structures on Hom(G1, G2) for any Lie groups
G1, G2 and the author does not know if it is possible.

In the present paper we give (among other things) an answer to the gen-
eral question in the case of product preserving gb-functors on the whole PB.

To introduce product preserving gb-functors we assume additionally that
K is closed with respect to taking products (i.e. if P1 and P2 are K-objects
then P1 × P2 is a K-object) and that any PB-morphism between K-objects
is a K-morphism and that any PB-object PB-isomorphic to a K-object is
a K-object. Then it makes sense to introduce the following definition, quite
similar to the one (see [KMS]) of ppb-functors onMf .

Definition 2.7. A gb-functor F : K → FM is a product preserving
gauge bundle functor (ppgb-functor) if it has the following property:

(i) Product preserving property. For any K-objects P1 and P2, the map
(F (pr1), F (pr2)) : F (P1 × P2) → F (P1) × F (P2) is an FM-isomor-
phism, where pri : P1 × P2 → Pi (i = 1, 2) are the usual projections.

For a ppgb-functor F : K → FM and K-objects P1 and P2 we will always
identify F (P1 × P2) with F (P1)× F (P2) by the FM-isomorphism from the
product preserving property (i) in Definition 2.7. So, if F : K → FM is a
ppgb-functor then F (P1×P2) = F (P1)×F (P2) for any K-objects P1 and P2
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and (just as for ppb-functors onMf)

F (f1 × f2) = F (f1)× F (f2) : F (P1)× F (P2)→ F (Q1)× F (Q2)

for any K-morphisms fi : Pi → Qi for i = 1, 2. If F,H : K → FM are
ppgb-functors and η : F → H is a natural transformation, then

ηP1×P2 = ηP1 × ηP2 : F (P1)× F (P2)→ H(P1)×H(P2)

for any K-objects P1 and P2.
From now on we consider ppgb-functors which are defined on the whole

category PB. However some of the results obtained can be directly general-
ized to ppgb-functors F : K → FM for some “special” subcategories K ⊂ PB
instead of PB (see Remark 5.6).

We have the following examples of ppgb-functors F : PB → FM of finite
order. (In Proposition 6.1 we observe that any ppgb-functor F : PB → FM
is of finite order.)

Example 2.8. The forgetting functor I : PB → FM sending any PB-
object P →M to the FM-object P →M and any PB-morphism f : P → Q
to the FM-map f : P → Q is a ppgb-functor.

Example 2.9. The group functor F gr : PB → FM sending any PB-
object P → M with the group G to the trivial FM-object M ×G over M
and any PB-morphism f : P → Q covering f : M → N with the Lie group
homomorphism ν : G → H to the FM-map f × ν : M × G → N ×H is a
ppgb-functor. We see that F gr : PB → PB.

Example 2.10. The extended tangent functor T : PB → FM sending
any PB-object p : P →M to the FM-object T (P )→M (the composition of
T (p) : T (P )→ T (M) with the tangent bundle projection T (M)→M) and
any PB-morphism f : P → P1 covering f : M → M1 to the induced FM-
map T (f) : T (P )→ T (P1) (the tangent map of f) covering f : M → M1 is
a ppgb-functor.

Example 2.11. The Lie algebroid functor L : PB → FM sending any
PB-object P →M with the Lie group G to its Lie algebroid L(P ) = T (P )/G
(considered as a fibre manifold over M) and any PB-map f : P → P1 with
the Lie group homomorphism ν : G→ G1 to L(f) : L(P )→ L(P1) given by
L(f)([v]G) = [T (f)(v)]G1 is a ppgb-functor.

Example 2.12. Let A be a Weil algebra. Applying the Weil functor
TA : Mf → FM we get the extended Weil functor TA : PB → FM
sending any principal bundle p : P →M with the Lie group G to the fibred
manifold TA(P ) → M (the composition of TA(p) : TA(P ) → TA(M) with
the Weil bundle projection TA(M)→M) and sending any principal bundle
homomorphism f : P → P1 covering f : M → M1 with the Lie group
homomorphism ν : G → G1 to the induced FM-map TA(f) : TA(P ) →
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TA(P1) (the usual A-prolongation of f) covering f . Clearly, TA : PB → FM
is a ppgb-functor. In particular, if A = D is the Weil algebra of dual numbers
we obtain the extended tangent functor T : PB → FM. If A = R, we obtain
the forgetting functor I : PB → FM.

Example 2.13. Let A be a Weil algebra. We have a functor LA : PB →
FM sending any PB-object P → M with the Lie group G to the factor
bundle LA(P ) = TA(P )/G overM and any principal bundle homomorphism
f : P → P1 with the Lie group homomorphism ν : G → G1 to LA(f) :
TA(P )/G → TA(P1)/G1 given by LA(f)([v]G) = [TA(f)(v)]G1 for any v ∈
TA(P ). Here (by definition) [v]G = [w]G iff v = TA(rg)(w) ∈ TAP for
some g ∈ G, where rg : P → P is the right translation by g ∈ G. Clearly,
LA : PB → FM is a ppgb-functor. In particular, if A = D we obtain the
Lie algebroid functor L : PB → FM.

Example 2.14. Let µ : A → B be an algebra homomorphism be-
tween Weil algebras (considered as the corresponding natural transforma-
tion µ̃ : TA → TB) and let Tµ : FM→ FM be the corresponding product
preserving bundle functor (see [Mi3]). Then by “restriction” we get a func-
tor Tµ : PB → FM sending any principal bundle (and then fibred man-
ifold) p : P → M to the fibred manifold Tµ(P ) → M and any principal
bundle homomorphism (and then fibred map) f : P → P1 to the fibred map
Tµ(f) : Tµ(P ) → Tµ(P1). More explicitly, Tµ : PB → FM transforms any
PB-object p : P →M into

Tµ(P ) = {(v, w) ∈ TA(M)× TB(P ) | µ̃M (v) = TB(p)(w)}

over M and any PB-map f : P → P1 covering f : M → M1 into the
restriction of TA(f) × TB(f). Clearly, Tµ : PB → FM is a ppgb-functor.
In particular, if µ = idA : A → A, we obtain the extended Weil functor
TA : PB → FM. If µ = κ : R → B, we obtain the B-vertical functor
V B : PB → FM such that

V B(P ) =
⋃
x∈M

TB(Px) and V B(f) =
⋃
x∈M

TB(fx) : V B(P )→ V B(P1)

for any PB object P → M and any PB-map f : P → P1. If µ : R → D we
obtain the (classical) vertical functor V : PB → FM.

Example 2.15. Let (K,α) be a pair consisting of a regular (i.e. trans-
forming smoothly parametrized families of Lie group homomorphisms into
smoothly parametrized families of maps) product preserving functor K :
Gr →Mf and a Gr-invariant family α of actions αG : G×K(G)→ K(G) for
any Lie group G (the invariance of α means that for any Lie group homomor-
phism ν : G → G1 the map K(ν) : K(G) → K(G1) is (αG, αG1)-invariant
over ν). For example, let (K,α) be one of the following pairs:
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(i) The pair (L,Ad) consisting of the Lie algebra functor L : Gr →Mf
sending any Lie group G to the Lie algebra L(G) of G and any Lie
group homomorphism ν : G → G1 to the induced Lie algebra map
L(ν) : L(G)→ L(G1) and the family Ad = {AdG}G∈Obj(Gr), where
AdG is the adjoint action of G on L(G) for any Lie group G.

(ii) The pair (Id,Ad) consisting of the forgetting functor Id : Gr →Mf
sending any Lie group G to G and any Lie group homomorphism
ν : G → G1 to ν : G → G1 and the family Ad = {AdG}G∈Obj(Gr),
where AdG is the adjoint action of G on G for any Lie group G.

(iii) The pair (Ido,Ado) consisting of the connected component functor
Ido : Gr →Mf sending any Lie group G to the connected compo-
nent Go ⊂ G of the unity of G and any Lie group homomorphism
ν : G → G1 to the restriction ν|Go : Go → Go1 of ν, and the family
Ado = {AdoG}G∈Obj(Gr), where AdoG is the action of G on Go given
by the restriction of the adjoint action AdG for any Lie group G.

(iv) The pair (Ab, triv) consisting of the abelianization functor Ab :
Gr →Mf sending any Lie group G to the commutative Lie group
G/[G,G] (where [G,G] is the closure of the algebraic commutant
of G) and any Lie group homomorphism ν : G → G1 to the quo-
tient [ν] : G/[G,G] → G1/[G1, G1] of ν, and the family triv =
{trivG}G∈Obj(Gr), where trivG is the trivial action of G on G/[G,G]
for any Lie group G.

Then we can define a functor FK,α : PB → FM by

FK,α(P ) = P [K(G), αG] and FK,α(f) = f [K(ν)]

for any principal bundle P with the Lie group G and any principal
bundle homomorphism f : P → P1 with the Lie group homomorphism
ν : G→ G1, where P [K(G), αG] is the associated (with P ) bundle with the
standard fibre K(G) and the action αG and where f([K(ν)]) is well-defined
by f([K(ν)])([p, v]) = [f(p),K(ν)(v)] for any [p, v] ∈ P [K(G), αG]. Clearly,
FK,α : PB → FM is a ppgb-functor.

Composing the ppgb-functors on PB from previous examples with the
Weil functors on manifolds we can obtain new ppgb-functors on PB. Indeed,
we have the following example.

Example 2.16. Let TA :Mf → FM be the Weil functor corresponding
to a Weil algebra A and F : PB → FM be a ppgb-functor.

(i) The composition F ◦ TA : PB → FM is defined as follows. Given a
principal bundle p : P →M , we have the principal bundle TA(P ) :=
(TA(p) : TA(P ) → TA(M)). Applying F : PB → FM to TA(P ),
we obtain the fibred manifold F (TA(P ))→ TA(M). Composing this
projection with the Weil bundle projection TA(M) → M we obtain
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the fibred manifold (F ◦ TA)(P ) over M . Given a principal bundle
map f : P → P1 covering f : M →M1, TA(f) : TA(P )→ TA(P1) is
a principal bundle map covering TA(f) : TA(M)→ TA(M1). Apply-
ing F , we obtain the fibred map F (TA(f)) : F (TA(P ))→ F (TA(P1))
covering TA(f) : TA(M)→ TA(M1), which can be considered as the
fibred map (F ◦ TA)(f) : (F ◦ TA)(P )→ (F ◦ TA)(P1) covering f .

(ii) The composition TA ◦F : PB → FM is defined as follows. Applying
F to p : P → M we obtain the fibred manifold F (P ) → M . Then
applying TA, we obtain the fibred manifold TA(F (P )) → TA(M).
Then composing it with the Weil bundle projection TA(M) → M ,
we obtain the fibred manifold (TA ◦ F )(P ) over M . Applying F to
f : P → P1, we obtain the fibred map F (f) : F (P )→ F (P1) covering
f . Applying TA, we produce the fibred map TA(F (f)) : TA(F (P ))→
TA(F (P1)) covering TA(f) : TA(M) → TA(M1), which can be con-
sidered as the fibred map (TA ◦F )(f) : (TA ◦F )(P )→ (TA ◦F )(P1)
covering f .

Clearly, both functors F ◦TA : PB → FM and TA ◦F : PB → FM are
ppgb-functors.

For any ppb-functor F : Mf → FM there exists the “exchanging” iso-
morphism F ◦ T ∼= T ◦ F . In contrast, we have the following example of
a ppgb-functor F : PB → FM such that there is no natural isomorphism
F ◦ T ∼= T ◦ F .

Example 2.17. Any connected abelian Lie group G is isomorphic to
(S1)n×Rm for some n andm. SinceH1((S1)n×Rm) ∼= Rn, whereH1 : Top→
Vect (the category of all vector spaces over R) is the first singular homology
group functor with real coefficients, we have (by restriction) the functor
H1 : Grab-con → Vectfin (the category of finite-dimensional vector spaces over
R), where Grab-con is the category of all connected abelian Lie groups and
their homomorphisms. We have the abelianization functor Ab : Gr → Grab

(see Example 2.15(iv)). We also have the connected component functor Ido :
Gr → Grcon (see Example 2.15(iii)). Define E = H1 ◦ Ido ◦Ab : Gr → Vectfin

(composition of functors). Define a functor F : PB → FM by

F (P ) = M × E(G) and F (f) = f × E(ν)

for any PB-object P → M with the Lie group G and any PB-map f :
P → P1 covering f : M → M1 and with the Lie group homomorphism
ν : G→ G1. From the two lemmas below it follows that F is a ppgb-functor
such that there is no natural isomorphism T ◦ F ∼= F ◦ T .

Lemma 2.18. The functor E : Gr → Vectfin from the last example is
regular and product preserving.
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Proof. We see that E(pt) = {0}. Moreover, if G1
∼= (S1)n1 × Rm1 and

G2 = (S1)n2 × Rm2 , then H1(G1 ×G2) ∼= Rn1+n2 ∼= H1(G1)×H1(G2), and
then

dim(E(G1 ×G2)) = dim(E(G1)) + dim(E(G2))

for any Lie groups G1 and G2. Taking into account the above properties of E,
we can show that E is product preserving as follows. Let pri : G1×G2 → Gi
(for i = 1, 2) be the projections. We have to show that

Ψ := (E(pr1), E(pr2)) : E(G1 ×G2)→ E(G1)× E(G2)

is a diffeomorphism. Clearly, Ψ is linear. Then (by a dimension argument)
it is sufficient to show that Ψ is surjective. Let j1 : G1 → G1 × G2 and
j2 : G2 → G1 × G2 be the homomorphisms given by j1(g1) = (g1, eG2),
j2(g2) = (eG1 , g2). Define Φ : E(G1) × E(G2) → E(G1 × G2) by Φ(u, v) =
E(j1)(u) + E(j2)(v). Then Ψ ◦ Φ(u, v) = (u, v) as

E(pr1)(E(j1)(u) + E(j2)(v)) = E(pr1)(E(j1)(u)) + E(pr1)(E(j2)(v))
= E(idG1)(u) + E(eG1)(v) = u+ 0 = u

and (similarly) E(pr2)(E(j1)(u) + E(j2)(v)) = v. Hence Ψ is surjective.
Therefore, E is product preserving. The regularity of E is trivial because Ab
and Ido are regular and H1 has the same values on homotopic maps.

Lemma 2.19. There is no natural isomorphism T ◦ F ∼= F ◦ T , where F
is the ppgb-functor from the last example.

Proof. We see that E(S1) = H1(S1) and E(T (S1)) = H1(T (S1)). More-
over, since H1(S1) ∼= H1(T (S1)) (as S1 can be deformed onto S1 ⊂ T (S1) by
fibre homotheties), we see that dim(E(T (S1))) = dim(E(S1)) = 1. Now, let
P = R×S1 → R be the trivial principal bundle over R with the Lie group S1.
Then T (P ) is the trivial principal bundle T (R)× T (S1) over T (R) with the
Lie group T (S1). Hence F (T (P )) = T (R) × E(T (S1)). On the other hand,
F (P ) = R × E(S1), and so T (F (P )) = T (R) × T (E(S1)). Consequently,
dim(F (T (P ))) = 2 + 1 = 3 6= 4 = 2 + 2 = dim(T (F (P ))). Thus there is no
natural isomorphism F ◦ T ∼= T ◦ F .

The next example shows that the regularity condition (iii) in Definition
2.1 is not a consequence of conditions (i), (ii) in that definition and condi-
tion (i) of Definition 2.7, even for functors F : PB → FM.

Example 2.20. Let c : C→ C be a discontinuous field morphism (it may
be standardly obtained by means of the Kuratowski–Zorn lemma). Using c,
we can construct a functor H : Vectfin → Mf as follows. By means of the
usual bases (ej)kj=1 in Rk (or Ck) for any k (where ej = (0, . . . , 1, . . . , 0), 1 at
jth position), we identify m× n-matrices with real (or complex) coefficients
with R-linear (or C-linear) maps Rm → Rn (or Cm → Cn) and vice versa.
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Let A = [aij ] be an m × n-matrix with real coefficients. We consider A as
the m × n-matrix with complex coefficients in the obvious way (because of
R ⊂ C). Then c(A) := [c(aij)] is an m× n-matrix with complex coefficients.
Since c is a field morphism, we easily see that c(Im) = Im for the m×m iden-
tity matrix Im and c(A1 ◦A2) = c(A1) ◦ c(A2) for any m× n-matrix A1 and
n× q-matrix A2 of real coefficients. For any Vectfin-object V , dim(V ) = m,
we define H(V ) = Iso(Rm, V ) × Cm)/∼=, where Iso(Rm, V ) is the space of
all R-linear isomorphisms (i.e. Vectfin-isomorphisms) Rm → V and ∼= is
the equivalence relation given by (ϕ, u) ∼= (ϕ1, u1) iff there is an invertible
m×m-matrix B with real coefficients such that ϕ1 = ϕ◦B and u = c(B)(u1).
Then H(V ) is a manifold. Every ϕ ∈ Iso(Rm, V ) induces a chart ϕ̃ : H(V )
→ Cm by ϕ̃(W ) = u, where W = [ϕ, u] ∈ H(V ) (u is uniquely deter-
mined by ϕ and W ). If ϕ1 ∈ Iso(Rm, V ) is another isomorphism, then
ϕ̃◦ ϕ̃−1

1 = c(ϕ−1 ◦ϕ1) : Cm → Cm is a C-linear map (and therefore smooth).
For any R-linear map (i.e. Vectfin-map) f : V → V1, dim(V ) = m,

dim(V1) = m1, we define H(f) : H(V ) → H(V1) by H(f)([ϕ, u]) :=
[ψ, c(ψ−1 ◦ f ◦ ϕ)(u)], where ψ ∈ Iso(Rm1 , V1). If ψ1 = ψ ◦A ∈ Iso(Rm1 , V1)
and ϕ1 = ϕ ◦ B ∈ Iso(Rm, V ) are some other isomorphisms and [ϕ, u] =
[ϕ1, u1], then [ψ1, c(ψ−1

1 ◦ f ◦ ϕ1)(u1)] = [ψ, c(ψ−1 ◦ f ◦ ϕ)(u)] because of
c(A)◦c(ψ−1

1 ◦f ◦ϕ1)◦c(B−1) = c(ψ−1 ◦f ◦ϕ) (see above). Using the induced
charts we see that H(f) : H(V ) → H(V1) is smooth as ψ̃ ◦ H(f) ◦ ϕ̃−1 =
c(ψ−1 ◦ f ◦ ϕ) : Cm → Cm1 is C-linear (and then smooth).

It is easily seen that H : Vectfin →Mf is a product preserving functor
(not necessarily regular). Given a PB-object P → M with the Lie group G
let F (P ) = M ×H(L(G)) be the trivial fibred manifold over M , and given
a PB-map f : P → P1 covering f : M → M1 and with the Lie group
homomorphism ν : G → G1 let F (f) := f × H(L(ν)) : F (P ) → F (P1),
where L : Gr → Vectfin is the Lie algebra functor.

It is clear that F : PB → FM satisfies conditions (i) and (ii) in Defini-
tion 2.1 and condition (i) in Definition 2.7. The functor F does not satisfy
condition (iii) of Definition 2.1. Indeed, let P = R × R be the trivial PB-
object over R with the Lie group G = (R,+) acting (on the right) on P by
(x, y) ·z = (x, y+z). We have L(G) = R and the exponent ExpG is the iden-
tity map. The fibre homotheties at : P → P , at(x, y) = (x, ty), are PB-maps
with the Lie group homomorphism νt = t idR : G→ G. Then L(νt) = t idR,
and so H(νt) = c(t) idC, where we identify H(R) with C via the map induced
by the identity idR ∈ Iso(R,R). Then F (at)(0, 1) = (0, c(t)) for any t ∈ R.
But c|R is discontinuous. (If c|R is continuous, then so is c, as c(x + iy) =
c(x)+c(i)c(y) for any x, y ∈ R.) Hence at is a smoothly parametrized family
of PB-maps and F (at) is not a smoothly parametrized family. In other words
F : PB → FM does not satisfy condition (iii) of Definition 2.1.
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We end Section 2 observing thatMf and Gr are “subcategories” in PB.

Example 2.21. Given a manifoldM we have the principal bundle i1(M)
= (idM : M → M) with the Lie group pt (the trivial Lie group). Given a
map f : M1 → M2 we have i1(f) = f : i1(M1) → i1(M2) covering f .
The correspondence i1 : Mf → PB is a ppb-functor (with values in PB).
Moreover, i1 is injective on objects and morphisms.

Example 2.22. Given a Lie group G we have the principal bundle
i2(G) = (G → pt) with the Lie group G. Any Lie group homomorphism
ϕ : G1 → G2 can be considered as a PB-morphism i2(ϕ) = ϕ : i2(G1) →
i2(G2) with the Lie group homomorphism ϕ : G1 → G2. The correspondence
i2 : Gr → PB is a product preserving functor. Moreover, i2 is injective on
objects and morphisms.

Lemma 2.23. Any trivial PB-object M ×G of M with the Lie group G
can be written as the product M × G = i1(M) × i2(G) (modulo the obvious
identification M × pt = M).

3. Admissible triples corresponding to ppgb-functors. We are go-
ing to describe the ppgb-functors F : PB → FM and their natural transfor-
mations by means of so-called admissible triples and their morphisms. The
classification theorems for such functors F will be presented in Section 5.
In this section we construct admissible triples from ppgb-functors and mor-
phisms of admissible triples from natural transformations of ppgb-functors.
We start with the concept of admissible triples.

Let (F1, F2, α) be a triple consisting of a product preserving bundle func-
tor F1 : Mf → FM, a product preserving regular functor F2 : Gr →
Mf and a functor transformation α : ((F1)|Gr, F2) → F2. More precisely,
α is a family of mappings αG : F1(G) × F2(G) → F2(G) for any Lie
group G such that αG1 ◦ (F1(ν) × F2(ν)) = F2(ν) ◦ αG for any Lie group
morphism ν : G → G1. The regularity of F2 means that F2 transforms
smoothly parametrized families of Lie group homomorphisms into smoothly
parametrized families of maps. We know that F1(G) is a Lie group if G is,
and F1(ν) : F1(G)→ F1(G1) is a Lie group homomorphism if ν : G→ G1 is
(see Introduction).

Definition 3.1. An admissible triple is a triple (F1, F2, α) as above such
that αG : F1(G) × F2(G) → F2(G) is an action of the Lie group F1(G) on
F2(G) for any Lie group G.

For example, a triple (Id,K, α) consisting of the “identity” ppb-functor
Id :Mf → FM (Id(M) = (idM : M → M), Id(f) = f), a regular product
preserving functor K : Gr → Mf and a Gr-invariant family α = {αG}
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of actions αG : G × K(G) → K(G) (we considered several such (K,α) in
Example 2.15) is an admissible triple.

Definition 3.2. Let (F1, F2, α) and (H1, H2, β) be admissible triples.
A morphism ν : (F1, F2, α) → (H1, H2, β) of admissible triples is a pair
ν = (ν1, ν2) of a natural transformation ν1 : F1 → H1 of bundle functors
and a functor transformation ν2 : F2 → H2 such that ν2

G◦αG = βG◦(ν1
G×ν2

G)
for any Lie group G.

Any ppgb-functor F : PB → FM determines an admissible triple. In-
deed, we have the following example.

Example 3.3. Consider a ppgb-functor F : PB → FM. Composing
F with the product preserving functors i1 and i2 from Examples 2.21 and
2.22, we obtain a ppb-functor F (1) = F ◦ i1 : Mf → FM and a product
preserving functor F (2) = τ ◦ F ◦ i2 : Gr → Mf , where τ : FM → Mf is
the (forgetting) total space functor. Given a Lie group G we define

α
(F )
G := F (µG) : F (1)(G)× F (2)(G) = F (i1(G)× i2(G))→ F (2)(G),

where the multiplication µG : G × G → G of G is considered as a PB-
map µG : i1(G) × i2(G) → i2(G). Then (F (1), F (2), α(F )) is an admissible
triple. Indeed, the associative principle µG ◦ (idG×µG) = µG ◦ (µG × idG)
of the multiplication map µG : G × G → G of G can be interpreted as
the equality µG ◦ (i1(idG) × µG) = µG ◦ (i1(µG) × i2(idG)), where µG is
treated as a PB-morphism µG : i1(G)× i2(G)→ i2(G). Then applying F to
this equality we obtain the left action condition α

(F )
G ◦ (idF (1)(G)×α

(F )
G ) =

α
(F )
G ◦ (µF (1)(G)× idF (2)(G)). Similarly, from µG ◦ (i1(eG)× i2(idG)) = i2(idG),

we deduce α(F )
G ◦ (eF (1)(G)× idF (2)(G)) = idF (2)(G). Thus α

(F )
G is a left action.

Because of the canonical character of α(F ) we deduce that α(F ) is a functor
transformation.

Definition 3.4. Let F : PB → FM be a ppgb-functor. The admissible
triple (F (1), F (2), α(F )) described in Example 3.3 is called the admissible
triple corresponding to F .

Natural transformations of ppgb-functors PB → FM induce morphisms
of corresponding admissible triples. Indeed, we have the following example.

Example 3.5. Let η = {ηP } : F → H be a natural transformation
between ppgb-functors F,H : PB → FM. We have natural transforma-
tions η(1) := {ηi1(M)} : F (1) → H(1) and η(2) := {ηi2(G)} : F (2) → H(2),
where (F (1), F (2), α(F )) and (H(1), H(2), α(H)) are the admissible triples cor-
responding to F and H respectively. The pair ν(η) := (η(1), η(2)) is a mor-
phism (F (1), F (2), α(F )) → (H(1), H(2), α(H)) of admissible triples. Indeed,
ηi1(G)×i2(G) = ηi1(G) × ηi2(G) : F (i1(G))× F (i2(G))→ H(i1(G))×H(i2(G))
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and the multiplication map µG : i1(G) × i2(G) → i2(G) of G is a PB-
morphism. Then ηi2(G) ◦ F (µG) = H(µG) ◦ (ηi1(G) × ηi2(G)) as η is a natural
transformation. So, η(2)

G ◦ α
(F )
G = α

(H)
G ◦ (η(1)

G × η
(2)
G ) for any G.

Definition 3.6. Let η : F → H be a natural transformation of ppgb-
functors F,H : PB → FM. The morphism ν(η) described in Example 3.5 is
called the morphism of admissible triples corresponding to η.

4. Ppgb-functors corresponding to admissible triples. In this sec-
tion we construct ppgb-functors from admissible triples and natural trans-
formations between ppgb-functors from morphisms of admissible triples as
follows.

Example 4.1. Suppose we have an admissible triple (F1, F2, α). We con-
struct a gb-functor F = F (F1,F2,α) : PB → FM as follows. Let p : P → M
be a PB-object with the Lie group G. Since F1 is a ppb-functor on Mf ,
F1(p) : F1(P )→ F1(M) is a principal bundle with the Lie group F1(G) (see
Introduction). We define F (F1,F2,α)(P ) = F1(P )[F2(G), αG] to be the asso-
ciated bundle with the standard fibre F2(G) (being a left F1(G)-space by
the action αG). Then F (F1,F2,α)(P ) is a fibre bundle over F1(M) (and then
over M). Let f : P1 → P2 be a PB-morphism of PB-objects p1 : P1 → M1

and p2 : P2 → M2 covering f : M1 → M2 and with the corresponding Lie
group homomorphism ϕf : G1 → G2. Since F1 : Mf → FM is a ppb-
functor, F1(f) : F1(P1) → F1(P2) is a homomorphism of principal bundles
covering F1(f) : F1(M1)→ F1(M2) and with the Lie group homomorphism
F1(ϕf ) : F1(G1) → F1(G2) (see Introduction). We define F (F1,F2,α)(f) :
F (P1) → F (P2) by F (F1,F2,α)(f)([y, v]) = [F1(f)(y), F2(ϕf )(v)] for any
[y, v] ∈ F (F1,F2,α)(P1) with y ∈ F1(P1) and v ∈ F2(G1).

To see that F (F1,F2,α)(f) is well-defined, we prove the implication “if
[y1, v1] = [y2, v2] then [F1(f)(y1), F2(ϕf )(v1)] = [F1(f)(y2), F2(ϕf )(v2)]” as
follows. Let [y1, v1] = [y2, v2]. Then y2 = y1 · ξ−1 and v2 = αG1(ξ, v1) for
some ξ ∈ F1(G), where the dot · denotes the right action of the principal
bundle. We have F1(f)(y2) = F1(f)(y1) · (F1(ϕf )(ξ))−1. So, it remains to see
that F2(ϕf )(v2) = αG2(F1(ϕf )(ξ), F2(ϕf )(v1)). But the last equality is the
invariance property of the functor transformation α = {αG} with respect to
the Lie group homomorphism ϕf : G1 → G2. Thus F (F1,F2,α)(f) : F (P1) →
F (P2) is well-defined. The correspondence F (F1,F2,α) : PB → FM is a gb-
functor.

Lemma 4.2. The gb-functor F (F1,F2,α) : PB → FM is product pre-
serving.

Proof. Put F̃ := F (F1,F2,α). Let P1 and P2 be PB-objects. Let pri :
P1 × P2 → Pi (i = 1, 2) be the projections. We prove that IP1,P2 :=



Product preserving gauge bundle functors 179

(F̃ (pr1), F̃ (pr2)) : F̃ (P1 × P2)→ F̃ (P1)× F̃ (P2) is a diffeomorphism as fol-
lows. By a local trivialization argument we may assume that Pi = i1(Rmi)×
i2(Gi), i = 1, 2, are trivial PB-objects. Then F̃ (P1 × P2) = F̃ (i1(Rm1 ×
Rm2)×i2(G1×G2)) = F1(Rm1×Rm2)×F2(G1×G2) = F1(Rm1)×F1(Rm2)×
F2(G1)×F2(G2) and F̃ (P1)×F̃ (P2) = F1(Rm1)×F2(G2)×F1(Rm2)×F2(G2),
as given G ∈ Obj(Gr) we have F̃ (i1(Rm) × i2(G)) = F1(Rm) × F2(G)
modulo the usual identification [(y, eF1(G)), ξ] = (y, ξ). Then it is easily
seen that IP1,P2 : F1(Rm1) × F1(Rm2) × F2(G1) × F2(G2) → F1(Rm1) ×
F2(G1)× F1(Rm2)× F2(G2) satisfies IP1,P2(y1, y2, ξ1, ξ2) = (y1, ξ1, y2, ξ2) for
all (y1, y2, ξ1, ξ2) ∈ F1(Rm1) ×F1(Rm2)×F2(G1)×F2(G2), i.e. it is a diffeo-
morphism.

Definition 4.3. Let (F1, F2,α) be an admissible triple. The ppgb-functor
F (F1,F2,α) : PB → FM described in Example 4.1 is called the ppgb-functor
corresponding to (F1, F2, α).

Example 4.4. Let ν = (ν1, ν2) : (F1, F2, α) → (H1, H2, β) be a mor-
phism of admissible triples. Consider a PB-object p : P → M with the
standard Lie group G. We define η(ν)

P : F (F1,F2,α)(P ) → F (H1,H2,β)(P ) by
η

(ν)
P ([y, ξ]) = [ν1

P (y), ν2
G(ξ)] for any [y, ξ]∈F (F1,F2,α)(P ) =F1(P )[F2(G), αG].

One can standardly (as in Example 4.1) verify that the definition of η(ν)
P is

correct. The family η(ν) = {η(ν)
P } : F (F1,F2,α) → F (H1,H2,β) is a natural

transformation.

Definition 4.5. Let ν = (ν1, ν2) : (F1, F2, α) → (H1, H2, β) be a mor-
phism of admissible triples. The natural transformation η(ν) : F (F1,F2,α) →
F (H1,H2,β) described in Example 4.4 is called the natural transformation cor-
responding to ν.

5. Classification theorems. We have the following two important lem-
mas.

Lemma 5.1. Let F : PB → FM be a ppgb-functor, (F (1), F (2), α(F ))
be the admissible triple corresponding to F and F (F (1),F (2),α(F )) : PB →
FM be the ppgb-functor corresponding to (F (1), F (2), α(F )). Then F and
F (F (1),F (2),α(F )) are isomorphic.

Proof. Given a PB-object P = (p : P → M) with the Lie group G we
have a PB-map fP : i1(P ) × i2(G) → P defined by fP (p, ξ) = p · ξ, where
the dot · denotes the right (principal bundle) action of G on P . Define

Θ̃FP := F (fP ) : F (1)(P )× F (2)(G) = F (i1(P )× i2(G))→ F (P ),

where F (1)(P )×F (2)(G) = F (i1(P )× i2(G)) modulo the ppgb-functor iden-
tification. It remains to show that Θ̃FP can be factorized by means of the



180 W. M. Mikulski

quotient projection ΦP : F (1)(P ) × F (2)(G) → F (1)(P )[F (2)(G), α(F )
G ] and

that the quotient map ΘFP : F (F (1),F (2),α(F ))(P ) → F (P ) is a diffeomor-
phism. Because Θ̃FP is a functor, by a local trivialization argument we may
assume that P = i1(Rm) × i2(G). Then F (i1(Rm) × i2(G)) = F (1)(Rm) ×
F (2)(G) (ppgb-functor identification) and F (F (1),F (2),α(F ))(i1(Rm)× i2(G)) =
F (1)(Rm)×F (2)(G) by the usual identification [(y, eF (1)(G)), ξ] = (y, ξ). Since
fi1(Rm)×i2(G) = idRm ×µG : i1(Rm)× i1(G)× i2(G)→ i1(Rm)× i2(G), we see
that

Θ̃Fi1(Rm)×i2(G)(y, η, ξ) = (y, α(F )
G (η, ξ)) = Φi1(Rm)×i2(G)(y, eF (1)(G), α

(F )
G (η, ξ))

= Φi1(Rm)×i2(G)(y, η, ξ)

for any (y, η, ξ) ∈ F (1)(Rm)×F (1)(G)×F (2)(G). Hence Θ̃Fi1(Rm)×i2(G) induces
the identity map F (1)(Rm)× F (2)(G)→ F (1)(Rm)× F (2)(G).

Lemma 5.2. Let (F1, F2, α) be an admissible triple. Let F̃ = F (F1,F2,α) be
its corresponding ppgb-functor. Let (F̃ (1), F̃ (2), α(F̃ )) be the admissible triple
corresponding to F̃ . Then (F1, F2, α) is isomorphic to (F̃ (1), F̃ (2), α(F̃ )).

Proof. Since F1 :Mf → FM is product preserving, F1(pt) = {e1} is a
one-point manifold. Similarly, F2(pt) = {e2}. Then F̃ (1)(M) = F̃ (i1(M)) =
F1(M) ×αpt F2(pt) ∼= F1(M). So, we have a natural isomorphism V1 :
F̃ (1) → F1 given by V1

M ([ξ, e2]) = ξ. Similarly, F̃ (2)(G) = F̃ (i2(G)) =
F1(G) ×αG F2(G) ∼= F2(G). So we have a functor isomorphism V2 : F̃ (2)

→ F2 given by V2
G([eF1(G), η]) = η. We prove that V(F1,F2,α) := (V1,V2) :

(F̃ (1), F̃ (2), α(F̃ )) → (F1, F2, α) is an isomorphism of admissible triples. It
remains to verify that αG ◦ (V1

G×V2
G) = V2

G ◦α
(F̃ )
G . Let µG : i1(G)× i2(G)→

i2(G) be the PB-map given by the multiplication of G. Then (by definition)
α

(F̃ )
G = F̃ (µG) : F̃ (1)(G)× F̃ (2)(G) = F̃ (i1(G)× i2(G))→ F̃ (2)(G). Consider

arbitrary elements [ξ, e2] ∈ F̃ (1)(G) and [eF1(G), η] ∈ F̃ (2)(G). Then

V2
G ◦ α

(F̃ )
G ([ξ, e2], [eF1(G), η]) = V2

G ◦ F̃ (µG)([ξ, e2], [eF1(G), η])

= V2
G([eF1(G), αG(ξ, η)]) = αG(ξ, η) = αG ◦ (V1

G × V2
G)([ξ, e2], [eF1(G), η]).

Summing up we get the following classification theorems.

Theorem 5.3. The correspondence F 7→ (F (1), F (2), α(F )) induces a
bijection between the equivalence classes of ppgb-functors on PB and the
equivalence classes of admissible triples. The inverse bijection is induced by
(F1, F2, α) 7→ F (F1,F2,α).

Proof. If η : F → H is a natural isomorphism of ppgb-functors then
ν(η) : (F (1), F (2), α(F ))→ (H(1), H(2), α(H)) is an isomorphism of admissible
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triples. Thus the correspondence [F ] 7→ [(F (1), F (2), α(F ))] is well-defined.
Similarly, if ν : (F1, F2, α) → (H1, H2, β) is an isomorphism of admissible
triples, then η(ν) : F (F1,F2,α) → F (H1,H2,β) is a natural isomorphism of ppgb-
functors. Hence the correspondence [(F1, F2, α)] 7→ [F (F1,F2,α)] is also well-
defined. From Lemmas 5.1 and 5.2 it follows that the correspondences are
mutually inverse.

Theorem 5.4. LetF,H :PB→FM be ppgb-functors. Let (F (1),F (2),α(F ))
and (H(1), H(2), α(H)) be the admissible triples corresponding to F and H.
The correspondence η 7→ ν(η) is a bijection between the natural transfor-
mations F → H and the morphisms (F (1), F (2), α(F )) → (H(1), H(2), α(H))
of admissible triples. The inverse bijection is given by the correspondence
ν 7→ η[ν] described in Lemma 5.5 below.

Proof. This follows immediately from Lemma 5.5.

Lemma 5.5. Let F,H : PB→FM be ppgb-functors and (F (1), F (2), α(F ))
and (H(1), H(2), α(H)) be the admissible triples corresponding to F and H. Let
ν = (ν1, ν2) : (F (1), F (2), α(F )) → (H(1), H(2), α(H)) be a morphism of ad-
missible triples. Let ΘF : F (F (1),F (2),α(F ))→F and ΘH : F (H(1),H(2),α(H))→H

be the isomorphisms from the proof of Lemma 5.1. Let η(ν) : F (F (1),F (2),α(F ))

→ F (H(1),H(2),α(H)) be the natural transformation corresponding to ν. De-
fine a natural transformation η[ν] : F → H by η[ν]

P = ΘHP ◦ η
(ν)
P ◦ (ΘFP )−1

for any principal bundle P . Let ν̃ : (F (1), F (2), α(F )) → (H(1), H(2), α(H))
be the morphism of admissible triples corresponding to η[ν]. Then ν̃ = ν. If
E : F → H is another natural transformation such that the corresponding
morphism ν(E) : (F (1), F (2), α(F )) → (H(1), H(2), α(H)) of admissible triples
is such that ν(E) = ν then E = η[ν].

Proof. Clearly, if natural transformations η′, η′′ : F → H are such that
ν(η′) = ν(η′′) then η′ = η′′. So, it remains to show that ν̃ = ν, i.e.

ν1
M ◦ΘFi1(M) = ΘHi1(M) ◦ η

(ν)
i1(M) and ν2

G ◦ΘFi2(G) = ΘHi2(G) ◦ η
(ν)
i2(G)

for any manifold M and any Lie group G. We see that ΘFi1(M) and ΘFi2(G)

are the maps V1 and V2 from the proof of Lemma 5.2 for (F (1), F (2), α(F ))
in place of (F1, F2, α), and ΘHi1(M) and Θ

H
i2(M) are the maps V1 and V2 from

the proof of Lemma 5.2 for (H(1), H(2), α(H)) in place of (F1, F2, α). Then
ν1
M ◦ΘFi1(M)([ξ, e2]) = ν1

M (ξ) = ΘHi1(M)([ν
1
M (ξ), e2]) = ΘHi1(M) ◦ η

(ν)
i1(M)([ξ, e2])

(where e2 is as in the proof of Lemma 5.2 for (F (1), F (2), α(F )) (or (H(1), H(2),
α(H))) in place of (F1, F2, α)), and similarly for G in place of M .

Remark 5.6. Let G ⊂ Gr be a subcategory in the category of all Lie
groups and their morphisms. Denote by PB(G) the category of all principal
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bundles with Lie structure groups as G-objects and all principal bundle maps
with Lie group homomorphisms as G-morphisms. Suppose G satisfies the
following conditions (i)–(iv):

(i) The trivial Lie group pt is a G-object.
(ii) G is closed with respect to taking products (i.e. if G1 and G2 are
G-objects, then so is G1 ×G2).

(iii) Any Lie group Gr-isomorphic to a G-object is a G-object.
(iv) Any Lie group homomorphism of G-objects is a G-morphism.

Then (as is easily seen) the obvious versions of Theorems 5.3 and 5.4 for
ppgb-functors on PB(G) instead of PB = PB(Gr) hold.

The following categories satisfy conditions (i)–(iv): the category of
abelian Lie groups, the category of nilpotent Lie groups, the category of
solvable Lie groups, the category of compact Lie groups and the category of
trivial Lie groups.

Theorems 5.3 and 5.4 for trivial Lie groups are in fact the description
(mentioned in Introduction) of ppb-functors onMf in terms of Weil algebras.

Remark 5.7. In [Mi5], we presented a full description of ppgb-functors
F : VB → FM on the category VB of vector bundles and vector bundle
maps in terms of Weil modules. On the other hand the category VB is not of
the form VB ∼= PB(G) for any subcategory G satisfying conditions (i)–(iv)
of Remark 5.6. [Indeed, suppose that F : VB → FB is a gb-functor with the
point property F ({point}) = {point} with values in PB. Let E → M be a
VB-object such thatM is connected. F (E) is a principal bundle with the Lie
group GE . Let f : E → E be a VB-map. F (f) is a principal bundle map with
the Lie group homomorphism νf : GE → GE . There is a VB-map g : E → E
such that g = f over some open set U ⊂M and constant over some open set
V ⊂M . By locality, we have F (g) = F (f) over U and F (g) = const over V
(as F has the point property). Then νg is trivial and νg = νf . Consequently,
for every VB-map f : E → E, F (f) is a principal bundle map with the trivial
Lie group homomorphism. Putting f = idE , we deduce that νidE = idGE is
the trivial Lie group homomorphism. Then GE is a trivial Lie group for any
VB-object E → M . Consequently, F (E) = M = (idM : M → M) ∈ PB
with the trivial Lie group for any VB-object E → M .] So, the result from
[Mi5] cannot be a consequence (version) of Theorems 5.3 and 5.4.

6. The local trivialization expression. Roughly speaking, Theorems
5.3 and 5.4 say that a ppgb-functor F : PB → FM is determined by the
admissible triple (F (1), F (2), α(F )) corresponding to F . In particular, the ex-
tension F (f) : F (P )→ F (P1) of a PB-map f : P → P1 is determined by f
and (F (1), F (2), α(F )). Below, we present the local trivialization expression
of F (f) : F (P )→ F (P1) by means of (F (1), F (2), α(F )).
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Proposition 6.1. Let F : PB → FM be a ppgb-functor; and let (F (1),
F (2), α(F )) be the admissible triple corresponding to F . Let f : i1(Rm1) ×
i2(G1)→ i1(Rm2)× i2(G2) be a PB-map between trivial PB-objects with the
group homomorphism ϕ : G1 → G2. We can write f(x, ξ) = (f(x), h(x)·ϕ(ξ))
for some maps f : Rm1 → Rm2 and h : Rm1 → G2. Then F (f) : F (1)(Rm1)×
F (2)(G1)→ F (1)(Rm2)× F (2)(G2) is given by

F (f)(y, η) = (F (1)(f)(y), α(F )
G2

(F (1)(h)(y), F (2)(ϕ)(η)))

for any y ∈ F (1)(Rm1) and η ∈ F (2)(G1). In particular, F : PB → FM is
of finite order (the same as F (1)).

Proof. Clearly pr1 ◦ f = i1(f) ◦ pr1 and pr2 ◦ f = µG2 ◦ (i1(h)× i2(idG)),
where pri are the projections. Applying F , we get

F (f) = (F (i1(f)) ◦ Pr1, F (µG2) ◦ (F (i1(h))× F (i2(ϕ)))),

where Pr1 : F (i1(Rm1)) × F (i2(G)) → F (i1(Rm1)) is the usual projection.
Then F (f) = (F (1)(f) ◦Pr1, α

(F )
G2
◦ (F (1)(h)×F (2)(ϕ))). The particular case

of the proposition is clear because of the above local trivialization expression
(as jrx(f1) = jrx(f2) iff jrx(f1

) = jrx(f2
) and jrx(h1) = jrx(h2) and ϕ1 = ϕ2).

7. The natural transformations F|PBm(G) → H|PBm(G). Let F,H :
PB → FM be ppgb-functors. We fix a Lie group G and a natural numberm.
In this section we describe all natural transformations F|PBm(G) → H|PBm(G)

between the gauge-natural bundles F|PBm(G) andH|PBm(G) (where F|PBm(G) :
PBm(G) → FM is the restriction of F to PBm(G) ⊂ PB). We start with
the following definition.

Definition 7.1. Let F , H and G be as above. Let (F (1), F (2), α(F )) and
(H(1), H(2), α(H)) be the admissible triples corresponding to F and H, and
A(F ) = F (1)(R) and A(H) = H(1)(R) be the Weil algebras corresponding
to F (1) and H(1). An (F,H,G)-admissible pair is a pair (ρ, σ) of mappings
ρ : F (2)(G) × A(F ) → A(H) and σ : F (2)(G) → H(2)(G) with the following
three properties:

(a) Given y ∈ F (2)(G), c ∈ F (1)(G) and a ∈ A(F ), we have ρ(y, a) =
ρ(α(F )

G (c, y), a).
(b) Given y ∈ F (2)(G), the map ρy : A(F ) → A(H) defined by ρy(a) =

ρ(y, a) for all a ∈ A(F ) is a Weil algebra homomorphism.
(c) Given c ∈ F (1)(G) and y ∈ F (2)(G), σ◦α(F )

G (c, y) =α
(H)
G (ρ̃y(c), σ(y)),

where ϕ̃ : F (1) → H(1) is the natural transformation corresponding
to a Weil algebra homomorphism ϕ : A(F ) → A(H).

Any natural transformation η : F|PBm(G) → H|PBm(G) between gauge-
natural bundles determines an (F,H,G)-admissible pair. Namely, we have
the following example.
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Example 7.2. Using η, we define ρ(η) : F (2)(G)×A(F ) → A(H) by

ρ(η)(y, a) = H(p1) ◦ ηi1(Rm)×i2(G)(F
(1)(j)(a), y),

where j : i1(R) → i1(Rm), j(t) = (t, 0), t ∈ R and p1 : i1(Rm) × i2(G) →
i1(R), p1(x, g) = x1, x = (x1, . . . , xm) ∈ Rm, g ∈ G, are PB-maps. We also
define σ(η) : F (2)(G)→ H(2)(G) by

σ(η)(v) = H(pr2) ◦ ηi1(Rm)×i2(G)(0, v),

where 0 ∈ F (1)(Rm) and pr2 : i1(Rm)× i2(G)→ i2(G) is the projection.

Lemma 7.3. If m ≥ 2, then (ρ(η), σ(η)) is an (F,H,G)-admissible pair.

First we prove the following technical fact.

Lemma 7.4. Let F = TA : Mf → FM be a ppb-functor. Let G be a
Lie group and m ≥ 1 be an integer. Then the elements F (h)(d) ∈ F (G) for
h : Rm → G and d ∈ F (Rm) generate the group F (G).

Proof. Clearly, in any connected component of F (G) there is an element
of the form F (h)(d) for some h : Rm → G and d ∈ F (Rm). So, without loss
of generality, we can assume that F (G) (or equivalently G) is connected.
Clearly, L(G) is the set of all h̃(c) for linear maps h̃ : Rm → L(G) and
c ∈ Rm. Then L(TA(G)) = L(G)⊗A is generated (over R) by the elements
TA(h̃)(c ⊗ a) = h̃(c) ⊗ a for linear h̃ : Rm → L(G), a ∈ A and c ∈ Rm.
Then we can write L(F (G)) = V1 ⊕ · · · ⊕ Vk, where Vi = span{F (h̃i)(di)},
h̃i : Rm → L(G) is linear and di ∈ F (Rm) for i = 1, . . . , k = dim(L(F (G))).
By the linearity of h̃i, tF (h̃i)(di) = F (th̃i)(d) = F (h̃i)(tdi) for all t ∈ R. By
the general Lie group theory, the map Φ : L(F (G))→ F (G) given by Φ(v) =
ExpF (G)(v1) · . . . · ExpF (G)(vk), v = (v1, . . . , vk) ∈ L(F (G)) = V1 ⊕ · · · ⊕ Vk
is a diffeomorphism from some neighbourhood of 0 ∈ L(F (G)) onto some
neighbourhood of eF (G) ∈ F (G). Then the formula F (ExpG) = ExpF (G) (see
Introduction) ends the proof.

Proof of Lemma 7.3. Using Lemma 7.4 and Proposition 6.1 we verify that
(ρ(η), σ(η)) from Example 7.2 satisfies conditions (a)–(c) in Definition 7.1.

(a) Using the invariance H(ψτ )◦ηi1(Rm)×i2(G) = ηi1(Rm)×i2(G)◦F (ψτ ) of η
with respect to the PBm(G)-morphisms ψτ = i1(idR× τ idRm−1)× i2(idG) :
i1(Rm)× i2(G)→ i1(Rm)× i2(G) for τ > 0, we get

H(p1) ◦ ηi1(Rm)×i2(G)((b
1, τb2, . . . , τbm), y) = H(p1) ◦ ηi1(Rm)×i2(G)(b, y)

for any b = (b1, . . . , bm) ∈ (A(F ))m = F (1)(Rm) and any y ∈ F (2)(G). Letting
τ → 0 we get ρ(η)(y, b1) = H(p1)◦ηi1(Rm)×i2(G)(b, y) for any b and y as above.
Then using the invariance of η with respect to thePBm(G)-maps f : i1(Rm)×
i2(G) → i1(Rm) × i2(G) of the form f(x, g) = (x, h(x2, . . . , xm)g), x ∈ Rm,
g ∈ G, where h : Rm−1 → G, we get ρ(η)(y, b1) = ρ(η)(α(F )

G (F (1)(h)(d), y), b1)
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for any b = (b1, d) and y as above. Using Lemma 7.4 (with m−1 ≥ 1 instead
ofm) we get ρ(η)(y, b1) = ρ(η)(α(F )

G (c, y), b1) for any y ∈ F (2)(G), c ∈ F (1)(G)
and b1 ∈ A(F ).

(b) Using a similar technique to the proof of [KMS, Lemma 42.7], we show
that ρ(η)

y : A(F ) → A(H) is an algebra homomorphism (i.e. that (ρ(η), σ(η))
satisfies condition (b) in Definition 7.1).

1. Linearity. Using the invariance of η with respect to the PBm(G)-maps
i1(τ idRm) × i2(idG) : i1(Rm) × i2(G) → i1(Rm) × i2(G) for τ > 0 we get
the homogeneity condition ρ(η)

y (τa) = τρ
(η)
y (a). Then ρ(η)

y : A(F ) → A(H) is
linear by the homogeneous function theorem.

2.Multiplicity. Let ϕ : Rm → Rm be given by ϕ(x1, . . . , xm) = (x1 +(x1)2,
x2, . . . , xm). Using the invariance of η with respect to the map i1(ϕ) ×
i2(idG) (it is a PBm(G)-map over some neighbourhood of 0 ∈ Rm) we get
ρ

(η)
y (a+a2) = ρ

(η)
y (a)+(ρ(η)

y (a))2. Then ρ(η)
y (a2) = (ρ(η)

y (a))2 for any a∈A(F ).
Hence ρ(η)

y (ab) = ρ
(η)
y (a)ρ(η)

y (b) for any a, b ∈ A(F ) because of the polariza-
tion formula.

3. Unity preservation. Using the invariance of η with respect to the
PBm(G)-map i1(τ(1,0,...,0))×i2(idG) : i1(Rm)×i2(G)→ i1(Rm)×i2(G), where
τ(1,...,0) : Rm → Rm is the translation by (1, 0, . . . , 0), we get ρ(η)

y (1 + a) =

1 + ρ
(η)
y (a). Then ρ(η)

y (1) = 1.

(c) Using the invariance of η with respect to the PBm(G)-maps i1(τ idRm)
× i2(G) : i1(Rm) × i2(G) → i1(Rm) × i2(G) for τ > 0 we get H(pr2) ◦
ηi1(Rm)×i2(G)(τb, y) = H(pr2) ◦ ηi1(Rm)×i2(G)(b, y) for any b ∈ F (1)(Rm) and
y ∈ F (2)(G). Putting τ → 0 we get σ(η)(y) = H(pr2) ◦ ηi1(Rm)×i2(G)(b, y)
for any y and b as above. Then using the invariance of η with respect to
the PBm(G)-morphisms f : i1(Rm) × i2(G) → i1(Rm) × i2(G) of the form
f(x, g) = (x, h(x)g), where h : Rm → G, we obtain

σ(η) ◦ α(F )
G (F (1)(h)(b), y) = α

(H)
G (ρ̃(η)

y (F (1)(h)(b)), σ(η)(y))

for any b and y as above. Then using Lemma 7.4 we have

σ(η) ◦ α(F )
G (d, y) = α

(H)
G (ρ̃(η)

y (d), σ(η)(y))

for any y ∈ F (2)(G) and any d from some subset generating F (1)(G). But
(see Introduction) ρ̃(η)

y : F (1)(G) → H(1)(G) is a Lie group homomorphism
because ρ̃(η)

y : F (1) → H(1) is a natural transformation. Moreover, we have
proved the invariance of ρ(η). So, the last equality holds for all d ∈ F (1)(G).

Example 7.5. Let (ρ, σ) be an (F,H,G)-admissible pair. Given a prin-
cipal bundle P ∈ Obj(PBm(G)), we define η(ρ,σ)

P : F (F (1),F (2),α(F ))(P ) →



186 W. M. Mikulski

F (H(1),H(2),α(H))(P ) by

η
(ρ,σ)
P ([ξ, y]) = [ρ̃y(ξ), σ(y)]

for any ξ ∈ F (1)(P ) and any y ∈ F (2)(G), where ρ̃y : F (1)(P ) → H(1)(P )
is the natural transformation corresponding to the algebra homomorphism
ρy : A(F ) → A(H). Using properties (a)–(c) of Definition 7.1 one can easily

show that η(ρ,σ)
P is well-defined. Clearly, η(ρ,σ) = {η(ρ,σ)

P } : F (F (1),F (2),α(F ))
|PBm(G) →

F
(H(1),H(2),α(H))
|PBm(G) is a natural transformation.

Summing up we obtain the following classification theorem.

Theorem 7.6. Let F,H : PB → FM be ppgb-functors. Letm ≥ 2 and G
be a Lie group. Then the correspondence η 7→ (ρ(η), σ(η)) (see Example 7.2)
is a bijection between natural transformations F|PBm(G) → H|PBm(G) and
(F,H,G)-admissible pairs. The inverse bijection is given by (ρ, σ) → ΘH ◦
η(ρ,σ) ◦ (ΘF )−1, where η(ρ,σ) is defined in Example 7.5 and ΘF is the natural
isomorphism from the proof of Lemma 5.1.

8. Natural transformations between extended Weil functors and
between vertical Weil functors. As a simple application of Theorem 5.4
we determine explicitly all natural transformations TA → TB between the
extended Weil functors on PB.

Corollary 8.1. Any natural transformation η : TA → TB between the
extended Weil functors TA, TB : PB → FM is of the form

ϕ̃P : TA(P )→ TB(P ), P ∈ Obj(PB),

for some uniquely determined (by η) Weil algebra homomorphism ϕ : A→ B,
where ϕ̃N : TA(N)→ TB(N), N ∈ Obj(Mf), is the natural transformation
of the usual Weil functors onMf corresponding to ϕ.

Proof. Clearly, the admissible triple corresponding to F = TA : PB →
FM is (F (1), F (2), α(F )) = (TA, TA|Gr, µ

A), where TA : Mf → FM is the
(usual) Weil functor corresponding to A and µAG = µTA(G) is the multipli-
cation of the Lie group TA(G), treated (in the obvious way) as an action
of TA(G) on TA(G). Let ν = (ν1, ν2) : (TA, TA|Gr, µ

A) → (TB, TB|Gr, µ
B)

be a morphism of admissible triples. Then (by Definition 3.2 of morphisms
of admissible triples) µBG(ν1

G(g), ν2
G(eTA(G))) = ν2

G(µAG(g, eTA(G))) = ν2
G(g)

for all g ∈ TA(G). For the trivial morphism ẽG : G → G we have ν2
G ◦

TA(ẽG)(eTA(G)) = TB(ẽG) ◦ ν2
G(eTA(G)), and then ν2

G(eTA(G)) = eTB(G).
Hence ν1

G = ν2
G. But ν1 = ϕ̃ : TA → TB for some Weil algebra ho-

momorphism ϕ : A → B. Thus the morphisms between the admissible
triples (TA, TA|Gr, µ

A) and (TB, TB|Gr, µ
B) corresponding to TA and TB are
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in bijection with the algebra homomorphisms between A and B. By The-
orem 5.4, the morphisms between the admissible triples (TA, TA|Gr, µ

A) and
(TB, TB|Gr, µ

B) corresponding to TA and TB are in bijection with the nat-
ural transformations between the ppgb-functors TA : PB → FM and
TB : PB → FM. By the theory of ppb-functors on manifolds, the algebra
homomorphisms between A and B are in bijection with the natural transfor-
mations of the usual Weil functors TA :Mf → FM and TB :Mf → FM.
The above facts complete the proof.

As a simple application of Theorem 7.6 we describe explicitly all natural
transformations TA|PBm(G) → TB|PBm(G).

Corollary 8.2. If m ≥ 2 and G is a Lie group, then any natural trans-
formation η : TA|PBm(G) → TB|PBm(G) is of the form

Rξ ◦ ϕ̃P : TA(P )→ TB(P ), P ∈ Obj(PBm(G)),

for a uniquely determined (by η) Weil algebra homomorphism ϕ : A→ B
and a uniquely determined (by η) ξ ∈ TB(G), where R : TB(P )× TB(G)→
TB(P ) is the right action of TB(G) on the principal bundle TB(p) : TB(P )
→ TB(M).

Proof. The admissible triple corresponding to F = TA : PB → FM
is (F (1), F (2), α(F )) = (TA, TA|Gr, µ

A) (as in the proof of Corollary 8.1). Let
(ρ, σ) be a (TA, TB, G)-admissible pair. From condition (a) in Definition 7.1
for y = eTA(G) ∈ TA(G) = F (2)(G) we get ρ(c, a) = ρ(eTA(G), a), c ∈
A = A(F ). From condition (c) in Definition 7.1 for y = eTA(G) we see that
σ(c) = ρ̃e

TA(G)
(c) · σ(eTA(G)). Then (ρ, σ) is determined by the Weil algebra

homomorphism ρe
TA(G)

: A → B and the value σ(eTA(G)) ∈ TB(G). Hence
Corollary 8.2 is a simple consequence of Theorem 7.6.

Let V A, V B : PB → FM be the vertical Weil functors (Example 2.14)
corresponding to the Weil algebras A and B. As a next simple application
of Theorem 7.6 we can determine all natural transformations V A

|PBm(G) →
V B
|PBm(G) as follows.

Example 8.3. Let k : TAeG(G) → TBeG(G) be a map. Given a PBm(G)-
object P → M define η[k]

P : V A(P ) → V B(P ) as follows. Let v ∈ TAp (Px),
p ∈ Px, x ∈ M . Choose a trivialization ψ : P|U → Rm × G such that
ψ(p) = (0, eG). We put η[k]

P (v) = (TB(ψx))−1(k(TA(ψx)(v))), where ψx :
Px → {0}×G = G is the restriction of ψ. If ψ′ is another such trivialization
then ψx = ψ′x. Thus the definition of η[k]

P : V A(P )→ V B(P ) is correct. The
correspondence η[k] : V A

|PBm(G) → V B
|PBm(G) is a natural transformation.
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Example 8.4. Let l : TAeG(G) → G be a map. Given a PBm(G)-object
P → M define η

(l)
P : V A(P ) → V A(P ) (now A = B) as follows. Let

v ∈ TAp (Px), p ∈ Px, x ∈ M . Similarly to Example 8.3, choose a trivial-
ization ψ : P|U → Rm × G such that ψ(p) = (0, eG) and put η(l)

P (v) =
(TA(ψx))−1(TA(rl(TA(ψx)(v)))(TA(ψx)(v))), where rg is the right translation

on G by g ∈ G. The definition of η(l)
P : V A(P ) → V A(P ) is correct because

ψx is uniquely determined. In particular, if l = g ∈ G is a constant map,
then η

(g)
P = V A(rg) : V A(P ) → V A(P ), where V A is treated as a functor

on fibred manifolds (rg is not a PBm(G)-map, but it is a fibred map). The
correspondence η(l) : V A

|PBm(G) → V A
|PBm(G) is a natural transformation.

Corollary 8.5. If m ≥ 2, then any natural transformation η : V A
|PBm(G)

→ V B
|PBm(G) is of the form

ηP = η
[k]
P ◦ η

(l)
P : V A(P )→ V B(P )

for some uniquely determined (by η) k : TAeG(G) → TBeG(G) and some l :
TAeG(G)→ G. In the special case A = B = D, we get a full description of all
natural transformations η : V|PBm(G) → V|PBm(G) in terms of pairs (k, l) of
maps k : L(G)→ L(G) and l : L(G)→ G.

Proof. The admissible triple corresponding to F = V A is (F (1), F (2), α(F ))
= (TR, TA|Gr, µ̃

A), where µ̃AG : G × TA(G) → TA(G), µ̃AG(g, ξ) = TA(Lg)(ξ),
Lg : G → G, Lg(g1) = gg1, g, g1 ∈ G, ξ ∈ TA(G). Then any (V A, V B, G)-
admissible pair (ρ, σ), ρ : TA(G) × R → R, σ : TA(G) → TB(G), is deter-
mined by (l, k) := σ|TAeG (G) : TAeG(G) → TB(G) ∼= G× TBeG(G). Theorem 7.6
ends the proof.

9. Prolongation of principal connections. By definition (see [KMS]),
a general connection on a fibred manifold p : Y → M is a section Γ : Y →
J1(Y ) of the first jet prolongation J1(Y ) → Y of Y → M , which can be
(equivalently) considered as the corresponding lifting map Γ : Y ×MT (M)→
T (Y ). A principal connection on a principal bundle p : P → M is a right
invariant general connection Γ on p : P →M .

It is rather well-known that if Γ : P → J1P is a principal connection on
a principal bundle p : P → M with the Lie group G and Y = P [S, µ]→ M
is the associated bundle to P with a standard fibre S and a left action
µ : G × S → S, then one can well-define a general connection Γ [S,µ] :
Y → J1Y on Y → M by Γ [S,µ]([q, s]) := j1x([σ, s]), [q, s] ∈ P [S, µ], where
j1x(σ) = Γ (q) ∈ J1(P ) (σ : M → P is a local section near x = p(q)).

The following example shows that Theorem 5.3 can be applied to pro-
longation of principal connections.
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Example 9.1. Let F : PB → FM be a ppgb-functor. Let Γ : P →
J1P be a principal connection on a principal bundle p : P → M with
the Lie group G. We can construct a general connection F(Γ ) on F (p) :
F (P ) → F (M) as follows. By Theorem 5.3, we can assume that F (P ) =
F1(P )[F2(G), αG], where (F1, F2, α) is an admissible triple. Now, by the
theory of prolongation of principal connections to ppb-functors on Mf ,
we have the principal connection F1(Γ ) on the principal bundle F1(p) :
F1(P ) → F1(M) (see Introduction). This principal connection F1(Γ ) in-
duces a general connection F(Γ ) := F1(Γ )[F2(G),αG] on the associated bundle
F (p) : F (P ) = F1(P )[F2(G), αG]→ F1(M) = F (M).

Clearly, one can also use other principal connections B(Γ ) on F1(P ) →
F1(M) canonically depending on Γ instead of F1(Γ ) and obtain general
connections B(Γ )[S,αG] on F (p) : F (P )→ F (M).

10. A “reduction” theorem for gauge-natural operators lifting
principal connections to Weil bundles. Let A be a Weil algebra, m
be a natural number and G be a Lie group. Let L(G) be the Lie algebra
of G. In accordance with the last sentence of Section 9, we try to describe
the PBm(G)-gauge-natural operators B : Q|PBm(G)  Q(TA → TAB) (lift-
ing principal connections Γ on PBm(G)-objects p : P → M to principal
connections B(Γ ) on TA(p) : TA(P ) → TA(M)). More precisely, in this
section we reduce the classification of all PBm(G)-gauge-natural operators
B : Q|PBm(G)  Q(TA → TAB) to the classification of all Mfm-natural
operators C : T ∗ ⊗ L(G)|Mfm  (T ∗ ⊗ L(TA(G)))TA (lifting L(G)-valued
1-forms ω ∈ Ω1(M,L(G)) on m-manifolds M to L(TA(G))-valued 1-forms
C(ω)∈Ω1(TA(M),L(TA (G))) on TA(M)) satisfying the so-called Ad-invar-
iance condition.

We start with the following two definitions (particular cases of the general
definition of (gauge) natural operators in the sense of [KMS]).

Definition 10.1. Let A,m,G be as above. A PBm(G)-gauge-natural
operator B : Q|PBm(G)  Q(TA → TAB) is a PBm(G)-invariant family of
regular operators (functions)

BP : Conprinc(P )→ Conprinc(TA(P ))

for any PBm(G)-object p : P → M , where Conprinc(P ) is the set of all
principal connections on p : P → M and (similarly) Conprinc(TA(P )) is the
set of all principal connections on TA(p) : TA(P )→ TA(M). The PBm(G)-
invariance of B means that if principal connections Γ ∈ Conprinc(P ) and
Γ1 ∈ Conprinc(P1) are f -related by a PBm(G)-map f : P → P1 (i.e. Γ1 ◦ f =
J1(f) ◦ Γ ), then the principal connections BP (Γ ) and BP1(Γ1) are TA(f)-
related. The regularity means that B transforms smoothly parametrized fam-
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ilies of principal connections into smoothly parametrized ones. A PBm(G)-
gauge-natural operator B : Q|PBm(G)  Q(TA → TAB) is affine if BP is an
affine map for any PBm(G)-object p : P → M (i.e. BP (tΓ + (1 − t)Γ1) =
tBP (Γ ) + (1− t)BP (Γ1) for any Γ, Γ1 ∈ Conprinc(P ) and any t ∈ R).

For example, the family T A : Q|PBm(G)  Q(TA → TAB) given by
T AP (Γ ) = T A(Γ ), the principal connection as in Introduction for F = TA, is
an affine PBm(G)-gauge-natural operator.

The space of all PBm(G)-gauge-natural operators B : Q|PBm(G)  
Q(TA→ TAB) is (in the obvious way) an affine space. Actually, for PBm(G)-
gauge-natural operators B,B1 : Q|PBm(G)  Q(TA → TAB) and a real num-
ber t ∈ R, the PBm(G)-gauge-natural operator tB+(1− t)B1 : Q|PBm(G)  
Q(TA → TAB) is given by (tB + (1− t)B1)P (Γ ) = tBP (Γ ) + (1− t)B1

P (Γ )
for any Γ ∈ Conprinc(P ) and any PBm(G)-object p : P →M .

Definition 10.2. Let m be a natural number, and V and W be finite-
dimensional real vector spaces. AnMfm-natural operator C : T ∗⊗W|Mfm  
(T ∗ ⊗ V )TA is anMfm-invariant family of regular operators (functions)

CM : Ω1(M,W )→ Ω1(TA(M), V )

for any m-manifold (i.e. anyMfm-object) M , where Ω1(M,W ) is the space
of allW -valued 1-forms onM . TheMfm-invariance and the regularity mean
almost the same as in Definition 10.1. AnMfm-natural operator C : T ∗ ⊗
W|Mfm  (T ∗ ⊗ V )TA is linear if CM is an R-linear map for any Mfm-
object M .

The space of allMfm-natural operators C : T ∗ ⊗W|Mfm (T ∗ ⊗ V )TA

is (in the obvious way) a vector space over R. A full description of allMfm-
natural operators C : T ∗⊗W|Mfm  (T ∗⊗V )TA can be found in Appendix.

We need the following definition.
Definition 10.3. Let A,m,G be as in Definition 10.1. We say that

an Mfm-natural operator C : T ∗ ⊗ L(G)|Mfm  (T ∗ ⊗ L(TA(G)))TA (as
in Definition 10.2 for W = L(G) and V = L(TA(G))) satisfies the Ad-
invariance condition if

CM (Adh−1 · ω + h∗ΘG) = AdTA(h)−1 · CM (ω) + TA(h)∗ΘTA(G)

for any map h : M → G and any ω ∈ Ω1(M,L(G)), where ΘG is the Maurer–
Cartan form of G, Ad denotes the adjoint representation and (of course) h∗Θ
is the pull-back of ΘG with respect to h. Moreover, Adh−1 ·ω ∈ Ω1(M,L(G))
is defined by (Adh−1 · ω)x(X) = Adh(x)−1(ωx(X)) for X ∈ Tx(M), x ∈ M .
We say that C satisfies the reduced Ad-invariance condition if

CM (Adh−1 · ω + h∗ΘG) = AdTA(h)−1 · CM (ω)

for any ω ∈ Ω1(M,L(G)), h : M → G, M ∈ Obj(Mfm).
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Lemma 10.4. If G is commutative, then the reduced Ad-invariance con-
dition is equivalent to

CM (ω + df) = CM (ω)

for any ω ∈ Ω1(M,L(G)), f : M → L(G), M ∈ Obj(Mfm).

Proof. The lemma is true for G = (Rn,+) because in this case ΘG =
(dx1, . . . , dxn) (so h∗ΘG = dh) and the adjoint representations Ad are triv-
ial. Consequently, the above fact is true for any commutative Lie group of
dimension n because commutative Lie groups of dimension n are locally Lie
group isomorphic to (Rn,+) andMfm-natural operators are local.

The space of Mfm-natural operators C : T ∗ ⊗ L(G)|Mfm  (T ∗ ⊗
L(TA(G)))TA satisfying the Ad-invariance condition is (in the obvious way)
an affine space over the vector space of Mfm-natural operators C : T ∗ ⊗
L(G)Mfm  (T ∗⊗L(TA(G)))TA satisfying the reduced Ad-invariance con-
dition.

The following example shows that a PBm(G)-gauge-natural operator B :
Q|PBm(G)  Q(TA → TAB) induces an Mfm-natural operator CB : T ∗ ⊗
L(G)|Mfm  (T ∗ ⊗ L(TA(G)))TA satisfying the Ad-invariance condition.

Example 10.5. Let B : Q|PBm(G)  Q(TA → TAB) be a PBm(G)-
gauge-natural operator. Given an L(G)-valued 1-form ω ∈ Ω1(M,L(G)) on
an m-manifold M we define a L(TA(G))-valued 1-form CBM (ω) ∈ Ω1(TAM,
L(TA(G))) on TA(M) as follows. Let σG : M → M × G be the section
x 7→ (x, eG) of the trivial PBm(G)-object M × G → M . There exists a
unique principal connection Γ on the trivial principal bundle M ×G → M
such that σ∗GωΓ = ω, where ωΓ : T (M × G) → L(G) is the connection
form of Γ . We put CBM (ω) := TA(σG)∗ωBM×G(Γ ). The family CB = {CBM} :
T ∗ ⊗ L(G)|Mfm  (T ∗ ⊗ L(TA(G)))TA of functions CBM : Ω1(M,L(G)) →
Ω1(TA(M),L(TA(G))) for any m-manifold M is anMfm-natural operator.

Lemma 10.6. TheMfm-natural operator CB satisfies the Ad-invariance
condition.

Proof. Consider a vector-valued form ω ∈ Ω1(M,L(G)) and a map
h : M → G. Let Γ be the unique principal connection on M × G → M
such that σ∗GωΓ = ω, where (as above) σG : M → M × G is defined by
σG(x) = (x, eG) and ωΓ is the connection form of Γ . Let σh : M → M ×G
be a section of M ×G→M defined by σh = σG · h. Then according to the
general theory of principal connections (see [KN])

σ∗hωΓ = Adh−1 · σ∗GωΓ + h∗ΘG,(10.1)

where ΘG is the Maurer–Cartan 1-form on G. Let Ψh : M × G → M × G
be defined by Ψh(x, g) = (x, h(x) · g). Let Γh be the image of Γ under Ψ−1

h .
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Then (as is readily seen)

σ∗GωΓh = σ∗hωΓ .(10.2)

Using Proposition 6.1 we easily deduce that TA(σG) = σTA(G) : TA(M) →
TA(M)×TA(G) (i.e. TA(σG)(x̃) = (x̃, eTA(G))), TA(σh) = σTA(h) : TA(M)→
TA(M) × TA(G) (i.e. TA(σh) = TA(σG) · TA(h) = σTA(G) · TA(h)) and
TA(Ψh) = ΨTA(h) : TA(M)×TA(G)→ TA(M)×TA(G) (i.e. TA(Ψh)(x̃, g̃) =
(x̃, TA(h)(x̃) · g̃)). By the invariance of B with respect to Ψh, BM×G(Γh) is
the image of BM×G(Γ ) under TA(Ψh)−1. Then (just as (10.1) and (10.2))
we have

(10.3) TA(σh)∗ωBM×G(Γ ) = AdTA(h)−1 ·TA(σG)∗ωBM×G(Γ )+T
A(h)∗ΘTA(G)

(where ωBM×G(Γ ) is the connection form of BM×G(Γ )) and

TA(σG)∗ωBM×G(Γh) = TA(σh)∗ωBM×G(Γ ).(10.4)

By the definition of CB (see Example 10.5) we immediately get

CBM (σ∗GωΓh) = TA(σG)∗ωBM×G(Γh).(10.5)

Consequently,

CBM (Adh−1 · ω + h∗ΘG) = CBM (σ∗hωΓ ) = CBM (σ∗GωΓh)

= TA(σG)∗ωBM×G(Γh) = TA(σh)∗ωBM×G(Γ )

= AdTA(h)−1 · TA(σG)∗ωBM×G(Γ ) + TA(h)∗ΘTA(G)

= AdTA(h)−1 · CBM (ω) + TA(h)∗ΘTA(G).

Conversely, we have the following construction.

Example 10.7. Let C : T ∗ ⊗ L(G)|Mfm  (T ∗ ⊗ L(TA(G)))TA be an
Mfm-natural operator satisfying the Ad-invariance condition. Let Γ be a
principal connection on a PBm(G)-object p : P → M , and let ωΓ : TP →
L(G) be its connection form. We define a principal connection BC

P (Γ ) on
TA(p) : TA(P )→ TA(M) by

TA(σ)∗ωBCP (Γ ) = CM (σ∗ωΓ )

for any (local) section σ : M → P . If σ1 = σ · h is another local section,
where h : M → G is a (local) map, then σ∗1ωΓ = Adh−1 · σ∗ωΓ + h∗ΘG.
Consequently, using the Ad-invariance condition of C we get

TA(σ1)∗ωBCP (Γ ) = AdTA(h)−1 · TA(σ)∗ωBCP (Γ ) + TA(h)∗ΘTAG.

Therefore the definition of BC
P (Γ ) is correct. Then for any PBm(G)-object

P we have BC
P : Conprinc(P ) → Conprinc(TA(P )). The family BC = {BC

P } :
Q|PBm(G)  Q(TA → TAB) is a PBm(G)-gauge-natural operator.

Summing up, we obtain the following “reduction” theorem.
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Theorem 10.8. Let G be a Lie group, A be a Weil algebra and m be a
natural number. The correspondence B 7→ CB is an affine isomorphism be-
tween the affine space of PBm(G)-gauge-natural operators B : Q|PBm(G)  
Q(TA → TAB) and the affine space of Mfm-natural operators C : T ∗ ⊗
L(G)|Mfm  (T ∗ ⊗ L(TA(G)))TA satisfying the Ad-invariance condition
(the inverse isomorphism is given by the correspondence C → BC). In
other words, the correspondence B 7→ CB − CT A is a bijection between the
PBm(G)-gauge-natural operators B : Q|PBm(G)  Q(TA → TAB) and the
Mfm-natural operators C : T ∗ ⊗ L(G)|Mfm  (T ∗ ⊗ L(TA(G)))TA sat-
isfying the reduced Ad-invariance condition. This bijection restricts to the
one between the affine PBm(G)-gauge-natural operators B : Q|PBm(G)  
Q(TA → TAB) and the linear Mfm-natural operators C : T ∗ ⊗ L(G)  
(T ∗ ⊗ L(TA(G)))TA satisfying the reduced Ad-invariance condition.

For a commutative Lie group G we have the following corollary of the
above reduction theorem.

Corollary 10.9. Let G, A and m be as in the above theorem. If G
is commutative, then the PBm(G)-gauge-natural operators B : Q|PBm(G)  
Q(TA → TAB) are in bijection with the Mfm-natural operators C : T ∗ ⊗
L(G)|Mfm  (T ∗ ⊗ L(TA(G)))TA satisfying the condition CM (ω + df) =
CM (ω) for any ω ∈ Ω1(M,L(G)), f : M → L(G) and M ∈ Obj(Mfm).
Moreover, if G is commutative, then the affine PBm(G)-gauge-natural op-
erators B : Q|PBm(G)  Q(TA → TAB) are in bijection with the linear
Mfm-natural operators C : T ∗ ⊗L(G)|Mfm  (T ∗ ⊗L(TA(G)))TA satisfy-
ing the condition CM (df) = 0 for any f : M → L(G) and M ∈ Obj(Mfm).

11. An estimate. The following estimate shows that if A = R ⊕ NA

is a Weil algebra with width(A) := dim(NA/N
2
A) ≥ 1, m is an integer with

m ≥ width(A)+2 and G is a commutative Lie group with dim(G) ≥ 1, then
there exist many affine PBm(G)-gauge-natural operators B : Q|PBm(G)  
Q(TA → TAB).

Theorem 11.1. Let A be a Weil algebra with width(A) = p and G be a
commutative Lie group. If m ≥ p+ 2, then

dim(Op(A,G,m)) ≥ p · (dim(G))2 · dim(A),

where Op(A,G,m) denotes the affine space of all affine PBm(G)-gauge-
natural operators B : Q|PBm(G)  Q(TA → TAB).

Proof. Let Op1 be the vector space of allMfm-natural linear operators
C : T ∗⊗L(G)|Mfm  (T ∗⊗L(TA(G)))TA and Op2 be the vector space of all
Mfm-natural linear operators D : T (0,0)⊗L(G)|Mfm  (T ∗⊗L(TA(G)))TA
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lifting maps f : M → L(G) into L(TA(G))-valued 1-forms on TA(M) (the
definition ofMfm-natural operators D : T (0,0) ⊗W|Mfm  (T ∗ ⊗ V )TA is
similar to Definition 10.2). By Lemma 12.3 (see Appendix),

dim(QA,L(G)) ≥ p · dim(G),

where QA,V is the space from Definition 12.2. From Corollaries 12.15 and
13.12 we immediately get

dim(Op1) = (dim(QA,L(G)) + dim(A) · dim(G)) · dim(A) · dim(G),

dim(Op2) = (dim(A) · dim(G))2.

We can define a linear map Φ : Op1 → Op2 by Φ(C)M (f) = CM (df) for any
C = {CM} ∈ Op1, M ∈ Obj(Mfm), f : M → L(G), where d is the usual
exterior differentiation. The kernel ker(Φ) is exactly the vector space of all
linear natural operators C : T ∗ ⊗ L(G)|Mfm  (T ∗ ⊗ L(G) ⊗ A)TA with
CM (df) = 0 for any f : M → L(G). Then

dim(Op(A,G,m)) = dim(ker(Φ))

by the last sentence of Corollary 10.9. Therefore

dim(Op(A,G,m)) = dim(ker(Φ)) ≥ dim(Op1)− dim(Op2)

= dim(QA,L(G)) ·dim(A) ·dim(G)≥p · (dim(G))2 ·dim(A)

by obvious linear algebra.

APPENDIX

In this Appendix (which consists of Sections 12 and 13), we generalize the
results from [Mi2]. More precisely, given a ppb-functor H :Mf → FM and
finite-dimensional real vector spaces V and W we classify allMfm-natural
operators T ∗⊗V|Mfm  (T ∗⊗W )H and T (0,0)⊗V|Mfm  (T ∗⊗W )H lifting
V -valued 1-forms or V -valued maps on m-manifoldsM toW -valued 1-forms
on H(M) (for V = W = R we recover the result from [Mi2]). Without loss
of generality we assume that H = JA : Mf → FM is the Weil functor of
A-velocities in the sense of A. Morimoto [Mo], where A = C∞0 (Rp)/A is a
Weil algebra with width(A) = p (here C∞0 (Rp) is the local algebra of germs
at 0 of maps Rp → R with the maximal idealm and A is a finite codimension
ideal in C∞0 (Rp), i.e. such that A ⊃ mr+1 for some finite r). The equality
width(A) = p is equivalent to the inclusion m2 ⊃ A. The precise definition
of JA can also be found in [KMS]. The content of Sections 12 and 13 is (in
fact) a suitably modified and extended material from [Mi2].

12. TheMfm-natural operators T ∗⊗V|Mfm  (T ∗⊗W )JA. We have
the following example ofMfm-natural operators T ∗⊗V|Mfm  (T ∗⊗W )JA
(in the sense of Definition 10.2).
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Example 12.1 ((λ)-lift). Let λ : V ⊗ A → W be an R-linear map.
Consider a V -valued 1-form ω ∈ Ω1(M,V ) on an m-manifold M . Let ω :
T (M)→ V be the fibre linear map corresponding to ω. Let ηM : T (JA(M))
→ JA(T (M)) be the exchange equivalence. Define ω(λ) : T (JA(M))→W by

ω(λ) := λ ◦ JA(ω) ◦ ηM ,(12.1)

where the identification JA(V ) = V ⊗ A is the usual one. It is clear that
α · ddt

∣∣
t=0

(jA(γ(t, ·))) = d
dt

∣∣
t=0

(jA(γ(αt, ·))) for any γ : R×Rp →M and any
α ∈ R, where · is the fibre multiplication of the tangent bundle T (JA(M)).
Using this fact one can easily show that ω(λ) is homogeneous on each fibre
of the tangent bundle T (JA(M)). Hence it is linear on each fibre because of
the homogeneous function theorem. Therefore ω(λ) is a W -valued 1-form on
JA(M). We put B(λ)

M (ω) = ω(λ). The family B(λ) : T ∗⊗V|Mfm  (T ∗⊗W )JA
of functions B(λ)

M : Ω1(M,V ) → Ω1(JA(M),W ) for m-manifolds M is an
Mfm-natural operator.

To present the next example we need the following preparation.

Definition 12.2. Let A = C∞0 (Rp)/A, V andW be as above. Denote by
Ω1

0(Rp, V ) the C∞0 (Rp)-module of all germs at 0 of V -valued 1-forms on Rp.
Let

QA,V = Ω1
0(Rp, V )/(A ·Ω1

0(Rp, V ) + C∞0 (Rp, V ) · dA)(12.2)

be the factor module, where A ·Ω1
0(Rp, V ) is the product of Ω1

0(Rp, V ) by A,
C∞0 (Rp, V )·dA is the submodule in Ω1

0(Rp, V ) spanned by dη⊗v for all η ∈ A
(df denotes the differential of f) and v ∈ V , and A ·Ω1

0(Rp, V )+C∞0 (Rp, V ) ·
dA ⊂ Ω1

0(Rp, V ) is the algebraic sum of the modules A · Ω1
0(Rp, V ) and

C∞0 (Rp, V ) · dA. Given a V -valued 1-form ω on Rp, the equivalence class of
germ0(ω) modulo A · Ω1

0(Rp, V ) + C∞0 (Rp, V ) · dA will be denoted by [ω]A,
i.e.

[ω]A = germ0(ω)mod(A·Ω1
0(Rp,V )+C∞0 (Rp,V )·dA) ∈ QA,V .(12.3)

We will keep this notation throughout the rest of Appendix.

Lemma 12.3. QA,V is a finite-dimensional vector space over R. More-
over, dim(QA,V ) ≥ p · dim(V ).

Proof. It is a simple observation that QA,V is finite-dimensional over R.
The inequality holds because we have the linear epimorphism QA,V →
T ∗0 Rp ⊗ V given by [ω]A 7→ ω(0) (it is well-defined as m2 ⊃ A).

Example 12.4 (〈ϕ〉-lift). Let ϕ : QA,V →W be an R-linear map. Let ω
be a V -valued 1-form on an m-manifold M . Define ω[ϕ] : JA(M)→W by

ω[ϕ](jA(γ)) = ϕ([γ∗ω]A)(12.4)
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for any γ : Rp → M , where γ∗ω is the pull-back of ω with respect to γ.
If η : Rp → M is another map such that jA(γ) = jA(η), then [γ∗ω]A =
[η∗ω]A. To see this one can assume that M = Rm and η(0) = γ(0) = 0.
Let ω =

∑m
i=1 aidx

i , η = (η1, . . . , ηm), γ = (γ1, . . . , γm), ai : Rm → V .
Then germ0(ηj − γj) ∈ A and germ0(ai ◦ γ − ai ◦ η) ∈ C∞0 (Rp, V )A for any
i, j = 1, . . . ,m. So

germ0(γ
∗ω − η∗ω) =

m∑
i=1

germ0((ai ◦ γ − ai ◦ η)d(γi))

+
m∑
i=1

germ0((ai ◦ η)d(γi − ηi)) ∈ A ·Ω1
0(Rp, V ) + C∞0 (Rp, V ) · dA,

as well. Therefore ω[ϕ] is well-defined. Define

ω〈ϕ〉 = d(ω[ϕ]),(12.5)

the differential of ω[ϕ]. We put B〈ϕ〉M (ω) = ω〈ϕ〉. The family B〈ϕ〉 : T ∗ ⊗
V|Mfm  (T ∗ ⊗W )JA of functions B〈ϕ〉M : Ω1(M,V ) → Ω1(JA(M), W ) for
m-manifolds M is anMfm-natural operator.

Lemma 12.5. The set T (A, V,W,m) of all Mfm-natural operators B :
T ∗ ⊗ V|Mfm  (T ∗ ⊗W )JA is a C∞(QA,V )-module.

Proof. For any B,C ∈ T (A, V,W,m) and f, g ∈ C∞(QA,V ) we define

(12.6) (fB + gC)M (ω)(jA(γ))
= f([γ∗ω]A) ·BM (ω)(jA(γ)) + g([γ∗ω]A) · CM (ω)(jA(γ)),

where ω ∈ Ω1(M,V ), γ : Rp →M , M ∈ Obj(Mfm).

The main result of this section is the following classification theorem.

Theorem 12.6. Let m be a natural number and A = C∞0 (Rp)/A be a
Weil algebra with width(A) = p. Let V and W be finite-dimensional vector
spaces over R. Let q1, . . . , qK be a basis of the vector space QA,V , u1, . . . , uL
be a basis of V ⊗ A and w1, . . . , wQ be a basis of W . Let ϕij = q∗i ⊗ wj for
i = 1, . . . ,K and j = 1, . . . , Q be the corresponding basis of the vector space
Hom(QA,V ,W ), and λkl = u∗k ⊗ wl for k = 1, . . . , L and l = 1, . . . , Q be
the corresponding basis of the vector space Hom(V ⊗ A,W ). If m ≥ p+ 2,
then theMfm-natural operators (described in Examples 12.4 and 12.1) B〈ϕij〉
and B(λkl) for i = 1, . . . ,K, k = 1, . . . , L and j, l = 1, . . . , Q form a basis
of the C∞(QA,V )-module T (A, V,W,m) of all Mfm-natural operators T ∗ ⊗
V|Mfm  (T ∗ ⊗W )JA.

The proof of Theorem 12.6 will occupy the rest of this section.
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Definition 12.7. Let t1, . . . , tp be the coordinates on Rp and x1, . . . , xm

be the coordinates on Rm. If m ≥ p + 1, let e := jA(t1, . . . , tp, 0, . . . , 0) ∈
JA(Rm). Given B ∈ T (A, V,W,m) we define ΦB : Ω1(Rm, V )→W by

ΦB(ω) :=
〈

(BRm(ω))(e),JA
(

∂

∂xm

)
(e)
〉
,(12.7)

where JA(X) is the flow lift of a vector field X on M to JA(M).

Using the invariance of B we obtain

Lemma 12.8. If ϕ : Rm → Rm is an embedding preserving JA
(

∂
∂xm

)
(e),

then ΦB(ω) = ΦB(ϕ∗ω) for any B ∈ T (A, V,W,m) and any V -valued 1-form
ω on Rm.

The main part of the proof of Theorem 12.6 is to show the following
proposition.

Proposition 12.9. Assume m ≥ p + 2. For any B ∈ T (A, V,W,m)
there exists a (well-defined) map GB : QA,V ×QA,V ×V ⊗A→W such that

GB([ω0]A, [ω1]A, jA(H)) = ΦB(q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm)(12.8)

for any V -valued 1-forms ω0, ω1 on Rp and any map H : Rp → V , where
q : Rm = Rp × Rm−p → Rp is the usual projection, q∗ denotes the pull-
back with respect to q and ΦB is as in Definition 12.7. The function G :
T (A, V,W,m) → C∞(QA,V × QA,V × V ⊗ A,W ) given by G(B) = GB is a
monomorphism of C∞(QA,V )-modules, provided the C∞(QA,V )-module struc-
ture in C∞(QA,V ×QA,V ×V ⊗A,W ) is given by (λf)(a, b, c) = λ(a)f(a, b, c),
where λ ∈ C∞(QA,V ), f ∈ C∞(QA,V × QA,V × V ⊗ A,W ) and (a, b, c) ∈
QA,V ×QA,V × V ⊗A.

To prove the proposition we need some lemmas. We start with

Lemma 12.10. Let B ∈ T (A, V,W,m). Assume that m ≥ p + 1 and
ΦB = 0. Then B = 0.

Proof. It is clear that {(x1, . . . , xm−1, xm+t)}t∈R is the flow of ∂
∂xm . Then

{JA(x1, . . . , xm−1, xm + t)}t∈R is the flow of JA
(

∂
∂xm

)
. Then JA

(
∂

∂xm

)
(e) is

the velocity at 0 ∈ R of the curve t 7→ jA(t1, . . . , tp, 0, . . . , 0, t), i.e.

JA
(

∂

∂xm

)
(e) =

d

dt

∣∣∣∣
t=0

(jA(t1, . . . , tp, 0, . . . , 0, t)).

An arbitrary element of T (JA(Rm)) is of the form d
dt

∣∣
t=0

(jA(γ(t, ·))) for some
γ : R×Rp → Rm. If γ is of maximal rank at 0 ∈ Rp+1, then (by the rank the-
orem) there is an embedding ϕ : Rm → Rm such that (ϕ ◦ γ)(t, τ) = (τ, 0, t)
∈ Rm for any (t, τ) in some neighbourhood of (0, 0) ∈ R×Rp. Consequently,
the Mfm-orbit of JA

(
∂

∂xm

)
(e) is dense in T (JA(Rm)). Then, using the in-

variance of B and the assumption ΦB = 0, we derive that 〈BRm(ω), v〉 = 0 for
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any V -valued 1-form ω on Rm and any v in some dense subset in T (JA(Rm)).
Then BRm(ω) = 0 for any V -valued 1-form ω on Rm, i.e. BRm = 0. Hence
B = 0, as any natural operator B is uniquely determined by BRm .

Using Lemma 12.10 we prove

Lemma 12.11. Let B ∈ T (A, V,W,m). Assume that m ≥ p + 1 and
ΦB(ω) = 0 for any ω ∈ Ω1(Rm, V ) of the form

ω = (f1 ◦ (x1, . . . , xp, xm))dx1 + · · ·+ (fp ◦ (x1, . . . , xp, xm))dxp(12.9)

+ (g ◦ (x1, . . . , xp, xm))dxm,

where f1, . . . , fp, g : Rp+1 → V are some maps. Then B = 0.

Proof. Let ω be a V -valued 1-form on Rm. The embedding ϕt = (x1, . . . , xp,
txp+1, . . . , txm−1, xm) : Rm → Rm, t 6= 0, preserves e and ∂

∂xm . Then, by
Lemma 12.8 for ϕt, we get ΦB((ϕt)∗ω) = ΦB(ω) for any t 6= 0. If t→ 0, we
obtain

ΦB(ω) = ΦB((ϕ0)∗ω) = 0

because (ϕ0)∗ω is of the form (12.9). Now, the lemma is a consequence of
Lemma 12.10.

Lemma 12.12. If m ≥ p + 2, then ΦB(ω) = ΦB(ω + hdxp+1) for any
natural operator B ∈ T (A, V,W,m), any V -valued 1-form ω on Rm and any
map h : Rm → V .

Proof. Let ϕ0 = (x1, . . . , xp, 0, . . . , 0, xm) : Rm → Rm. It is clear that
(ϕ0)∗ω = (ϕ0)∗(ω + hdxp+1) (as m ≥ p + 2). Now, by the proof of Lemma
12.11, we have

ΦB(ω) = ΦB((ϕ0)∗ω) = ΦB((ϕ0)∗(ω + hdxp+1)) = ΦB(ω + hdxp+1).

Lemma 12.13. Let B ∈ T (A, V,W,m). Assume that m ≥ p + 1 and
ΦB(ω̃) = 0 for any ω̃ ∈ Ω1(Rm, V ) of the form

ω̃ = q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm,(12.10)

where ω0, ω1 are V -valued 1-forms on Rm, H : Rp → V and q : Rm =
Rp × Rm−p → Rp is the projection. Then B = 0.

Proof. Let ω be the V -valued 1-form as in formula (12.9). By Lemma
12.11 it is sufficient to show that ΦB(ω) = 0. By [KMS, Corollary 19.8] (of the
non-linear Peetre theorem) for the (π : JA(Rm) → Rm)-local operator D =〈
BRm ,JA

(
∂

∂xm

)〉
: C∞(Rm, T ∗(Rm) ⊗ V ) ⊃ Ω1(Rm, V ) → C∞(JA(Rm),W )

with Whitney-extendible domain E = Ω1(Rm, V ), f = ω ∈ Ω1(Rm, V ) and
a compact set K = {e} ⊂ JA(Rm), there is a natural number r = r(ω) such
that

ΦB(ω) = ΦB(ω)
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for any V -valued 1-form ω on Rm with jr0(ω) = jr0(ω). So, one can assume that
ω is as in (12.9) with f1, . . . , fp, g : Rp+1 → V being polynomials of degree
≤ r. Denote by ΦrB the restriction of ΦB to the finite-dimensional vector space
of all forms as in (12.9) with f1, . . . , fp, g being polynomials of degree ≤ r.
Since B satisfies the regularity condition, ΦrB is smooth. Using the invariance
of B with respect to the embedding ηt = (x1, . . . , xm−1, txm) : Rm → Rm,
t 6= 0, preserving e and sending ∂

∂xm to t ∂
∂xm we deduce (as in the proof of

Lemma 12.11) that

tΦrB(ω) = ΦrB(η∗t ω) = ΦrB
(
(f1 ◦ (x1, . . . , xp, txn))dx1 + · · ·

+ (fp ◦ (x1, . . . , xp, txm))dxp + t(g ◦ (x1, . . . , xp, txm))dxm
)
.

Differentiating both sides of this formula and of a similar formula with

ω̃ =
(

(f1 ◦ (x1, . . . , xp, 0)) +
(
∂f1

∂xm
◦ (x1, . . . , xp, 0)

)
xm
)
dx1 + · · ·

+
(

(fp ◦ (x1, . . . , xp, 0)) +
(
∂fp
∂xm

◦ (x1, . . . , xp, 0)
)
xm
)
dxp

+ (g ◦ (x1, . . . , xp, 0))dxm

instead of ω with respect to t and then putting t = 0 we deduce that ΦrB(ω) =
ΦrB(ω̃), i.e. ΦB(ω) = ΦB(ω̃). Of course, ω̃ is as in (12.10). Thus ΦB(ω̃) = 0.
So, ΦB(ω) = 0.

Lemma 12.14. Let B ∈ T (A, V,W, n). Let ω0, ω1, ω0, ω1 be V -valued 1-
forms on Rp and H,H : Rp → V be mappings such that

jA(H) = jA(H), [ω0]A = [ω0]A, [ω1]A = [ω1]A,

where [ ]A is as in Definition 12.2. Write ω = q∗(ω0)+xmq∗(ω1)+(H ◦q)dxm
and ω = q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm, where q : Rm = Rp×Rm−p → Rp

is the projection. If m ≥ p+ 2, then ΦB(ω) = ΦB(ω).

Proof. The proof will be completed once we show that

ΦB(ω) = ΦB(ω + q∗(Fdη)),(12.11)
ΦB(ω) = ΦB(ω + xmq∗(Fdη)),(12.12)

ΦB(ω) = ΦB(ω + ((ηG) ◦ q)dxj),(12.13)
ΦB(ω) = ΦB(ω + ((ηG) ◦ q)dxm),(12.14)

ΦB(ω) = ΦB(ω + ((ηG) ◦ q)xmdxj)(12.15)

for any V -valued 1-forms ω0, ω1 on Rp, j ∈ {1, . . . , p} and maps H,F,G :
Rp → V , η : Rp → R with germ0(η) ∈ A and G = const, where ω =
q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm.

Let ψ1 = (x1, . . . , xp, xp+1 + (η ◦ q), xp+2, . . . , xm) : Rm → Rm. This is a
diffeomorphism. Of course, it preserves e and ∂

∂xm . Then using Lemma 12.12
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and Lemma 12.8 for ψ1 in place of ϕ and again Lemma 12.12, we have

ΦB(ω) = ΦB(ω + (F ◦ q)dxp+1) = ΦB(ψ∗1(ω + (F ◦ q)dxp+1))

= ΦB(ω + q∗(Fdη) + (F ◦ q)dxp+1) = ΦB(ω + q∗(Fdη)).

Formula (12.11) is verified.
Replacing F ◦ q by (F ◦ q)xm in the proof of (12.11) we obtain (12.12).
Let ψ2 = (x1, . . . , xp, xp+1 + (η ◦ q)xj , xp+2, . . . , xm) : Rm → Rm. This

is a diffeomorphism. It preserves e and ∂
∂xm . Then using Lemma 12.12,

Lemma 12.8 for ψ2 in place of ϕ, Lemma 12.12 and formula (12.11) with ω+
(Gη ◦ q)dxj playing the role of ω, we have

ΦB(ω) = ΦB(ω +Gdxp+1) = ΦB(ψ∗2(ω +Gdxp+1))

= ΦB(ω + (Gη ◦ q)dxj +Gxjq∗(dη) +Gdxp+1)

= ΦB(ω + (Gη ◦ q)dxj +Gxjq∗(dη))

= ΦB(ω + (Gη ◦ q)dxj + q∗(tjGdη)) = ΦB(ω + (Gη ◦ q)dxj).

Formula (12.13) is proved.
Let ψ3 = (x1, . . . , xp, xp+1+(η◦q)xm, xp+2, . . . , xm) : Rm → Rm. This is a

diffeomorphism that preserves JA
(

∂
∂xm

)
(e)= d

dt

∣∣
t=0

(jA(t1, . . . , tp, 0, . . . , 0, t)).
Then using Lemma 12.12, Lemma 12.8 for ψ3 in place of ϕ, Lemma 12.12
and formula (12.12) with ω + ((Gη) ◦ q)dxm playing the role of ω, we have

ΦB(ω) = ΦB(ω +Gdxp+1) = ΦB(ψ∗3(ω +Gdxp+1))

= ΦB(ω + xmq∗(Gdη) + ((Gη) ◦ q)dxm +Gdxp+1)
= ΦB(ω + ((Gη) ◦ q)dxm + xmq∗(Gdη))
= ΦB(ω + ((Gη) ◦ q)dxm).

Formula (12.14) is proved.
Let ψ4 = (x1, . . . , xp, xp+1 + (η ◦ q)xjxm, xp+2, . . . , xm) : Rm → Rm.

This is a diffeomorphism that preserves JA
(

∂
∂xm

)
(e). Using Lemma 12.12,

Lemma 12.8 for ψ4 in place of ϕ, Lemma 12.12, formula (12.14) with ω +
((Gη) ◦ q)xmdxj + xmxjq∗(Gdη) playing the role of ω and with tjη playing
the role of η and formula (12.12) with ω + ((Gη) ◦ q)xmdxj playing the role
of ω, we have

ΦB(ω) = ΦB(ω +Gdxp+1) = ΦB(ψ∗4(ω +Gdxp+1))

= ΦB(ω + ((Gη) ◦ q)xjdxm + xjxmq∗(Gdη)

+ ((Gη) ◦ q)xmdxj +Gdxp+1)

= ΦB(ω + xjxmq∗(Gdη) + ((Gη) ◦ q)xmdxj + ((Gη) ◦ q)xjdxm)

= ΦB(ω + xjxmq∗(Gdη) + ((Gη) ◦ q)xmdxj + ((Gtjη) ◦ q)dxm)

= ΦB(ω + ((Gη) ◦ q)xmdxj + xjxmq∗(Gdη))
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= ΦB(ω + ((Gη) ◦ q)xmdxj + xmq∗(Gtjdη))

= ΦB(ω + ((Gη) ◦ q)xmdxj).

The proof of the lemma is complete.

Proof of Proposition 12.9. By Lemma 12.14, GB is well-defined. It is
smooth because of the regularity condition on B. Directly from the defini-
tions of the module structures it is easy to verify that G is a homomorphism
of C∞(QA,V )-modules. By Lemma 12.13, G is injective.

Using Proposition 12.9 we can prove Theorem 12.6 as follows.

Proof of Theorem 2.6. We fix bases of the vector spaces QA,V, W and
JA(V ) = V ⊗A. Let B ∈ T (A, V,W,m). Let GB : QA,V ×QA,V ×V ⊗A→W
be as in Proposition 12.9. From the invariance of B with respect to the
diffeomorphisms (x1, . . . , xm−1, txm) : Rm → Rm for t 6= 0 it follows that

tGB(a, b, c) = GB(a, tb, tc)(12.16)

for any (a, b, c) ∈ QA,V × QA,V × V ⊗ A and any t ∈ R \ {0} (because
each diffeomorphism (x1, . . . , xm−1, txm) preserves e and sends ∂

∂xm to t ∂
∂xm ).

Then, by the homogeneous function theorem, GB is a linear combination of
the coordinates of b and c with respect to the bases with coefficients being
C∞-maps QA,V → W depending on a. Thus owing to Proposition 12.9 we
see that the proof of Theorem 12.6 will be complete once we show that

GB(λ)(a, b, c) = λ(c) and GB〈ϕ〉(a, b, c) = ϕ(b)(12.17)

for any λ ∈ Hom(V ⊗A,W ) and any ϕ ∈ Hom(QA,V ,W ).
To prove (12.17) write i = (t1, . . . , tp, 0) : Rp → Rm and let q =

(x1, . . . , xp) : Rm = Rp × Rm−p → Rp be the usual projection. Let ω0, ω1

be V -valued 1-forms on Rp and let H : Rp → V be a mapping. Let λ ∈
Hom(V ⊗A,W ) and ϕ ∈ Hom(QA,V ,W ). We have

GB(λ)([ω0]A, [ω1]A, jA(H))

=
〈
B

(λ)
Rm(q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm)(e),JA

(
∂

∂xm

)
(e)
〉

= (λ ◦ JA(q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm) ◦ ηRm)
(
JA

(
∂

∂xm

)
(e)
)

=
(
λ ◦ JA

(〈
q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm, ∂

∂xm

〉))
(e) = λ(jA(H)).

Similarly, since γt = (x1, . . . , xm−1, xm + t) is the flow of ∂
∂xm and e = jA(i),
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GB〈ϕ〉([ω0]A, [ω1]A, jA(H))

=
〈
B
〈ϕ〉
Rm(q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm),JA

(
∂

∂xm

)
(e)
〉

=
〈
d((q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm)[ϕ]),JA

(
∂

∂xm

)
(e)
〉

=
d

dt

∣∣∣∣
t=0

((q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm)[ϕ](jA(γt ◦ i)))

=
d

dt

∣∣∣∣
t=0

(ϕ([(γt ◦ i)∗(q∗(ω0) + xmq∗(ω1) + (H ◦ q)dxm)]A))

=
d

dt

∣∣∣∣
t=0

(ϕ([ω0 + tω1]A)) = ϕ([ω1]A).

Corollary 12.15. Let m be a natural number and A = C∞0 (Rp)/A be
a Weil algebra with width(A) = p. Let V and W be finite-dimensional vec-
tor spaces over R. Let q1, . . . , qK be a basis of the vector space (QA,V )∗,
u1, . . . , uL be a basis of V ⊗ A and w1, . . . , wQ be a basis of W . Let ϕij =
q∗i ⊗ wj for i = 1, . . . ,K and j = 1, . . . , Q be the corresponding basis of
Hom(QA,V ,W ), and λkl = u∗k ⊗ wl for k = 1, . . . , L and l = 1, . . . , Q be the
corresponding basis of Hom(V ⊗A,W ). If m ≥ p+ 2, then the linearMfm-
natural operators B〈ϕij〉 and B(λkl) for i, j, k, l as above form a basis (over R)
of the vector space of all linear Mfm-natural operators T ∗ ⊗ V|Mfm  
(T ∗ ⊗W )JA.

Proof. Let B : T ∗⊗V  (T ∗⊗W )JA be a linearMfm-natural operator.
By Theorem 12.6 we can write B =

∑
fijB

〈ϕij〉 +
∑
gklB

(λkl) for some
uniquely determined maps fij , gkl : QA,V → R. Using the linearity of B we
have BM (tω) = tBM (ω) for any ω ∈ Ω1(M,V ) and any t ∈ R. This gives
the homogeneity conditions fij(tu) = fij(u) and gkl(tu) = gkl(u) for any
u = [γ∗ω]A ∈ QA,V and any t ∈ R. Then fij = const and gkl = const.

13. TheMfm-natural operators T (0,0)⊗V|Mfm  (T ∗⊗W )JA. We
have the followingMfm-natural operators T (0,0) ⊗ V|Mfm  (T ∗ ⊗W )JA.

Example 13.1 ((λ)-lift). Let λ : V ⊗A→W be an R-linear map. Con-
sider a map f : M → V on an m-manifold M . Define f (λ) : JA(M)→W by

f (λ) := λ ◦ JA(f),(13.1)

where the identification JA(V ) = V ⊗A is the usual one. Let

B(λ)(f) = df (λ).(13.2)

The family B(λ) : T (0,0)⊗V|Mfm  (T ∗⊗W )JA of functions B(λ)
M : C∞(M,V )

→ Ω1(JA(M),W ) for m-manifolds M is a natural operator.
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Lemma 13.2. The set To(A, V,W,m) of all natural operators B :
T (0,0) ⊗V|Mfm  (T ∗ ⊗W )JA is a C∞(A⊗ V )-module.

Proof. For any B,C ∈ To(A, V,W,m) and g, h ∈ C∞(A⊗ V ) we define

(13.3) (gB + hC)M (f)(v)
= g(JA(f)(v)) ·BM (f)(v) + h(JA(f)(v)) · CM (f)(v),

where f : M → V , v ∈ JA(M), M ∈ Obj(Mfm).
The main result of this section is the following classification theorem.
Theorem 13.3. Let m be a natural number and A = C∞0 (Rp)/A be a

Weil algebra with width(A) = p. Let V and W be finite-dimensional vector
spaces over R. Let u1, . . . , uL be a basis of V ⊗A and w1, . . . , wQ be a basis
of W . Let λkl = u∗k ⊗ wl for k = 1, . . . , L and l = 1, . . . , Q be the corre-
sponding basis of the vector space Hom(V ⊗ A,W ). If m ≥ p + 2, then the
Mfm-natural operators (described in Example 13.1) B(λkl) for k = 1, . . . , L
and l = 1, . . . , Q form a basis of the C∞(V ⊗ A)-module To(A, V,W,m) of
allMfm-natural operators T (0,0) ⊗ V|Mfm  (T ∗ ⊗W )JA.

The proof of Theorem 13.3, which is a modification of the one of Theorem
12.6, will occupy the rest of this section.

Definition 13.4. Let t1, . . . , tp be the coordinates on Rp and x1, . . . , xm

be the coordinates on Rm. If m ≥ p + 1, let e := jA(t1, . . . , tp, 0, . . . , 0) ∈
JA(Rm). Given B ∈ To(A, V,W,m) we define ΦB : C∞(Rm, V )→W by

ΦB(f) :=
〈

(BRm(f))(e),JA
(

∂

∂xm

)
(e)
〉
,(13.4)

where JA(X) is the flow lift of a vector field X on M to JA(M).
Using the invariance of B we obtain
Lemma 13.5. If ϕ : Rm → Rm is an embedding preserving JA

(
∂

∂xm

)
(e),

then ΦB(f) = ΦB(ϕ∗f) for any B ∈ To(A, V,W,m) and any f : Rm → V .

The main part of the proof of Theorem 13.3 is to show the following
proposition.

Proposition 13.6. Assume m ≥ p + 2. For any B ∈ To(A, V,W,m)
there exists a (well-defined) map GB : (V ⊗A)× (V ⊗A)→W such that

GB(jA(h), jA(H)) = ΦB(h ◦ q + (H ◦ q)xm)(13.5)
for any maps h,H : Rp → V , where q : Rm = Rp × Rm−p → Rp is
the usual projection and ΦB is as in Definition 13.4. The function G :
To(A, V,W,m) → C∞((V ⊗ A) × (V ⊗ A),W ) given by G(B) = GB is a
monomorphism of C∞(V⊗A)-modules, provided the C∞(V⊗A)-module struc-
ture in C∞((V ⊗A)×(V ⊗A),W ) is given by (λf)(a, b) = λ(a)f(a, b), where
λ ∈ C∞(V ⊗A), f ∈ C∞((V ⊗A)×(V ⊗A),W ) and (a, b) ∈ (V ⊗A)×(V ⊗A).
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To prove the proposition we need some lemmas.

Lemma 13.7. Let B ∈ To(A, V,W,m). Assume that m ≥ p+1. If ΦB = 0,
then B = 0.

Proof. The proof is similar to the one of Lemma 12.10.

Lemma 13.8. Let B ∈ To(A, V,W,m). Assume that m ≥ p + 1. If
ΦB(f) = 0 for any f : Rm → V of the form

f = h ◦ (x1, . . . , xp, xm),(13.6)

where h : Rp+1 → V , then B = 0.

Proof. The proof is similar to the one of Lemma 12.11. We use Lemma
13.7 instead of Lemma 12.10.

Lemma 13.9. If m ≥ p+2, then ΦB(f) = ΦB(f+Fxp+1) for any natural
operator B ∈ To(A, V,W,m) and any f, F : Rm → V .

Proof. The proof is similar to the one of Lemma 12.12.

Lemma 13.10. Let B ∈ To(A, V,W,m). Assume that m ≥ p + 1. If
ΦB(f̃) = 0 for any f̃ : Rm → V of the form

f̃ = h ◦ q + xm(H ◦ q),(13.7)

where h,H : Rp → V and q : Rm = Rp × Rm−p → Rp is the projection, then
B = 0.

Proof. The proof is similar to the one of Lemma 12.13. We use Lemma
13.8 instead of Lemma 12.11.

Lemma 13.11. Let B ∈ To(A, V,W, n). Let h, h,H,H : Rp → V be map-
pings such that

jA(h) = jA(h), jA(H) = jA(H).

Define f = h ◦ q + xm(H ◦ q) and f = h ◦ q + xm(H ◦ q), where q : Rm =
Rp × Rm−p → Rp is the projection. If m ≥ p+ 2, then ΦB(f) = ΦB(f).

Proof. The proof is similar to the one of Lemma 12.14. It suffices to
show that

ΦB(f) = ΦB(f +Gη ◦ q),(13.8)
ΦB(f) = ΦB(f +Gxm(η ◦ q)),(13.9)

for all h,H : Rp → V and η : Rp → R with germ0(η) ∈ A andG = const ∈ V ,
where f = h ◦ q + xm(H ◦ q).

Let ψ1 = (x1, . . . , xp, xp+1 + (η ◦ q), xp+2, . . . , xm) : Rm → Rm. This is
a diffeomorphism that preserves e and ∂

∂xm . Using Lemma 13.9 and Lemma
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13.5 for ψ1 in place of ϕ and again Lemma 13.9, we have

ΦB(f) = ΦB(f +Gxp+1) = ΦB(ψ∗1(f +Gxp+1))

= ΦB(f +Gη ◦ q +Gxp+1) = ΦB(f +Gη ◦ q).
Formula (13.8) is verified. Replacing G by Gxm in the proof of (13.8) we
obtain (13.9).

Proof of Proposition 13.6. By Lemma 13.11, GB is well-defined. It is
smooth because of the regularity condition on B. Directly from the defini-
tions of the module structures it is easy to verify that G is a homomorphism
of C∞(V ⊗A)-modules. From Lemma 13.10 it follows that G is injective.

Proof of Theorem 13.3. We fix bases of the vector spaces V ⊗A and W .
Let B ∈ To(A, V,W,m). Let GB : (V ⊗A)× (V ⊗A)→ W be as in Propo-
sition 13.6. From the invariance of B with respect to the diffeomorphisms
(x1, . . . , xm−1, txm) : Rm → Rm for t 6= 0 it follows that

GB(a, tb) = tGB(a, b)(13.10)

for any (a, b) ∈ (V ⊗ A) × (V ⊗ A) and any t ∈ R \ {0} (because each dif-
feomorphism (x1, . . . , xm−1, txm) preserves e and sends ∂

∂xm to t ∂
∂xm ). Then,

by the homogeneous function theorem, GB is a linear combination of the
coordinates of b with respect to the bases, with coefficients being C∞-maps
V ⊗ A → W depending on a. Thus owing to Proposition 13.6 it suffices to
show that

GB(λ)(a, b) = λ(b)(13.11)

for any λ ∈ Hom(V ⊗A,W ). But (13.11) can be proved just as (12.17).

Corollary 13.12. Let V and W be finite-dimensional vector spaces
over R, let m be a natural number and let A = C∞0 (Rm)/A be a Weil al-
gebra with width(A) = p. Let u1, . . . , uL be a basis of the vector space V ⊗A
and w1, . . . , wQ be a basis of W . Let λkl = u∗k ⊗ wl for k = 1, . . . , L and
l = 1, . . . , Q be the corresponding basis of Hom(V ⊗A,W ). If m ≥ p+2, then
the linear natural operators B(λkl) for k, l as above form a basis of the vector
space of all linearMfm-natural operators T (0,0) ⊗ V|Mfm → (T ∗ ⊗W )JA.

Proof. The proof is similar to the one of Corollary 12.15.

Remark 13.13. (a) In [D1], J. Dębecki essentially generalized the linear
part of results from [Mi2] and obtained a full description of linear liftings
of p-forms to q-forms on Weil bundles for almost all non-negative integers
p and q. So, Corollaries 12.15 and 13.12 for V = W = R also recover the
results from [D1] for (p, q) = (1, 1) and (p, q) = (0, 1).

(b) Corollaries 12.15 and 13.12 for V = W = R (or the results from
[D1] for (p, q) = (1, 1) and (p, q) = (0, 1)) imply Corollaries 12.15 and 13.13
because (for example) any linearMfm-natural operator B : T ∗ ⊗RK

|Mfm
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(T ∗ ⊗RL)TA is determined by the system of linearMfm-natural operators
Bkl : T ∗|Mfm

 T ∗TA given by (0, . . . , Bkl
M (ω), . . . , 0) := BM (0, . . . , ω, . . . , 0),

with Bkl
M (ω) at position l and ω at position k, k = 1, . . . ,K, l = 1, . . . , L.

(c) Theorems 12.6 and 13.3 are not consequences of the same theorems
for V = W = R (or the results from [Mi2]) because a trick similar to that
in (b) is not available for arbitrary (not necessarily linear) Mfm-natural
operators.

Acknowledgements. The author would to thank the reviewer for sev-
eral helpful remarks.
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