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Product preserving gauge bundle functors
on all principal bundle homomorphisms

by WrLODZIMIERZ M. MIKULSKI (Krakow)

Abstract. Let PB be the category of principal bundles and principal bundle homo-
morphisms. We describe completely the product preserving gauge bundle functors (ppgh-
functors) on PB and their natural transformations in terms of the so-called admissible
triples and their morphisms. Then we deduce that any ppgb-functor on PB admits a pro-
longation of principal connections to general ones. We also prove a “reduction” theorem
for prolongations of principal connections into principal ones by means of Weil functors.
We observe that there exist plenty of such prolongations. In Appendix, we classify the
natural operators lifting vector-valued 1-forms (or vector-valued maps) to vector-valued
1-forms on Weil bundles.

1. Introduction. All manifolds and maps we consider in this paper are
assumed to be smooth, i.e. of class C*°. Manifolds are also assumed to be
Hausdorff, finite-dimensional, second countable and without boundaries.

In this paper, M f denotes the category of manifolds, M f,, the category
of m-dimensional manifolds and their local diffeomorphisms, F M the cate-
gory of fibred manifolds (i.e. surjective submersions between manifolds) and
fibred maps, PB the category of principal bundles and their principal bundle
homomorphisms, and PB,,(G) the category of principal bundles with stan-
dard fibre being the Lie group G and m-dimensional bases and their local
principal bundle isomorphisms with the identity map of G as the Lie group
homomorphism. The tensor product ® will always be over R (i.e. ® := ®p).
Similarly, Hom := Homg and dim := dimg.

About 1953, A. Weil (see [W]) introduced the concept of a near A-point
on a manifold M as an algebra homomorphism of the algebra C*°(M,R)
of smooth functions on M into a local algebra A. Nowadays A is called a
Weil algebra and the space TA(M ) of all near A-points on M is called a
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Weil bundle. About 1985, D. Eck (see [EL]), O. O. Luciano (see [L|]) and
G. Kainz and P. W. Michor (see [KaMi|) proved independently that the
product preserving bundle functors F' : M f — FM (the ppb-functors F' on
M) are the Weil functors T4 : Mf — FM for Weil algebras A = F(R),
and that the natural transformations n : F — F] between ppb-functors
on Mf are in bijection with the algebra homomorphisms nr : F(R) —
F1(R) between the corresponding Weil algebras. Moreover, in [KaMi], it was
observed that if F = T4 and F, = T4, then FoF, = TA®41. Consequently,
the exchange algebra isomorphism A4 ® A1 = A; ® A defines the natural
isomorphism F'o F; = FjoF. In particular, if F; = T is the tangent functor,
there is the flow isomorphism F oT =T o F. A detailed presentation of all
the above results can also be found in the fundamental monograph [KMS].

Ppb-functors F' on M f play an important role in differential geome-
try. For example, a ppb-functor F = T4 : Mf — FM can be applied
in prolongations of connections. Indeed, if I' : Y x3 T(M) — T(Y) is
a general connection on a fibred manifold p : ¥ — M, then F(I') =
F(I) : F(Y) xpuy T(F(M)) — T(F(Y)) (under the flow identifications
F(T(M)) = T(F(M)) and F(T(Y)) = T(F(Y))) is a general connection
on F(p) : F(Y) — F(M). The above connection F(I") was constructed by
J. Slovak (see [S]).

For ppb-functors F' on M f,,, one can also deduce the following results. If
G is a Lie group with the multiplication map ug : G X G — G and the unity
eg : pt — G, where pt = {(}} is the trivial Lie group, then F(G) is a Lie group
with the multiplication map pp(q) := F(ug) : F(G) x F(G) = F(G X G) —
F(G) and the unity ep(q) = F(eg) : F(pt) = pt — F(G),andif v : G — Gy
is a Lie group homomorphism, then so is F'(v) : F(G) — F(Gy). For the Lie
algebra of G we have F(L(G)) = L(F(G)) = L(G) ® A. For the exponential
map we have Expp(q) = F(Expg).

If p: P — M is a principal bundle with the Lie group G and the right
action r : P x G — P then F(p) : F(P) — F(M) is a principal bun-
dle with the Lie group F(G) and the right action F(r) : F(P) x F(G) =
F(P xG)— F(P),and if f: P — P is a principal bundle homomorphism
covering f : M — Mj and with the Lie group homomorphism ¢f : G — Gy
then F(f) : F(P) — F(P)) is a principal bundle homomorphism cover-
ing F'(f): F(M) — F(M;) and with the Lie group homomorphism F(ypy) :
F(G) — F(Gy).If I is a principal (i.e. general right invariant) connection on
a principal bundle p : P — M, then F(I") (as above) is a principal connection
on F(p) : F(P) — F(M). If n : F — F} is a natural transformation, then
ng : F(G) — F1(G) is a Lie group homomorphism and np : F(P) — Fi(P)
is a principal bundle homomorphism covering nys : F(M) — Fy (M) with the
Lie group homomorphism g : F(G) — Fi(G). A more detailed presentation
of the above results can be found in [KI|. (In the special case of F' = TP" =
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the bundle functor of p"-velocities, some of the above facts can also be found
in [GS].)

For classical linear connections I' = V on M (i.e. principal connections
on the principal bundle P'(M) of linear frames of M), F(V) coincides with
(or more precisely, is the reduction to T4(PY(M)) ¢ PY(TA(M)) of) the
complete lift of V to T4(M) in the sense of A. Morimoto [Mo]. F(V) was
also investigated in [GMP]. (JGRS| investigates a so-called horizontal lifting
of classical linear connections on M to classical linear connections on 74 (M)
by means of an additional rth order linear connection on M, i.e. a princi-
pal connection on the rth order frame bundle P"(M) of M.) In [D2], all
affine M f,,-natural operators B lifting torsion-free classical linear connec-
tions V on m-manifolds M to torsion-free classical linear connections B(V)
on T4(M) were described.

The present paper is dedicated to the study of gauge bundle functors
on principal bundles. In Section 2, we start from the definition and general
properties of gauge bundle functors (gh-functors) F : K — FM on a subcat-
egory I C PB. The definition of gh-functors covers all standard definitions
of natural bundle functors, like natural bundles by A. Nijenhuis [Ni| (on
the category M f,,), prolongation functors by I. Kolar [K2| (on the category
M) and gauge-natural bundles by D. Eck [E2] (on the category PB,,(G)).
We try to compare general properties of gh-functors on X with the ones
of standard natural bundle functors mentioned above. Then we restrict our
investigations to product preserving gauge bundle functors (ppgb-functors)
F :PB — FM on the whole category PB only. A simple example of such a
functor is the extended Weil functor T4 : PB — FM for a Weil algebra A
sending any principal bundle p : P — M to T4(P) — M (the composition
of TA(p) : TA(P) — TA(M) with the Weil bundle projection T4 (M) — M)
and any principal bundle homomorphism f : P — P covering f : M — M
to a fibred map TA(f) : TA(P) — T(P,) covering f : M — M;. We
present many examples of ppgb-functors on PB. We show essential differ-
ences between ppgb-functors on PB and ppb-functors on M f. In particular,
we exhibit a ppgb-functor F' : PB — F M such that there is no exchanging
isomorphism FoT =T o F.

In Sections 3-8, we describe all ppgb-functors on PB in terms of so
called admissible triples and classify all natural transformations F' — H be-
tween ppgb-functors F, H : PB — FM by means of morphisms between
admissible triples. Moreover, for ppgb-functors F, H : PB — FM, a Lie
group G and a natural number m > 2, we classify all natural transfor-
mations Fipg, (@) — Hpp,,(q) by means of so-called admissible pairs. In
particular, we find explicitly all natural transformations 74 — T'B between
the extended Weil functors T4, T8 : PB — FM for Weil algebras A and B
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and all natural transformations T|17438m(G) — T|j73;Bm(G) for m € N, a Lie
group G and Weil algebras A and B. As an application of the description
of ppgb-functors on PB, we present (in Section 9) a canonical construction
of a general connection F(I') on F(p) : F(P) — F(M) from a principal
connection I on p : P — M for an arbitrary ppgb-functor F : PB — FM.

In Section 10, we prove a “reduction” theorem for PB,,(G)-gauge-natural
operators lifting principal connections to Weil bundles. In Section 11, using
some results from Appendix (which consists of Sections 12 and 13), we prove
that for commutative Lie groups G and sufficiently large m, there are plenty
of affine PB,,(G)-gauge-natural operators lifting principal connections to
Weil bundles (we give a lower bound on the dimension of the affine space
of such affine PB,,(G)-gauge-natural operators). In Appendix, we present a
full description of all M f,,,-natural operators lifting vector-valued 1-forms
(or vector-valued maps) to vector-valued 1-forms on Weil bundles.

Full descriptions of product preserving (gauge) bundle functors on some
other categories over manifolds can also be found in [KuMi|, [Kul, [Mi3],
[Mi4], [Mi5], [MT], [Sh] (the list is not complete); some other reduction the-
orems for gauge-natural operators on connections can also be found in [DM],
[J1] (the list is not complete). In [JV], the reduction theorems were applied
to obtain complete descriptions of gauge-natural operators lifting principal
and classical connections to principal connections on higher order principal
prolongations of principal bundles. In Section 11 of the present paper, the
“reduction” theorem is used to obtain the estimate mentioned above.

2. Product preserving gauge bundle functors on principal bun-
dles: definitions, simple properties, examples. Let K C PB be a sub-
category such that for any KC-object P — M and any open subset U C M
we have Py € Obj(K) and the inclusion iy : By — P is a K-morphism.

DEFINITION 2.1. A gauge bundle functor (gb-functor for short) on K as
above is a covariant functor F' : L — F M satisfying the following conditions:

(i) Base preservation. For any K-object P = (p : P — M) with the
base M the induced FM-object F(P) = (mp : F(P) — M) is a
fibred manifold over the same base M. For any K-morphism f :
P, — P, covering f : M; — My the induced FM-map F(f) :
F(P)) — F(P) is also over f.

(ii) Locality property. For any K-object p : P — M and any open subset
U C M the FM-map F(iy) : F(Py) — F(P) (induced by the
inclusion iy : Py — P) is a diffeomorphism onto 5 (U).

(i) Regularity property. F transforms smoothly parametrized families
of K-morphisms into smoothly parametrized families of F M-mor-
phisms. More precisely, if f : R x P — (Q is a smooth map such that
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for any ¢ € R the restricted map f; : P — Q, fi(p) = f(t,p), is a
K-map then the map F'f : R x F(P) — F(Q), Ff(t,v) = F(f)(v),
is smooth.

DEFINITION 2.2. Let F and H be gb-functors on K. A natural transfor-
mation 1 : F' — H is a family of maps np : F'(P) — H(P) for all K-objects
P such that H(f)onp =ng o F(f) for any K-map f: P — Q.

If X = Mf,,, we obtain the classical concept of natural bundles in the
sense of A. Nijenhuis (see [Ni]). If £ = PB,,(G) we obtain the classical
concept of gauge-natural bundles on PB,,(G) in the sense of D. Eck (see
[E2]). If £ = M f we obtain the classical concept of prolongation functors
on Mf in the sense of I. Kolar (see [K2]). Therefore the above concept of
gb-functors is sufficiently general. Of course, one can consider the even more
general concept of gauge bundle functors over local categories on manifolds
(see [KMS, Remark 51.4]).

In the situation of L = M f,,, the regularity condition (iii) in Definition
is a consequence of conditions (i) and (ii) in that definition.This is a
very deep result by D. B. A. Epstein and W. P. Thurston [ET]. Using it
one can show that if K = PB,,(G) or K = Mf then the regularity condi-
tion (iii) in Definition also is a consequence of conditions (i) and (ii)
there (see [KMS|). A similar regularity result for infinite-dimensional (or
even topological Hausdorff) natural bundles F'(M) over m-manifolds M was
proved in [Mi6]. In general, the regularity condition (iii) in Definition
cannot be omitted (even for product preserving functors F' : PB — FM):
see Example [2.20]

The locality condition (ii) in Definition[2.1]cannot be omitted either (even
for product preserving functors F' : PB — F.M). For example, the product
preserving functor PB — FM sending any principal bundle P — M with
the Lie group G to its Lie groupoid (P x P)/G (considered as the fibre
manifold over M with respect to the source projection) and any PB-map f :
P — @ covering f : M — N with the Lie group homomorphism v : G — H

to the induced FM-map f : (P x P)/G—(Q x Q)/H covering f:M—N

(f([p1,p2]a) =1[f(p1), f(p2)]H, p1,p2 € P) satisfies conditions (i) and (iii) in
Definition and it does not satisfy condition (ii) in that definition. The
theory of Lie groupoids and Lie algebroids can be found in [Mal. From the
locality property (ii) in Definition we get the following lemma.

LEMMA 2.3. Let F,H : K — FM be gb-functors. If n : FF — H is
a natural transformation, then np covers the identity map of M for any
K-object P — M.

Proof. Let P — M be a K-object. Suppose v € F,(P) and np(v) €
Hy(P), x # vy, x,y € M. Let U be an open neighbourhood of x such that
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y ¢ U. Let iy : Py — P be the inclusion. Then (by the definition of natural
transformations) H(iy) o np, = np o F(iy). By the locality condition (i)
of Definition 2.1, there exists ¥ € F(Py) such that v = F(iy)(¢). Then
ne(v) =npo F(iy)(?) = H(iv) o npy, (0) € H(P)y. Contradiction. u

We see that Lemma essentially generalizes [KMS, Lemma 14.11].
Indeed, the proof of [KMS] Lemma 14.11| works if there are sufficiently many
KC-morphisms (if K is so-called Whitney-extendable). Our proof of Lemma
ﬁ works for all K as above (even if the inclusion maps are K-morphisms
only).

The locality property (ii) in Deﬁnitionensures thatif f,g: P — Q are
KC-morphisms between P = (p: P — M) and @ such that Tp—1) = 9p-1 ()
for some open subset U C M then F(f)‘W?(U) = F(g)lﬂlgl(U). Indeed, the
assumption means that f oiy = goiy. Then F(f)o F(iy) = F(g) o F(iv).

DEFINITION 2.4. Let fi,fo : P — @ be principal bundle morphisms
covering f X b o M—N and with Lie group homomorphisms vy,v5 : G — H
and let x € M. We say that j5(f1) = jL(f2) if the following equivalent
conditions are satisfied:

(i) j;(fl) = j;(fQ) for all p € P, = the fibre of P over z.
(ii) j,(f1) = jp(f2) for some p € P, and vy = vy.

Just as the order of gauge-natural bundles (see [KMS]), one can define
the order of gbh-functors.

DEFINITION 2.5. We say that a gb-functor F': K — FM is of order r if
the following condition is satisfied:

e For any K-morphisms fi, fo : P — @ between K-objects P — M
and Q and any = € M, from ji(f1) = ji(f2) it follows F(f1)r,(p) =
F(f2)|F(p)-

If F: Mf,, — FM is anatural bundle, then F' is of finite order ord(F') <
2/ + 1, where f = dim(SF) is the dimension of the so-called standard fibre
Sp = Fyo(R™) of F. This nice result was proved by R. Palais and C.-L.
Terng in [PT]. In [ET], D. B. A Epstein and W. P. Thurston proved that
ord(F) < 2f 4+ 1 and that this estimate is sharp for m = 1. In |Z], A. Zajtz
showed that if m > 2, then ord(F') < max(f/(m — 1), f/m+1) and that this
estimate is sharp. If F' : PB,,(G) — FM is a gauge-natural bundle, then
F is also of finite order. This fact was proved by D. Eck in [E2]| (see also
[IKMS, Theorem 51.7]). On the other hand, there are gauge bundle functors
F : PB — FM of strictly infinite order. For example, let H : M f — FM
be a bundle functor of strictly infinite order (see [Mil]). Then the gb-functor
F : PB — FM defined by F(P) = H(M) for any PB-object P — M and
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F(f)y=H(f): HM) — H(N) for any PB-morphism f : P — @ with the
underlying map f : M — N is of strictly infinite order.

In all the above-mentioned standard theories of natural bundle functors
one of the most important properties of these functors is that they are in one-
to-one correspondence with standard fibres. In the cases of fixed dimension
of base manifolds (natural bundles on M f,, and gauge-natural bundles on
PB,,(G)) standard fibres are uniquely determined, they are manifolds with
a left action of a certain Lie group, and natural bundles are fibred manifolds
associated with a principal bundle (see the papers by D. Krupka [Kru| for
the category M f,, and D. Eck [E2] for the category PB,,(G)). In the case
of prolongation functor of finite order r on the category M f of all manifolds
the standard fibres form a sequence S = (Sy, ..., Sy,...) for any dimension
with the action of the category L"; see for instance [KMS| or the original
paper by J. Janyska [J2]. What is the corresponding situation in the case
of general definition? Even in the case of gb-functors on the whole PB an
answer to this question is unknown.

REMARK 2.6. The reviewer of the present paper supposes that in the
case of gb-functors on the whole PB the sequence of standard fibres will
be S = (S§",...,89",...) and he supposes there is an action of L" x Gr
on S. But (in the author’s opinion) to realize this idea we need to introduce
canonical smooth manifold structures on Hom(G1,G2) for any Lie groups
G1, G2 and the author does not know if it is possible.

In the present paper we give (among other things) an answer to the gen-
eral question in the case of product preserving gb-functors on the whole PB.

To introduce product preserving gb-functors we assume additionally that
K is closed with respect to taking products (i.e. if P and P, are K-objects
then P} x Py is a K-object) and that any PB-morphism between K-objects
is a K-morphism and that any PB-object PB-isomorphic to a K-object is
a IC-object. Then it makes sense to introduce the following definition, quite
similar to the one (see [KMS]) of ppb-functors on M f.

DEFINITION 2.7. A gb-functor F : K — FM is a product preserving
gauge bundle functor (ppgb-functor) if it has the following property:

(i) Product preserving property. For any K-objects P; and P, the map
(F(pry), F(pry)) : F(P1 X Py) — F(P) x F(P,) is an F.M-isomor-
phism, where pr; : Py X P, — P; (i = 1,2) are the usual projections.

For a ppgb-functor F' : K — FM and K-objects P; and P» we will always
identify F'(P; x Py) with F'(P;) x F'(P2) by the FM-isomorphism from the
product preserving property (i) in Definition So,if F: K - FMis a
ppgb-functor then F (P x Py) = F(P;) x F(P,) for any K-objects P} and P,
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and (just as for ppb-functors on Mf)

F(fi x f2) = F(f1) x F(f2) : F(P1) x F(P2) = F(Q1) x F(Q2)
for any C-morphisms f; : P, — Q; for ¢ = 1,2. If FFH : K — FM are
ppgb-functors and 7 : F' — H is a natural transformation, then

Npyxp, =Np; XNp, : F(Pl) X F(PQ) — H(Pl) X H(Pg)

for any K-objects P, and Ps.

From now on we consider ppgb-functors which are defined on the whole
category PB. However some of the results obtained can be directly general-
ized to ppgb-functors F' : K — F M for some “special” subcategories £ C PB
instead of PB (see Remark [5.6)).

We have the following examples of ppgb-functors F' : PB — F.M of finite
order. (In Proposition we observe that any ppgb-functor F' : PB — FM
is of finite order.)

ExAMPLE 2.8. The forgetting functor I : PB — FM sending any PB-
object P — M to the F M-object P — M and any PB-morphism f: P — Q
to the FM-map f: P — @ is a ppgb-functor.

ExAMPLE 2.9. The group functor F®" : PB — FM sending any PB-
object P — M with the group G to the trivial F M-object M x G over M
and any PB-morphism f : P — @ covering f : M — N with the Lie group
homomorphism v : G — H to the FM-map f xv: M xG — N x H is a
ppgb-functor. We see that F& : PB — PB.

ExaMPLE 2.10. The extended tangent functor 7' : PB — FM sending
any PB-object p : P — M to the F M-object T'(P) — M (the composition of
T(p) : T(P) — T(M) with the tangent bundle projection T'(M) — M) and
any PB-morphism f : P — P; covering f : M — M; to the induced FM-
map T(f) : T(P) — T(Py) (the tangent map of f) covering f : M — M is
a ppgb-functor. B

ExAMPLE 2.11. The Lie algebroid functor L : PB — FM sending any
PB-object P — M with the Lie group G to its Lie algebroid L(P) = T'(P)/G
(considered as a fibre manifold over M) and any PB-map f : P — P} with
the Lie group homomorphism v : G — Gy to L(f) : L(P) — L(P;) given by
L(f)([vle) = [T(f)(v)]a, is a ppgb-functor.

ExAMPLE 2.12. Let A be a Weil algebra. Applying the Weil functor
T4 : Mf — FM we get the extended Weil functor T4 : PB — FM
sending any principal bundle p : P — M with the Lie group G to the fibred
manifold T4(P) — M (the composition of T4(p) : T4(P) — T4(M) with
the Weil bundle projection T4(M) — M) and sending any principal bundle
homomorphism f : P — P, covering f : M — M; with the Lie group
homomorphism v : G — Gy to the induced FM-map TA(f) : TA(P) —
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T4(Py) (the usual A-prolongation of f) covering f. Clearly, T4 : PB — FM
is a ppgb-functor. In particular, if A = I is the Weil algebra of dual numbers
we obtain the extended tangent functor 7' : PB — FM. If A = R, we obtain
the forgetting functor I : PB — FM.

EXAMPLE 2.13. Let A be a Weil algebra. We have a functor L4 : PB —
FM sending any PB-object P — M with the Lie group G to the factor
bundle L4(P) = T4(P)/G over M and any principal bundle homomorphism
f : P — P with the Lie group homomorphism v : G — Gy to LA(f) :
TA(P)/G — TA(P) /Gy given by LA(f)(o]) = [TA()(v)]c, for any v €
TA(P). Here (by definition) [v]g = [w]g iff v = TA(r9)(w) € TAP for
some g € G, where r9 : P — P is the right translation by g € G. Clearly,
LA : PB — FM is a ppgb-functor. In particular, if A = D we obtain the
Lie algebroid functor L : PB — FM.

EXAMPLE 2.14. Let ¢ : A — B be an algebra homomorphism be-
tween Weil algebras (considered as the corresponding natural transforma-
tion i : T4 — TP) and let T# : FM — FM be the corresponding product
preserving bundle functor (see [Mi3]). Then by “restriction” we get a func-
tor T# : PB — FM sending any principal bundle (and then fibred man-
ifold) p : P — M to the fibred manifold T#(P) — M and any principal
bundle homomorphism (and then fibred map) f : P — P; to the fibred map
TH(f) : TH(P) — TH(P;). More explicitly, T" : PB — FM transforms any
PB-object p: P — M into

TH(P) = {(v,w) € T*(M) x TP(P) | fins(v) = T" (p)(w)}
over M and any PB-map f : P — P, covering f : M — M into the

restriction of TA(i) x TB(f). Clearly, T" : PB — FMisa ppgb-functor.
In particular, if p = idg : A — A, we obtain the extended Weil functor
T4 : PB — FM. If p = k : R — B, we obtain the B-vertical functor

VB . PB — FM such that

vEP)= | TP(P) and VP(f)= |J T5(f2) : VP (P) - VE(P)
xeM zeM
for any PB object P — M and any PB-map f: P — P,. If p: R — D we
obtain the (classical) vertical functor V : PB — FM.

EXAMPLE 2.15. Let (K, «) be a pair consisting of a regular (i.e. trans-
forming smoothly parametrized families of Lie group homomorphisms into
smoothly parametrized families of maps) product preserving functor K :
Gr — Mf and a Gr-invariant family « of actions ag : GX K(G) — K(G) for
any Lie group G (the invariance of o means that for any Lie group homomor-
phism v : G — G; the map K(v) : K(G) — K(G1) is (ag, ag, )-invariant
over v). For example, let (K, a)) be one of the following pairs:
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(i) The pair (£, Ad) consisting of the Lie algebra functor £ : Gr — M f
sending any Lie group G to the Lie algebra £(G) of G and any Lie
group homomorphism v : G — G to the induced Lie algebra map
L(v): L(G) — L(G1) and the family Ad = {Adg}geobjgr), Where
Adg is the adjoint action of G on £(G) for any Lie group G.

(ii) The pair (Id, Ad) consisting of the forgetting functor Id : Gr — M f
sending any Lie group G to G and any Lie group homomorphism
v:G — Gy tov:G — Gy and the family Ad = {Adg}aeobjor),
where Adg is the adjoint action of G on G for any Lie group G.

(iii) The pair (Id°, Ad°) consisting of the connected component functor
Id° : Gr — M [ sending any Lie group G to the connected compo-
nent G° C G of the unity of G and any Lie group homomorphism
v : G — G7 to the restriction vjgo : G° — G of v, and the family
Ad® = {Adg }geobjgr), where Adg is the action of G on G given
by the restriction of the adjoint action Adg for any Lie group G.

(iv) The pair (Ab,triv) consisting of the abelianization functor Ab :
gr — Mf sending any Lie group G to the commutative Lie group
G/|G,G] (where [G,G] is the closure of the algebraic commutant
of G) and any Lie group homomorphism v : G — G; to the quo-
tient [v] : G/[G,G] — G1/[G1,Gi] of v, and the family triv =
{triva} geonj(gr), Where trivg is the trivial action of G on G/[G, G]
for any Lie group G.

Then we can define a functor F¥% : PB — FM by
Fo(P) = PIK(G),ag] and  FRO(f) = f[K(v)]

for any principal bundle P with the Lie group G and any principal
bundle homomorphism f : P — P; with the Lie group homomorphism
v: G — G, where P[K(G), ag] is the associated (with P) bundle with the
standard fibre K (G) and the action ag and where f([K(v)]) is well-defined

by f(IK@))([p,v]) = [f(p), K(v)(v)] for any [p,v] € P[K(G), ag]. Clearly,
FEKa . PB - FM is a ppgb-functor.

Composing the ppgb-functors on PB from previous examples with the
WEeil functors on manifolds we can obtain new ppgb-functors on PB. Indeed,
we have the following example.

EXAMPLE 2.16. Let T4 : M f — FM be the Weil functor corresponding
to a Weil algebra A and F : PB — FM be a ppgb-functor.

(i) The composition F o T4 : PB — FM is defined as follows. Given a
principal bundle p : P — M, we have the principal bundle T4(P) :=
(TA(p) : TA(P) — TA(M)). Applying F : PB — FM to T4(P),
we obtain the fibred manifold F(T4(P)) — T4(M). Composing this
projection with the Weil bundle projection T4(M) — M we obtain
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the fibred manifold (F o T4)(P) over M. Given a principal bundle
map f : P — Py covering f : M — My, TA(f) : TA(P) — TA(P)) is
a principal bundle map covering T4(f) : TA(M) — TA(M). Apply-
ing F, we obtain the fibred map F(TA(f)) : F(T*4(P)) — F(T4(Py))
covering TA(f) : TA(M) — T4 (M), which can be considered as the
fibred map (F o T4)(f) : (F o TA)(P) — (F o T4)(Py) covering f.
(ii) The composition T4o F : PB — F.M is defined as follows. Applying
F top: P — M we obtain the fibred manifold F(P) — M. Then
applying T4, we obtain the fibred manifold T4(F(P)) — T4(M).
Then composing it with the Weil bundle projection T4 (M) — M,
we obtain the fibred manifold (T4 o F)(P) over M. Applying F to
f: P — Py, we obtain the fibred map F(f) : F(P) — F(P)) covering
f. Applying T4, we produce the fibred map T4(F(f)) : TA(F(P)) —
TA(F(Py)) covering TA(f) : TA(M) — T4(M), which can be con-

sidered as the fibred map (T4 o F)(f) : (T4 o F)(P) — (T4 o F)(P)
covering f.

Clearly, both functors FoT4 : PB — FM and T4 o F : PB — FM are
ppgb-functors.

For any ppb-functor F' : M f — FM there exists the “exchanging” iso-
morphism F oT = T o F. In contrast, we have the following example of
a ppgb-functor F' : PB — FM such that there is no natural isomorphism
FoT=ToF.

EXAMPLE 2.17. Any connected abelian Lie group G is isomorphic to
(SH" xR™ for some n and m. Since Hy ((S')"xR™) = R"™ where H; : Top —
Vect (the category of all vector spaces over R) is the first singular homology
group functor with real coefficients, we have (by restriction) the functor
Hy : Grapcon — Vectsy, (the category of finite-dimensional vector spaces over
R), where Grap_con is the category of all connected abelian Lie groups and
their homomorphisms. We have the abelianization functor Ab : Gr — Gra,
(see Example [2.15(iv)). We also have the connected component functor 1d° :
Gr — Greon (see Example iii)). Define £ = Hyold° o Ab : Gr — Vectgy
(composition of functors). Define a functor F' : PB — FM by

F(P)=M x E(G) and F(f) = f x E(v)

for any PB-object P — M with the Lie group G and any PB-map f :
P — Pj covering f : M — M; and with the Lie group homomorphism
v : G — Gy. From the two lemmas below it follows that F is a ppgb-functor
such that there is no natural isomorphism 7o F' = F o T.

LEMMA 2.18. The functor E : Gr — Vectg, from the last example is
reqular and product preserving.
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Proof. We see that E(pt) = {0}. Moreover, if G; = (S})™ x R™! and
Gy = (Sl)n2 x R™2, then Hl(Gl X Gg) >~ RMtn2 o~ Hl(G1) X Hl(Gg), and
then

dim(E(G1 x G2)) = dim(E(G1)) + dim(E(G2))

for any Lie groups G and G. Taking into account the above properties of E,
we can show that E is product preserving as follows. Let pr; : G x G2 — Gj
(for i = 1,2) be the projections. We have to show that

¥ := (E(pr1), E(pry)) : E(G1 x G2) = E(G1) X E(G2)

is a diffeomorphism. Clearly, ¥ is linear. Then (by a dimension argument)
it is sufficient to show that ¥ is surjective. Let j; : G — G1 X G2 and
j2 + G2 — G1 x Gy be the homomorphisms given by ji(g1) = (g91,€q,),
jo(g2) = (egy, g2). Define @ : E(Gy) x E(Ga) — E(Gy x Ga) by ®(u,v) =
E(j1)(u) + E(j2)(v). Then ¥ o @(u,v) = (u,v) as

E(pr)(E(j1)(w) + E(j2)(v)) = E(pri)(E(j1)(w)) + E(pri)(E(j2)(v))
= E(idg,)(u) + E(eq,)(v) =u+0=u

and (similarly) E(pry)(E(j1)(u) + E(j2)(v)) = v. Hence ¥ is surjective.
Therefore, E is product preserving. The regularity of E is trivial because Ab
and Id° are regular and H; has the same values on homotopic maps. =

LEMMA 2.19. There is no natural isomorphism T o F' = F o T, where F
1s the ppgb-functor from the last example.

Proof. We see that F(S') = H;(S') and E(T(S')) = H1(T(S')). More-
over, since Hy(S') = H;(T(S')) (as S! can be deformed onto S' C T(S!) by
fibre homotheties), we see that dim(FE(T(S'))) = dim(E(S')) = 1. Now, let
P = RxS! — R be the trivial principal bundle over R with the Lie group S*.
Then T(P) is the trivial principal bundle T'(R) x T(S!) over T(R) with the
Lie group T'(S'). Hence F(T(P)) = T(R) x E(T(S!)). On the other hand,
F(P) = R x E(S!), and so T(F(P)) = T(R) x T(E(S')). Consequently,
dim(F(T(P))) =2+1=3#4=2+2=dim(T(F(P))). Thus there is no
natural isomorphism FFoT ZToF. u

The next example shows that the regularity condition (iii) in Definition
is not a consequence of conditions (i), (ii) in that definition and condi-
tion (i) of Definition [2.7] even for functors F : PB — FM.

EXAMPLE 2.20. Let ¢ : C — C be a discontinuous field morphism (it may
be standardly obtained by means of the Kuratowski—Zorn lemma). Using c,
we can construct a functor H : Vects, — M f as follows. By means of the
usual bases (ej);?:l in R* (or C¥) for any k (where ¢; = (0,...,1,...,0), 1 at
jth position), we identify m x n-matrices with real (or complex) coefficients
with R-linear (or C-linear) maps R™ — R" (or C™ — C") and vice versa.
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Let A = [a;;] be an m x n-matrix with real coefficients. We consider A as
the m X n-matrix with complex coefficients in the obvious way (because of
R C C). Then ¢(A) := [c(ai;)] is an m X n-matrix with complex coefficients.
Since c is a field morphism, we easily see that ¢(I,,) = I, for the m xm iden-
tity matrix I,,, and c(A; o Ag) = ¢(A1) o ¢(As) for any m X n-matrix A; and
n X g-matrix Ay of real coefficients. For any Vectg,-object V', dim(V) = m,
we define H(V) = Iso(R™, V) x C™)/=, where Iso(R™,V) is the space of
all R-linear isomorphisms (i.e. Vectgy-isomorphisms) R™ — V and = is
the equivalence relation given by (¢, u) = (¢1,u;) iff there is an invertible
mxm-matrix B with real coefficients such that ¢; = @oB and u = ¢(B)(uy).
Then H(V) is a manifold. Every ¢ € Iso(R™, V) induces a chart ¢ : H(V)
— C™ by ¢(W) = u, where W = [p,u] € H(V) (u is uniquely deter-
mined by ¢ and W). If ¢1 € Iso(R™,V) is another isomorphism, then
Goprt =c(ptoypy): C™ — C™ is a C-linear map (and therefore smooth).

For any R-linear map (i.e. Vectg,-map) f : V. — Vi, dim(V) = m,
dim(Vy) = my, we define H(f) : H(V) — H(Vi) by H(f)([p,u]) =
[, c(yp=L o fo)(u)], where ¢ € Tso(R™, V7). If 1) = p o A € Iso(R™, V7)
and 1 = po B € Iso(R™,V) are some other isomorphisms and [p,u] =
(1, m), then [, () o f o o)(w)] = [, (" o f o ¢)(u)] because of
c(A)oc( o fopr)oc(B™) = c(b~ o foyp) (see above). Using the induced
charts we see that H(f) : H(V) — H(V}) is smooth as 1) o H(f) o ¢~ ! =
c(y~to foyp):C™ — C™ is C-linear (and then smooth).

It is easily seen that H : Vects, — M f is a product preserving functor
(not necessarily regular). Given a PB-object P — M with the Lie group G
let F(P)= M x H(L(G)) be the trivial fibred manifold over M, and given
a PB-map f : P — P; covering f : M — M; and with the Lie group
homomorphism v : G — Gi let F(f) := f x H(L(v)) : F(P) — F(Py),
where L : Gr — Vectg, is the Lie algebra functor.

It is clear that F' : PB — FM satisfies conditions (i) and (ii) in Defini-
tion and condition (i) in Definition The functor F' does not satisfy
condition (iii) of Definition Indeed, let P = R x R be the trivial P5-
object over R with the Lie group G = (R, +) acting (on the right) on P by
(x,y)-z = (z,y+2). We have L(G) = R and the exponent Exp, is the iden-
tity map. The fibre homotheties a; : P — P, a;(z,y) = (x,ty), are PB-maps
with the Lie group homomorphism v; = tidg : G — G. Then L(1;) = tidg,
and so H(v¢) = ¢(t) idc, where we identify H (R) with C via the map induced
by the identity idg € Iso(R,R). Then F(a:)(0,1) = (0,¢(t)) for any t € R.
But cg is discontinuous. (If ¢ is continuous, then so is ¢, as c(z + iy) =
c(x)+c(i)e(y) for any =,y € R.) Hence a; is a smoothly parametrized family
of PB-maps and F'(a;) is not a smoothly parametrized family. In other words

F :PB — FM does not satisfy condition (iii) of Definition
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We end Section 2 observing that M f and Gr are “subcategories” in PB.

EXAMPLE 2.21. Given a manifold M we have the principal bundle i; (M)
= (idps : M — M) with the Lie group pt (the trivial Lie group). Given a
map f : My — My we have i1(f) = f : i1(M1) — i1(Mz) covering f.
The correspondence iy : Mf — PB is a ppb-functor (with values in PB).
Moreover, 41 is injective on objects and morphisms.

ExaMPLE 2.22. Given a Lie group G we have the principal bundle
i2(G) = (G — pt) with the Lie group G. Any Lie group homomorphism
¢ : G1 — G2 can be considered as a PB-morphism iz(¢) = ¢ : i2(G1) —
i2(G2) with the Lie group homomorphism ¢ : G; — G2. The correspondence
19 : Gr — PB is a product preserving functor. Moreover, i is injective on
objects and morphisms.

LEMMA 2.23. Any trivial PB-object M x G of M with the Lie group G
can be written as the product M x G = i1(M) x i2(G) (modulo the obvious
identification M x pt = M).

3. Admissible triples corresponding to ppgb-functors. We are go-
ing to describe the ppgb-functors F' : PB — FM and their natural transfor-
mations by means of so-called admissible triples and their morphisms. The
classification theorems for such functors F' will be presented in Section 5.
In this section we construct admissible triples from ppgb-functors and mor-
phisms of admissible triples from natural transformations of ppgb-functors.
We start with the concept of admissible triples.

Let (F1, F2, ) be a triple consisting of a product preserving bundle func-
tor I} : Mf — FM, a product preserving regular functor Fy : Gr —
M and a functor transformation a : ((F1)g,, F2) — F2. More precisely,
a is a family of mappings ag : Fi(G) x F»(G) — F3(G) for any Lie
group G such that ag, o (Fi(v) x Fa(v)) = F3(v) o ag for any Lie group
morphism v : G — Gjp. The regularity of F, means that F transforms
smoothly parametrized families of Lie group homomorphisms into smoothly
parametrized families of maps. We know that Fj(G) is a Lie group if G is,
and Fy(v) : F1(G) — F1(Gy) is a Lie group homomorphism if v : G — Gy is
(see Introduction).

DEFINITION 3.1. An admissible triple is a triple (F}, Fy, o) as above such
that ag : F1(G) x F5(G) — F3(G) is an action of the Lie group Fi(G) on
F5(@Q) for any Lie group G.

For example, a triple (Id, K, «) consisting of the “identity” ppb-functor
Id: Mf - FM (Id(M) = (idps : M — M), Id(f) = f), a regular product
preserving functor K : Gr — Mf and a Gr-invariant family o = {ag}
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of actions ag : G x K(G) — K(G) (we considered several such (K, ) in
Example [2.15]) is an admissible triple.

DEFINITION 3.2. Let (Fi, Fy,a) and (Hy, Ha, 3) be admissible triples.
A morphism v : (Fy1, Fy,a) — (Hy, Ha, 3) of admissible triples is a pair
v = (v!,1?) of a natural transformation v! : F; — Hj of bundle functors
and a functor transformation v? : F» — Hy such that vZoaq = Bgo(vl xvé)

for any Lie group G.

Any ppgb-functor F' : PB — FM determines an admissible triple. In-
deed, we have the following example.

ExampLE 3.3. Consider a ppgb-functor F' : PB — FM. Composing
F with the product preserving functors i; and is from Examples and
we obtain a ppb-functor F) = F o4y : Mf — FM and a product
preserving functor F?) = 70 Foiy : Gr — Mf, where 7 : FM — MJ is
the (forgetting) total space functor. Given a Lie group G we define

o) = Fug) : FD(G) x FO(G) = F(ir(GQ) x i5(Q)) — FO(G),
where the multiplication pug : G X G — G of G is considered as a PB-
map pg : i1(G) X i2(G) — ia(G). Then (FM, F?) o)) is an admissible
triple. Indeed, the associative principle pug o (idg Xug) = pe © (ke x idg)
of the multiplication map ug : G Xx G — G of G can be interpreted as
the equality uc o (i1(idg) X pe) = pe o (i1(pe) x i2(idg)), where pe is
treated as a PB-morphism puq : i1(G) X i2(G) — i2(G). Then applying F' to
this equality we obtain the left action condition a(GF) o (id p() @) xagF)) =

a(GF) o (Hpo) () X idpe)(g))- Similarly, from peo (i1(eq) x i2(ide)) = i2(ide),

we deduce a(GF) o (eF(1>(G) X idF<2)(G)) = idF(z)(G). Thus a(GF)

is a left action.
Because of the canonical character of o) we deduce that o) is a functor

transformation.

DEFINITION 3.4. Let F': PB — FM be a ppgb-functor. The admissible
triple (F(l),F(Q),a(F)) described in Example is called the admissible
triple corresponding to F.

Natural transformations of ppgb-functors P8 — F.M induce morphisms
of corresponding admissible triples. Indeed, we have the following example.

EXAMPLE 3.5. Let n = {np} : F — H be a natural transformation
between ppgb-functors F,H : PB — FM. We have natural transforma-
tions n(t) = {0y} FO — HO and n®@ .= sy} - F@ — H®)
where (F(I), F@), a(F)) and (H(l), H®, a(H)) are the admissible triples cor-
responding to F' and H respectively. The pair (1) := (77(1),77(2)) is a mor-
phism (F(), F®) o))y - (HO H® o)) of admissible triples. Indeed,
Nir (@) xin(G) = Mir(G) X Min(q) * F(i1(Q)) x F(i2(G)) — H(i1(G)) x H(i2(G))
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and the multiplication map pg : i1(G) X i2(G) — i2(G) of G is a PB-
morphism. Then 7;,q) o F(ua) = H(ua) © (0, (@) X Miy(q)) @s 1 is a natural

2) ) (H) (2)

transformation. So, 55" o’ = ag ' o (178) x g ) for any G.

DEFINITION 3.6. Let n : F — H be a natural transformation of ppgb-
functors I, H : PB — FM. The morphism v described in Example is
called the morphism of admissible triples corresponding to 7.

4. Ppgb-functors corresponding to admissible triples. In this sec-
tion we construct ppgb-functors from admissible triples and natural trans-
formations between ppgb-functors from morphisms of admissible triples as
follows.

EXAMPLE 4.1. Suppose we have an admissible triple (F7, Fa, ). We con-
struct a gb-functor F = F(FL.F20) . pB — FM as follows. Let p : P — M
be a PB-object with the Lie group G. Since F is a ppb-functor on M f,
Fi(p) : F1(P) — F1(M) is a principal bundle with the Lie group Fi(G) (see
Introduction). We define FU1F22)(P) = Fy(P)[F5(G), ag] to be the asso-
ciated bundle with the standard fibre F5(G) (being a left Fi(G)-space by
the action ag). Then FU1:F2)(P) is a fibre bundle over Fy(M) (and then
over M). Let f: P — Py be a PB-morphism of PB-objects p; : P, — M;
and po : P, — My covering f : My — My and with the corresponding Lie
group homomorphism ¢y : G1 — Gs. Since Fy : Mf — FM is a ppb-
functor, Fi(f) : F1(P1) — Fi(P) is a homomorphism of principal bundles
covering Fi(f) : F1(M1) — F1(Msz) and with the Lie group homomorphism

Fi(pg) + Fi(G1) — Fi(G2) (see Introduction). We define F(F1f2a)(f)
F(P1) — F(Py) by FEP(f)([y,0]) = [Fi(f)(y), Fa(g)(v)] for any
[y, v] € FUFLF20) (P with y € Fi(P)) and v € Fy(Gy).

To see that FELF20)(f) is well-defined, we prove the implication “if
1, 01] = [y, 3] then [Fi(H(1), Falpp)(on)] = [Fi()(ws), Falpp)(w)]” as
follows. Let [y1,v1] = [y2,v2]. Then yo = y1 - €% and v = ag, (€, v;) for
some ¢ € Fi(G), where the dot - denotes the right action of the principal
bundle. We have Fi(f)(y2) = F1(f)(y1) - (Fi(ef)(€))~ . So, it remains to see
that Fo(oy)(v2) = ag, (Fi(ef)(€), Fa(wf)(v1)). But the last equality is the
invariance property of the functor transformation o = {ag} with respect to
the Lie group homomorphism ¢ : G — Ga. Thus FULI2)(f) . F(Py) —
F(P,) is well-defined. The correspondence FU1F22) . PB — FM is a gb-
functor.

LEMMA 4.2. The gb-functor FUFuF20) PR — FM is product pre-
serving.

Proof. Put F := FELF20) Let P and P, be PB-objects. Let pr; :
Py x P, — P; (i = 1,2) be the projections. We prove that Ip, p, =
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(F(pry), F(pry)) : F(Py x Py) — F(P)) x F(P,) is a diffeomorphism as fol-
lows. By a local trivialization argument we may assume that P; = i1 (R™) x
io(Gy), i = 1,2, are trivial PB-objects. Then F(P; x Py) = F(ij(R™ x
RmQ)XZQ(GleQ)) Fl(Rm1XRm2)XF2(G1XG2) Fl(le)XFl(RmQ)
FQ(Gl) XFQ(GQ) and F(Pl) XF(PQ) Fl(]le) XFQ(GQ) XFl(RmQ) XFQ(GQ)
as given G € Obj(Gr) we have F(i1(R™) x i3(G)) = Fi(R™) x F5(G)
modulo the usual identification [(y,er (g)),¢] = (¥,£). Then it is easily
seen that Iphp2 : Fl(le) X Fl(Rmz) X FQ(Gl) X FQ(GQ) — Fl(le) X
F>(Gh) x F1(R™?) x F5(Ga) satisfies Ip, p, (y1,y2,&1,&2) = (y1,£1, 92, &2) for
all (yl,yg,gl,fg) S Fl(le) XFl(RmQ) X FQ(Gl) X FQ(GQ), i.e. it is a diffeo-
morphism. =

DEFINITION 4.3. Let (F1, Fa,«) be an admissible triple. The ppgb-functor
FFLR0) - pB . FAM described in Example is called the ppgb-functor
corresponding to (F1, Fa, a).

EXAMPLE 4.4. Let v = (v',v?) : (Fy, Fy, ) — (Hy, Hy, 3) be a mor-
phism of admissible triples. Consider a PB-object p : P — M with the
standard Lie group G. We define n( Y FFLFee)(py . pHLEB) (PY by

np 1y, €)) = [vh(y), v3(€)] for any [y, f] e PURLF2e)(P) = Fy(P)[Fo(G), o).
One can standardly (as in Example 1)) verify that the definition of 7753”) is

correct. The family n*) = {77 } FF1’F2’ @) — FUHLH20) 5 5 patural
transformation.

DEFINITION 4.5. Let v = (v1,12) : (F1, Fa,a) — (Hy, Ha, ) be a mor-
phism of admissible triples. The natural transformation n*) : F(F1.F2.)
FU1LH2.8) deseribed in Exampleis called the natural transformation cor-
responding to v.

—

5. Classification theorems. We have the following two important lem-
mas.

LEMMA 5.1. Let F' : PB — FM be a ppgb-functor, (F(l),F(Q),a(F))
be the admissible triple corresponding to F and FEDFOa) pp
FM be the ppgb-functor corresponding to (F(l),F(Q),oz(F)). Then F and

FEDF®aE) g isomorphic.

Proof. Given a PB-object P = (p : P — M) with the Lie group G we
have a PB-map fp : i1(P) X i2(G) — P defined by fp(p,&) = p - &, where
the dot - denotes the right (principal bundle) action of G on P. Define

0L .= F(fp) : FO(P) x F(G) = F(i1(P) x is(G)) — F(P),

where F(D(P) x F®)(G) = F(iy(P) x 22(6’)) modulo the ppgb-functor iden-
tification. It remains to show that @P can be factorized by means of the
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quotient projection p : FIV(P) x F(G) — F(l)(P)[F(Q)(G),a(GF)] and
that the quotient map O% : F(F(l)’F@)’O‘(F))(P) — F(P) is a diffeomor-
phism. Because ég is a functor, by a local trivialization argument we may
assume that P = i1(R™) x i3(G). Then F(i1(R™) x i3(G)) = FO(R™) x
F®)(G) (ppgb-functor identification) and F(Fu)’F(Q)’a(F))(il(Rm) xi2(G)) =
FO(R™) x F?)(@G) by the usual identification [(y, ept (@))€l = (y,€). Since
fil(]Rm)Xig(G’) = idgm XUuaG - ’il(Rm) X Zl(G) X ZQ(G) — Zl(Rm) X ’iQ(G), we see
that

QE(Rm)Xiz(G)(yamf) (Zlyac (77 f)) (Rm)ng(G)(% €p<1>(c),ag (77 f))
= D (rm) xia(@) (Y505 €)

for any (y,7,€&) € FO(R™)x FO(G)x FA)(G). Hence @Z (Rm)xin () Induces
the identity map F((R™) x F@(G) — FO(R™) x FA(G). =

LEMMA 5.2. Let (Fy1, Fy, «) be an admissible triple. Let F = FFLER0) e
its corresponding ppgb-functor. Let (F(l),F(Q),a(F)) be the admissible triple
corresponding to F. Then (Fy, Fy, ) is isomorphic to (F() F2) o(F),
Proof. Since Fy : Mf — FM is product preserving, Fi(pt) = {e1} is a

one-point manifold. Slmllarly, Fy(pt) = {ez}. Then F(M) = F(iy(M)) =
Fi(M) xq, Fa(pt) = Fi(M). So, we have a natural isomorphism V! :

FO — Fy given by Vi, ([€,e2]) = €. Similarly, F(G) = F(zg(G)) =
F1(G) X Fo(G) 2 Fy(G). So we have a functor isomorphism V2 : F(2)
— Fy given by Vé([epl(g),n]) = 1. We prove that YF1F20) .— (Yl P2y .
(FO, F@ o)) — (F, Fy,a) is an isomorphism of admissible triples. It
remains to verify that ago (VL x V) = V2 oag). Let g : i1(G) xia(G) —
i2(G) be the PB-map given by the multiplication of G. Then (by definition)
o) = F(ug) : FO(G) x FO(G) = F(i1(G) x ia(G)) — F(G). Consider
arbitrary elements [€, eo] € F(M(G) and ler (q),n] € F®)(G). Then

17 004@ (€, ea), lery(c),m)) = V& o F(uc)([€ e2l, [er, ), M)
=Ve(ler @) ac&n)]) = ac(é,n) = ag o (Vg x V&) (€, eal. ler, @) n))- =
Summing up we get the following classification theorems.

THEOREM 5.3. The correspondence F +— (FU F® o)) induces a
bijection between the equivalence classes of ppgb-functors on PB and the

equivalence classes of admissible triples. The inverse bijection is induced by
(Fy, Fa, ) s FULR0),

Proof. If n : F — H is a natural isomorphism of ppgb-functors then
v (FO) F@) o)y - (HD, H) o)) is an isomorphism of admissible
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triples. Thus the correspondence [F] — [(F(), F?) o(F)] is well-defined.
Similarly, if v : (F1, Fp,a) — (Hi, Ha,[3) is an isomorphism of admissible
triples, then n®) : pUFLF2e) _ p(HGLH2.6) §g g patural isomorphism of ppgb-
functors. Hence the correspondence [(Fy, Fy, )] +— [FFLF20] s also well-
defined. From Lemmas and it follows that the correspondences are
mutually inverse. m

THEOREM 5.4. Let F,H : PB — F M be ppgb-functors. Let (F(l),F(Z),a(F))
and (H(l),H(Q),a(H)) be the admissible triples corresponding to F' and H.
The correspondence n — v is a bijection between the natural transfor-
mations F' — H and the morphisms (F(), F?) o))y - (HW H) oH)
of admissible triples. The inverse bijection is given by the correspondence
v — nl¥l described in Lemma below.

Proof. This follows immediately from Lemma .

LEMMA 5.5. Let F, H : PB — FM be ppgb-functors and (F(l), F@) a(F))
and (H(I), H®), a(H)) be the admissible triples corresponding to F' and H. Let
v=wv?) : (FO FO o)y - (HO H? o) be a morphism of ad-
missible triples. Let OF : pEDFDQ) L poapgoH  pEYH® )
be the isomorphisms from the proof of Lemma . Let n¥) . pEW,FE )
— pEDHDQD) 4o yhe natural transformation corresponding to v. De-
fine a natural transformation n¥! : F — H by ny =0, ng) o (6571
for any principal bundle P. Let v : (F() F®) o)) - (HO H®) o)
be the morphism of admissible triples corresponding to 77[”], Then v = v. If

£ : F — H is another natural transformation such that the corresponding
morphism v€) (F(l),F(2),a(F)) — (H(l),H(z),a(H)) of admissible triples
is such that v€) = v then & = nl¥l.

Proof. Clearly, if natural transformations n’,n” : F — H are such that
v = ") then o/ = 1. So, it remains to show that 7 = v, i.e.

1 F _ nH (v) 2 F  _ pH (v)
vir © O,y = Oiyany © My () A 16 © Oy = Oy © iy

for any manifold M and any Lie group G. We see that @5 (M) and @g @)
are the maps V! and V? from the proof of Lemma for (F(l), F@), a(F))
in place of (F1, Fy, «), and @g(M) and Q’Z(M) are the maps V! and V? from
the proof of Lemma for (HD, H® o)) in place of (F}, Fy,a). Then
vh 0 OF i (6 ea]) = vk, (&) = 01 (Wh(6), ea]) = Oy o0y (1€ e2])
(where e is as in the proof of Lemmal5.2{for (F(1), F3) o) (or (HM, H®),
o M) in place of (F1, Fy,a)), and similarly for G in place of M. u

REMARK 5.6. Let G C Gr be a subcategory in the category of all Lie
groups and their morphisms. Denote by PB(G) the category of all principal
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bundles with Lie structure groups as G-objects and all principal bundle maps
with Lie group homomorphisms as G-morphisms. Suppose G satisfies the
following conditions (i)—(iv):

(i) The trivial Lie group pt is a G-object.
(ii) G is closed with respect to taking products (i.e. if G; and Gy are
G-objects, then so is G x Ga2).
(iii) Any Lie group Gr-isomorphic to a G-object is a G-object.
(iv) Any Lie group homomorphism of G-objects is a G-morphism.

Then (as is easily seen) the obvious versions of Theorems and for
ppgb-functors on PB(G) instead of PB = PB(Gr) hold.

The following categories satisfy conditions (i)—(iv): the category of
abelian Lie groups, the category of nilpotent Lie groups, the category of
solvable Lie groups, the category of compact Lie groups and the category of
trivial Lie groups.

Theorems [5.3] and [5.4] for trivial Lie groups are in fact the description
(mentioned in Introduction) of ppb-functors on Mf in terms of Weil algebras.

REMARK 5.7. In [Mi5], we presented a full description of ppgb-functors
F : VB — FM on the category VB of vector bundles and vector bundle
maps in terms of Weil modules. On the other hand the category VB is not of
the form VB = PB(G) for any subcategory G satisfying conditions (i)—(iv)
of Remark [Indeed, suppose that F': VB — FB is a gb-functor with the
point property F'({point}) = {point} with values in PB. Let E — M be a
VB-object such that M is connected. F'(E) is a principal bundle with the Lie
group Gg. Let f : E — E be a VB-map. F(f) is a principal bundle map with
the Lie group homomorphism vy : Gg — Gg. Thereisa VB-map g: £ — E
such that g = f over some open set U C M and constant over some open set
V C M. By locality, we have F(g) = F(f) over U and F(g) = const over V'
(as F' has the point property). Then v, is trivial and v, = v;. Consequently,
for every VB-map f : E — E, F(f) is a principal bundle map with the trivial
Lie group homomorphism. Putting f = idg, we deduce that vjq, = idg, is
the trivial Lie group homomorphism. Then G is a trivial Lie group for any
VB-object E — M. Consequently, F(E) = M = (idyy : M — M) € PB
with the trivial Lie group for any VB-object E — M.] So, the result from
[Mi5| cannot be a consequence (version) of Theorems [5.3| and

6. The local trivialization expression. Roughly speaking, Theorems
and say that a ppgb-functor F' : PB — FM is determined by the
admissible triple (F(l), F@ oF )) corresponding to F. In particular, the ex-
tension F(f): F(P) — F(P;) of a PB-map f : P — P; is determined by f
and (F W), F@) oF )). Below, we present the local trivialization expression
of F(f): F(P) — F(P1) by means of (F(), F(2) o),
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PROPOSITION 6.1. Let F' : PB — FM be a ppgb-functor; and let (F(l),
F®@ oF)Y be the admissible triple corresponding to F. Let f : i1 (R™) x
i2(G1) — 11(R™2) X i2(G2) be a PB-map between trivial PB-objects with the
group homomorphism ¢ : G1 — Ga. We can write f(x,&) = (f(z), h(z)-p(§))
for some maps f : R™ — R™2 and h : R™ — Gyq. Then F(f) : F(D(R™) x
FO(Gy) — FOR™) x FA(Gy) is given by

F(Dw.n) = (FOA ), g, ED0)), FO(2)m)
for any y € FOR™) and n € FA(Gy). In particular, F : PB — FM is
of finite order (the same as F(V).

Proof. Clearly pry o f =i1(f)opr; and pryo f = pg, o (i1(h) x i2(idg)),
where pr; are the projections. Applying F', we get

F(f) = (F(i1(f)) o Pr1, F(pa,) o (F(ir(h)) x F(i2(¢)))),
where Pry @ F (i1 (R™)) x F(i2(G)) — F(i1(R™)) is the usual projection.
Then F(f) = (F(l)(f) oPry, ozg) o (FD(h) x F®(p))). The particular case
of the proposition is clear because of the above local trivialization expression

(as jz.(f1) = Jz(f2) it j5.(f ) = J2(f,) and ji(h1) = ji(h2) and 1 = ¢2). =

7. The natural transformations Fipg, (q) — Hps,, (). Let F, H :
PB — FM be ppgb-functors. We fix a Lie group G and a natural number m.
In this section we describe all natural transformations Fipg,. (@) — Hps,.(q)
between the gauge-natural bundles Fipp, () and Hipg,, (@) (where Fips.,.c) :
PB,,(G) — FM is the restriction of F' to PB,,(G) C PB). We start with
the following definition.

DEFINITION 7.1. Let F, H and G be as above. Let (F(1), F(2) o)) and
HY @), a(H)) be the admissible triples corresponding to F' and H, and
AF) = FA(R) and AH) = HMD(R) be the Weil algebras corresponding
to FM) and HM. An (F, H, G)-admissible pair is a pair (p, o) of mappings
p: FA(G) x AF) — A and o : FO(G) — H®(G) with the following
three properties:
(a) Given y € FO(G), ¢ € FO(G) and a € AT we have p(y,a) =
plag ) (e.y),a).
(b) Given y € F@)(G), the map p, : AF) — AU defined by p,(a) =
p(y,a) for all a € A(F ) is a Weil algebra homomorphism.
(¢) Givenc € FN(G)andy € FO(Q), aoa(GF)(c Y) —ag )(py( ),0(y)),
where ¢ : FO — H® is the natural transformation corresponding
to a Weil algebra homomorphism ¢ : AF) — AFH),

Any natural transformation n : Fipg,,(q) — Hps,,(q) between gauge-
natural bundles determines an (F, H,G)-admissible pair. Namely, we have
the following example.
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EXAMPLE 7.2. Using 7, we define p( : F?)(GQ) x AF) — AUH) by

p"(y,a) = H(p1) o nil(Rm)xiQ(G’)(F(l)(j)(a)vy)a
where j : i1(R) — zl(Rm) j(t) = (¢,0), t € R and py : i1(R™) x is(G) —
i1(R), p1(z,9) = 2%, z = (z%,...,2™) € R™, g € G, are PB-maps. We also
deﬁne 0(7’) FO(G) — HA(G) by

o (v) = H(pry) o nj, mm)xin(c) (0, v),
where 0 € F(D(R™) and pry : i1 (R™) X i2(G) — i(G) is the projection.
LEMMA 7.3. If m > 2, then (p™,0™) is an (F, H,G)-admissible pair.
First we prove the following technical fact.

LEMMA 7.4. Let F = T4 : Mf — FM be a ppb-functor. Let G be a
Lie group and m > 1 be an integer. Then the elements F(h)(d) € F(G) for
h:R™ — G and d € F(R™) generate the group F(QG).

Proof. Clearly, in any connected component of F'(G) there is an element
of the form F(h)(d) for some h : R™ — G and d € F(R™). So, without loss
of generality, we can assume that F(G) (or equivalently G) is connected.
Clearly, £(Q) is the set of all h(c) for linear maps h : R™ — L£(G) and
¢ € R™. Then L(TA(G)) = L(G) ® A is generated (over R) by the elements
TA(h)(c ® a) = h(c) ® a for linear h : R™ — L(G), a € A and ¢ € R™.
Then we can write L(F(G)) = Vi @ --- @ Vi, where V; = span{F(h;)(d;)},
hi : R™ — L£(G) is linear and d; € FR™) fori=1,...,k=dim(L(F(G))).
By the linearity of hy, tF(h;)(d;) = F(thi)(d) = (h )(tdi) for all ¢ € R. By
the general Lie group theory, the map @ : L(F(G)) — F(G) given by &(v) =
EXpF(G)(Ul> et EXpF(G)<Uk), V= ('Ul, . .,Uk) S [:(F(G)) = V1 DD Vk
is a diffeomorphism from some neighbourhood of 0 € L(F(G)) onto some
neighbourhood of ep(gy € F(G). Then the formula F(Expg) = Expp(q) (see
Introduction) ends the proof. m

Proof of Lemma([7.3 Using Lemmal[7.4land Proposition 6.1 we verify that
(p™, M) from Example 2| satisfies conditions (a)—(c) in Deﬁnition

(a) Using the invariance H(wT) Oy (R xia(G) = My (R™)xin(G) O F(¥r) of
with respect to the PB,,(G)-morphisms ¢, = i1 (idg X 7idgm-1) X i2(idg) :
i1(R™) x ia(G) — i1 (R™) x i2(G) for 7 > 0, we get

H(p1) © 0y Rmyxin(c) (01, 702, .., 76™), y) = H(p1) © 0y Rm)xia(c) (0, )

for any b = (b1,...,0™) € (AF))" = F(R™) and any y € F?)(G). Letting
T — 0 we get p()(y,b') = H(p1)om;, (rm)xis(c) (b, y) for any b and y as above.
Then using the invariance of n with respect to the PB,,(G)-maps f : i1 (R™) x
i2(G) — i1 (R™) x i3(G) of the form f(xz,g) = (z, h(2?,...,2™)g), * € R™,
g € G,where h : R™' — G, we get p (y,b!) = p(")(a(GF) (FO(n)(d),y),b")
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for any b = (b', d) and y as above. Using Lemma (with m—1 > 1 instead
of m) we get p(™ (y, b') = p(" (ag)(c, y),b') forany y € F®(Q), c € FV(Q)

and b € AU,

(b) Using a similar technique to the proof of [KMS| Lemma 42.7|, we show
that pén) : AF) — AU g an algebra homomorphism (i.e. that (p, o)
satisfies condition (b) in Definition [7.1]).

1. Linearity. Using the invariance of  with respect to the PB,,(G)-maps
i1(7idgm) X i2(idg) @ i1 (R™) X i2(G) — i1 (R™) X iy(G) for 7 > 0 we get
the homogeneity condition pén) (ta) = Tpén)(a). Then p?(ﬂ) c AF) 5 AMH) g
linear by the homogeneous function theorem.

2. Multiplicity. Let ¢ : R™ — R™ be given by p(x!,... 2™) = (' 4 (z)?,
22, ...,2™). Using the invariance of 7 with respect to the map i1(p) x
i2(idg) (it is a PBy,(G)-map over some neighbourhood of 0 € R™) we get
Py (a+a?) = py (@) +(py” (a))?. Then py” (%) = (p”(a))? for any a € AP,
Hence pg(f’) (ab) = p@(,") (a)pz(,n)(b) for any a,b € AU) because of the polariza-
tion formula.

3. Unity preservation. Using the invariance of 7 with respect to the
PB(G)-map i1(710,..0)) ¥i2(idg) : i1 (R™) xia(G) — i1 (R™) xia(G), where
71,..0) : R™ — R™ is the translation by (1,0,...,0), we get pg(,n)(l +a) =

1+ p?(f)(a). Then pg,n)(l) =1.

(c) Using the invariance of n with respect to the PB,,(G)-maps i1 (7 idgm )
X i2(G) : 11 (R™) X ia(G) — 11 (R™) x ia(G) for 7 > 0 we get H(pry) o
My (Rm) xia(@) (T0,1) = H(Dry) o 1y (rmyxin(c) (b y) for any b € FII(R™) and
y € F@(G). Putting 7 — 0 we get o (y) = H(pry) o 0, mm)xis(c) (b ¥)
for any y and b as above. Then using the invariance of 7 with respect to
the PB,,,(G)-morphisms f : i1(R™) x ia(G) — i1(R™) X i2(G) of the form
f(x,g9) = (z,h(x)g), where h : R™ — G, we obtain
o o ay) (FO(R)(b).y) = ag (B (FV () (6)).0" (3))
for any b and y as above. Then using Lemma [7.4] we have
o oag ) (d,y) = g (5 (d), 0 (y))

2(G) and any d from some subset generating F(1)(G). But

for any y € F(
(see Introduction) ﬁé") - F(@) — HWD(Q) is a Lie group homomorphism
because ;33(]7) : FO — HM is a natural transformation. Moreover, we have
proved the invariance of p(. So, the last equality holds for all d € F()(G). =

EXAMPLE 7.5. Let (p,0) be an (F, H,G)-admissible pair. Given a prin-
cipal bundle P € Obj(PB,,(G)), we define 7755’0) : F(F(1)7F<2)’O‘(F))(P) —
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FHOHE Q) (py

0 (1€, ) = [6,(6), o(v)]

for any ¢ € F(P) and any y € F(G), where g, : FO(P) — HW(P)
is the natural transformation corresponding to the algebra homomorphism
py + AF) — AH) Using properties (a)—(c) of Definition one can easily

show that ngf’g) is well-defined. Clearly, n(»?) = {ngf’g)} . pEOED o)

| PBm(G)
H) @) oH)y | .
‘(736 EG) ) s a natural transformation.

Summing up we obtain the following classification theorem.

THEOREM 7.6. Let F, H : PB — F.M be ppgb-functors. Letm > 2 and G
be a Lie group. Then the correspondence 1 — (p™, o) (see Exzample [7.2)
is a bijection between natural transformations Fipg,, @) — Hpp.,(a) and

n(P9) o (6F)~1, where nP9) is defined in Example|7.5) and ©F is the natural
isomorphism from the proof of Lemma [5.1]

(F, H,G)-admissible pairs. The inverse bijection iven by (p,0) — 61 o

8. Natural transformations between extended Weil functors and
between vertical Weil functors. As a simple application of Theorem [5.4]
we determine explicitly all natural transformations 74 — T8 between the
extended Weil functors on PB.

COROLLARY 8.1. Any natural transformation n : T4 — T8 between the
extended Weil functors T4, TB : PB — FM is of the form

gp:TA(P)—T"(P), P eObj(PB),

for some uniquely determined (byn) Weil algebra homomorphism ¢ : A — B,
where oy : TA(N) — TB(N), N € Obj(MYF), is the natural transformation
of the usual Weil functors on Mf corresponding to .

Proof. Clearly, the admissible triple corresponding to F = T4 : PB —

FM is (FO, F@ o) = (TA,TéT,,uA), where T4 : Mf — FM is the

(usual) Weil functor corresponding to A and ué = fipa(q) s the multipli-
cation of the Lie group T4(@), treated (in the obvious way) as an action
of TA(G) on TA(G). Let v = (v',1?) : (TA,T‘éT,,uA) — (TB,T‘]-ST,MB)
be a morphism of admissible triples. Then (by Definition 3.2 of morphisms
of admissible triples) ,ug(yé(g),yé(eTA(G))) = Vé(,ué(g,eTA(G))) = v4(g)
for all g € T4(G). For the trivial morphism ég : G — G we have V2 o
TA(ég)(eTA(G)) = TB(Eg) o Vé(GTA(G)), and then I/é(@TA(G)) = erB(@)-
Hence v}, = v&. But v! = ¢ : T4 — TPB for some Weil algebra ho-
momorphism ¢ : A — B. Thus the morphisms between the admissible

triples (TA,T|ér,uA) and (TB,T|§T,MB) corresponding to T4 and T? are
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in bijection with the algebra homomorphisms between A and B. By The-
orem , the morphisms between the admissible triples (TA,T"éT, ,uA) and
(TB,TET, pB) corresponding to T4 and TB are in bijection with the nat-
ural transformations between the ppgb-functors T4 : PB — FM and
TB : PB — FM. By the theory of ppb-functors on manifolds, the algebra
homomorphisms between A and B are in bijection with the natural transfor-
mations of the usual Weil functors T4 : Mf — FM and T8 : Mf — FM.
The above facts complete the proof. m

As a simple application of Theorem [7.6] we describe explicitly all natural
transformations T|174>Bm @ TI%Bm (@)

COROLLARY 8.2. If m > 2 and G is a Lie group, then any natural trans-
formation n : T\%BM(G) — T\%Bm(G) 1s of the form

Reogp: TA(P) — TP (P), P € Obj(PB.(QG)),
for a uniquely determined (by n) Weil algebra homomorphism ¢ : A — B
and a uniquely determined (by n) & € TB(G), where R : TP(P) x TB(G) —
TB(P) is the right action of TB(G) on the principal bundle T (p) : TB(P)
— TB(M).

Proof. The admissible triple corresponding to F = T4 : PB — FM
is (FD, F®) o)) = (TA7T|ér7“A) (as in the proof of Corollary . Let
(p,o) be a (T4, TB, G)-admissible pair. From condition (a) in Deﬁnition
for y = epag) € T4(G) = FA(G) we get plc,a) = pleraay,a), ¢ €
A = AF)_ From condition (c) in Deﬁnition for y = epa(g) we see that
o(c) = Pepac (¢) - o(epa(e)). Then (p, o) is determined by the Weil algebra
homomorphism Perag A — B and the value o(epaq)) € TB(G). Hence
Corollary is a simple consequence of Theorem .

Let VA, VB : PB — FM be the vertical Weil functors (Example [2.14)
corresponding to the Weil algebras A and B. As a next simple application
of Theorem we can determine all natural transformations VIéBm @

V|7§ Bon(G) 88 follows.

EXAMPLE 8.3. Let k : T/L(G) — TZ (G) be a map. Given a PBy,(G)-
object P — M define n}i : VA(P) — VB(P) as follows. Let v € TA(P,),
p € Py, x € M. Choose a trivialization ¢ : Py — R™ x G such that

k _
b(p) = (0,eq). We put 7 (v) = (TB(1,)) L (B(T4(1bx) (v))), where b, :
P, — {0} x G = G is the restriction of 9. If ¢’ is another such trivialization
then v, = v,. Thus the definition of nl¥ : VA(P) — VB(P) is correct. The
correspondence nl¥! : V\éBm @ V\gBm @) is a natural transformation.
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EXAMPLE 8.4. Let [ : Tz (G) — G be a map. Given a PBp,(G)-object

P — M define nl([l,) . VAP) — VA(P) (now A = B) as follows. Let
v E T];“(ng), p € P, x € M. Similarly to Example choose a trivial-

ization ¢ : Py — R™ x G such that ¢(p) = (0,eg) and put 7753[ (v) =
(TA(%;))_l(TA(TZ(TA(%)(U)))(TA(Q,Z)z)(v))), where 7 is the right translation

on G by g € G. The definition of ng) : VA(P) — VA(P) is correct because
1, is uniquely determined. In particular, if [ = ¢ € G is a constant map,
then ng) = VA(r,) : VAP) — VA(P), where V4 is treated as a functor
on fibred manifolds (r, is not a PB,,(G)-map, but it is a fibred map). The
correspondence n(®) : V\éBm @ V\éBm(G) is a natural transformation.

COROLLARY 8.5. Ifm > 2, then any natural transformation n : V|7§BW(G)
— V|7B;Bm(G) is of the form

e =p onp) : VA(P) = VE(P)

for some uniquely determined (by n) k : Te‘z (G) — TE(G) and some 1 :
Te‘g(G) — G. In the special case A = B =D, we get a full description of all

natural transformations 1 : Vipg,, (@) — VipB.(c) in terms of pairs (k,l) of
maps k : L(G) — L(G) and | : L(G) — G.

Proof. The admissible triple corresponding to F' = V4 is (F(l)7 F@) oF ))
= (T, Tjg,, i), where fig : G x TA(G) — TA(Q), ig(g,€) = TH(Lg)(€),
Lg G — G, Lg(gl) =99, 9,01 € G, § € TA(G) Then any (VAvaaG)_
admissible pair (p,0), p: TA(G) x R — R, o : TA(G) — TB(Q), is deter-
mined by (I, k) := T|TA () * Te‘z(G) — TB(G) =G x Te]i, (G). Theorem
ends the proof. =

9. Prolongation of principal connections. By definition (see [KMS]),
a general connection on a fibred manifold p : Y — M is a section " : Y —
JY(Y) of the first jet prolongation J'(Y) — Y of Y — M, which can be
(equivalently) considered as the corresponding lifting map I" : Y x5, T' (M) —
T(Y). A principal connection on a principal bundle p : P — M is a right
invariant general connection " on p: P — M.

It is rather well-known that if I" : P — J!'P is a principal connection on
a principal bundle p : P — M with the Lie group G and Y = P[S, u] - M
is the associated bundle to P with a standard fibre S and a left action
p: G xS — S, then one can well-define a general connection I''# .
Y — JY%Y on Y — M by I''St([q,s]) :== jL([o,5]), [¢,5] € P[S, ], where
jl(0) = I'(q) € JY(P) (0 : M — P is a local section near x = p(q)).

The following example shows that Theorem can be applied to pro-
longation of principal connections.
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ExXAMPLE 9.1. Let F' : PB — FM be a ppgb-functor. Let I" : P —
J'P be a principal connection on a principal bundle p : P — M with
the Lie group G. We can construct a general connection F(I") on F(p) :
F(P) — F(M) as follows. By Theorem [5.3] we can assume that F(P) =
F1(P)[F»(G),aq], where (F1,Fy,«) is an admissible triple. Now, by the
theory of prolongation of principal connections to ppb-functors on Mf,
we have the principal connection Fj(I") on the principal bundle Fj(p) :
Fi1(P) — Fi(M) (see Introduction). This principal connection Fi(I") in-
duces a general connection F(I") := F; (I")lF2(@)-2cl on the associated bundle
F(p) : F(P) = Fi(P)[F2(G), ac] — Fy (M) = P(M).

Clearly, one can also use other principal connections B(I") on F;(P) —
F1(M) canonically depending on I instead of F;(I") and obtain general
connections B(I)S2¢l on F(p) : F(P) — F(M).

10. A “reduction” theorem for gauge-natural operators lifting
principal connections to Weil bundles. Let A be a Weil algebra, m
be a natural number and G be a Lie group. Let £(G) be the Lie algebra
of G. In accordance with the last sentence of Section 9, we try to describe
the PB,,(G)-gauge-natural operators B : Q|pg,,(q) ~ Q(TA — TAB) (lift-
ing principal connections I' on PB,,(G)-objects p : P — M to principal
connections B(I') on T4(p) : TA(P) — TA(M)). More precisely, in this
section we reduce the classification of all PB,,(G)-gauge-natural operators
B : Qipg,. () ~ Q(T* — T4B) to the classification of all M f,,-natural
operators C : T* ® L(G)my,, ~ (T ® L(TA(G))T4 (lifting £(G)-valued
1-forms w € 2Y(M, £(G)) on m-manifolds M to £L(T4(G))-valued 1-forms
C(w)eRYTAM), L(TA (G))) on TA(M)) satisfying the so-called Ad-invar-

iance condition.

We start with the following two definitions (particular cases of the general
definition of (gauge) natural operators in the sense of [KMS]).

DEFINITION 10.1. Let A,m,G be as above. A PB,,(G)-gauge-natural
operator B : Qpg,,(a) ~ Q(TA — TAB) is a PB,,(G)-invariant family of
regular operators (functions)

Bp : Conpyine(P) — Conprinc(TA(P))
for any PB,,(G)-object p : P — M, where Conpine(P) is the set of all
principal connections on p : P — M and (similarly) Conpyine(T4(P)) is the
set of all principal connections on T4 (p) : TA(P) — T4(M). The PB,,(G)-
invariance of B means that if principal connections I" € Conpyinc(P) and
I't € Conpyine(P1) are f-related by a PBp,(G)-map f: P — P; (ie. INof =
JY(f) o I'), then the principal connections Bp(I") and Bp, (I'}) are TA(f)-
related. The regularity means that B transforms smoothly parametrized fam-
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ilies of principal connections into smoothly parametrized ones. A PB,,(G)-
gauge-natural operator B : Qpg,,(q) ~ Q(T4 — T4B) is affine if Bp is an
affine map for any PB,,(G)-object p : P — M (i.e. Bp(tI' + (1 —t)[1) =
tBp(I") + (1 —t)Bp(I1) for any I', I} € Conpinc(P) and any t € R).

For example, the family 74 : QiPBm(a) ™ Q(TA — TAB) given by
TA(I') = TA(I), the principal connection as in Introduction for F' = T4, is
an affine PB,,(G)-gauge-natural operator.

The space of all PB,,(G)-gauge-natural operators B : Qpg,.c) ~*
Q(T# — T4B) is (in the obvious way) an affine space. Actually, for PB,,(G)-
gauge-natural operators B, B! : Q|PBm(G) ~ Q(T# — T4B) and a real num-
ber t € R, the PB,,(G)-gauge-natural operator tB+ (1—1t)B' : Qipg,, () ~
Q(TA — TAB) is given by (tB + (1 —t)BY)p(I") = tBp(I') + (1 — t)BL(I")
for any I" € Conpyine(P) and any PB,,(G)-object p: P — M.

DEFINITION 10.2. Let m be a natural number, and V and W be finite-
dimensional real vector spaces. An M f,-natural operator C : T*@W |y, ~
(T* ® V)T4 is an M f,,-invariant family of regular operators (functions)

Car = QY M, W) — QYTA(M),V)
for any m-manifold (i.e. any M f,,-object) M, where £2'(M, W) is the space
of all W-valued 1-forms on M. The M f,,-invariance and the regularity mean
almost the same as in Definition An M f,,-natural operator C' : T* ®
Wims, ~ (T"® VT4 is linear if Cys is an R-linear map for any M f,,-
object M.

The space of all M f,,-natural operators C' : T* @ Wiy, ~ (T* @ V) T4
is (in the obvious way) a vector space over R. A full description of all M f,,-
natural operators C' : T* @W rqp,, ~ (T*® V)T4 can be found in Appendix.

We need the following definition.

DEFINITION 10.3. Let A,m,G be as in Definition [I0.I] We say that
an M fy-natural operator C': T* @ L(G)|pmy,, ~ (T @ L(TA(G)TA (as
in Definition for W = L(G) and V = L(T?(G))) satisfies the Ad-
invariance condition if

Crr(Ady-1 - w + h*Og) = Adpagy-1 - Car(w) + TA(h)* Orag

for any map h : M — G and any w € 2'(M, £L(G)), where O is the Maurer—
Cartan form of G, Ad denotes the adjoint representation and (of course) h*©
is the pull-back of ©g with respect to h. Moreover, Ad;,—1-w € 2Y(M, L(G))
is defined by (Adj,-1 - w)x(X) = Adh(x)_1(wx(X)) for X € T, (M), z € M.
We say that C satisfies the reduced Ad-invariance condition if

Cy(Ady-1 -w+ h*Og) = AdTA(h)—l - Chr(w)

for any w € 21 (M, L(G)), h: M — G, M € Obj(Mf,).
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LEMMA 10.4. If G is commutative, then the reduced Ad-invariance con-
dition is equivalent to

Cu(w +df) = Cu(w)
for any w € Y (M, L(G)), f: M — L(G), M € Obj(Mf,).

Proof. The lemma is true for G = (R",+) because in this case Og =
(dol,... dx™) (so h*Og = dh) and the adjoint representations Ad are triv-
ial. Consequently, the above fact is true for any commutative Lie group of
dimension n because commutative Lie groups of dimension n are locally Lie
group isomorphic to (R™, +) and M f,,-natural operators are local. m

The space of M fy,-natural operators C' : T @ L(G)jmy, ~ (T7®
L(TA(@)))T# satisfying the Ad-invariance condition is (in the obvious way)
an affine space over the vector space of M f,,-natural operators C : T* ®
L(G)pmy,, ~ (T* @ L(TA(G)))T4 satistying the reduced Ad-invariance con-
dition.

The following example shows that a PB,,(G)-gauge-natural operator B :
QPB(G) ~ Q(TA — T4B) induces an M f,,-natural operator CZ : T* @
L(G) My, > (T7 @ L(TA(G)))T# satistying the Ad-invariance condition.

EXAMPLE 10.5. Let B : Qpg,,(¢) ~> QT — T4B) be a PBy(G)-
gauge-natural operator. Given an L(G)-valued 1-form w € 2*(M, £L(G)) on
an m-manifold M we define a £(T4(G))-valued 1-form CP (w) € 2Y(T4M,
L(TA(G))) on TA(M) as follows. Let og : M — M x G be the section
x — (z,eq) of the trivial PB,,(G)-object M x G — M. There exists a
unique principal connection I" on the trivial principal bundle M x G — M
such that ofwr = w, where wr : T(M x G) — L(G) is the connection
form of I'. We put C¥(w) := TA(O'G)*(UijxG(F). The family C8 = {CF} :
T @ L(G)mf,, ~ (T @ L(TA(G)))T# of functions CL : 21(M, L(G)) —
QYTAM), L(TA(G))) for any m-manifold M is an M f,,-natural operator.

LEMMA 10.6. The M f,-natural operator CB satisfies the Ad-invariance
condition.

Proof. Consider a vector-valued form w € 2'(M,L£(G)) and a map
h: M — G. Let I' be the unique principal connection on M x G — M
such that ofwr = w, where (as above) 0g : M — M x G is defined by
oc(x) = (z,eq) and wr is the connection form of I'. Let o, : M — M x G
be a section of M x G — M defined by o5, = oG - h. Then according to the
general theory of principal connections (see [KN])

(10.1) O';;(,Up = Adj,-1 - O'vap + h*Oq,

where O¢g is the Maurer—Cartan 1-form on G. Let ¥, : M x G — M x G
be defined by (7, g) = (z, h(z) - g). Let I}, be the image of I" under ¥, .
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Then (as is readily seen)

(10 2) Uéwph = U;‘pr

Using Proposition |6.1| we easily deduce that T4(og) = orA@) A(M)
TA(M)xT4(G) (i.e. TA(O’G)( )= (Z,era))), T4 (on) = opaq h) T4(M )
TAM) x TAG) (ie. T4(on) = T4(0g) - TA(h) = orag) - T4(h)) a
TAW) = Uragy : TAM) x TAG) — THM) x TAG) (i.e. TH(W)(Z, g)
(&, TA(h)(Z) - §)). By the invariance of B with respect to ¥, Basxg(I}) is
the image of Bysxg(I") under T4(%;,)~!. Then (just as (10.1) and (10.2)))
we have

(10.3) T (o) wpy, () =Adgagy-1 - T 0a) Wy, o(r) + T (h)*Oraq)

(where wg,, . (r) is the connection form of Bysxc (1)) and

(10.4) TA(UG)*WBMxG(Fh) = TA(Uh)*wBAIXG(F)'

By the definition of C? (see Example 10.5) we immediately get
(10.5) Ch(otwn,) = T4(06) wpy,  a(ry)-
Consequently,

CE(Adyor -+ 1"Oq) = Chi(hwr) = Chilatwn,)
= T06) Wna(r) = T (08) Why o (r)
= Adpagpy-1 - TA(UG)*WBMXg(F) + TA(h)*@TA(G)
= Adgagy-1 - Cyp(w) + TA(h)*Opa ). =
Conversely, we have the following construction.

ExAMPLE 10.7. Let C : T* @ L(G)|pmy,, ~ (T ® L(TAG)))TA be an
M f-natural operator satisfying the Ad-invariance condition. Let I" be a
principal connection on a PB,,(G)-object p: P — M, and let wp : TP —
L(G) be its connection form. We define a principal connection B$(I") on
TA(p) : TA(P) — TA(M) by

T4(0)*wpg(r) = Cu(o*wr)
for any (local) section 0 : M — P. If o1 = o - h is another local section,
where h : M — G is a (local) map, then ojwr = Ady-1 - o*wr + h*O¢.
Consequently, using the Ad-invariance condition of C' we get
T4 (01) wpg(ry = Adpagy-1 - T (o) wpg(p) + T (W) Opag:

Therefore the definition of BS(I) is correct. Then for any PB,,(G)-object
P we have BS : Conpyine(P) — Conpyine(T4(P)). The family B¢ = {B§} :
QB (G) ~ Q(TA — TAB) is a PB,,(G)-gauge-natural operator.

Summing up, we obtain the following “reduction” theorem.
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THEOREM 10.8. Let G be a Lie group, A be a Weil algebra and m be a
natural number. The correspondence B — CP is an affine isomorphism be-
tween the affine space of PBy,(G)-gauge-natural operators B : Qpg,,(a) ~
Q(TA — TAB) and the affine space of M fy,-natural operators C' : T* ®
LG pmy,, ~ (T* @ L(TAG)))TA satisfying the Ad-invariance condition
(the inverse isomorphism is given by the correspondence C — BC). In
other words, the correspondence B — CP — cT" is a bijection between the
PBn(G)-gauge-natural operators B : Qpg,,(q) ~ Q(TA — TAB) and the
M fm-natural operators C' : T* @ L(G)my,, ~ (T7 @ L(TA(G)TA sat-
isfying the reduced Ad-invariance condition. This bijection restricts to the
one between the affine PBy,(G)-gauge-natural operators B : Qpg,, () ~
Q(TA — TAB) and the linear M f,,-natural operators C : T* @ L(G) ~
(T* ® L(TA(G)))TA satisfying the reduced Ad-invariance condition.

For a commutative Lie group G we have the following corollary of the
above reduction theorem.

COROLLARY 10.9. Let G, A and m be as in the above theorem. If G
is commutative, then the PBpn,(G)-gauge-natural operators B : Qpg,,(a) ~
Q(TA — TAB) are in bijection with the M fy,-natural operators C : T* &
LGy, ~ (TF @ L(TA(G))TA satisfying the condition Cyf(w + df) =
Cry(w) for any w € QY (M, L(G)), f: M — L(G) and M € Obj(Mf,).
Moreover, if G is commutative, then the affine PB,,(G)-gauge-natural op-
erators B 1 Qpp,.(c) ~ Q(TA — TAB) are in bijection with the linear
M fm-natural operators C : T @ L(G) py,, ~ (T*® L(TAG)))TA satisfy-
ing the condition Cpr(df) =0 for any f: M — L(G) and M € Obj(M f.,).

11. An estimate. The following estimate shows that if A = R & Ny
is a Weil algebra with width(A) := dim(N4/N3) > 1, m is an integer with
m > width(A4)+2 and G is a commutative Lie group with dim(G) > 1, then
there exist many affine PB,,(G)-gauge-natural operators B : Qpg,,(q) ~*
Q(TA — T4B).

THEOREM 11.1. Let A be a Weil algebra with width(A) = p and G be a
commutative Lie group. If m > p+ 2, then

dim(Op(A, G,m)) > p - (dim(G))? - dim(A),
where Op(A, G, m) denotes the affine space of all affine PBy,(G)-gauge-
natural operators B : Qpg,,(q) ~ Q(TA — TB).
Proof. Let Op! be the vector space of all M f,,-natural linear operators
C: T*RL(G) pmy,, ~ (T*RL(TA(G)))T# and Op? be the vector space of all
M fyp-natural linear operators D : T(00) ®L(G) | my,, ~ (T QL(TAG)))TA



194 W. M. Mikulski

lifting maps f : M — L(G) into £(T4(G))-valued 1-forms on T4 (M) (the
definition of M f,,-natural operators D : T(*9) @ Wimsp, ~ (TF @ VT4 is
similar to Definition . By Lemma (see Appendix),
dim(QA4() > p - dim(@),

where QY is the space from Definition From Corollaries and
we immediately get

dim(Op') = (dim(Q**(¥)) 4 dim(A) - dim(G)) - dim(A) - dim(@),

dim(Op?) = (dim(A) - dim(G))?2.
We can define a linear map & : Op! — Op? by &(C)r(f) = Cas(df) for any
C = {Cy} € Op', M € Obj(Mfn), f: M — L(G), where d is the usual
exterior differentiation. The kernel ker(®) is exactly the vector space of all
linear natural operators C' : T* ®@ L(G) |y, ~ (T ® L(G) ® A)TA with
Cup(df) =0 for any f: M — L(G). Then

dim(Op(A4, G, m)) = dim(ker(®))
by the last sentence of Corollary [10.9] Therefore
dim(Op(A4, G, m)) = dim(ker(®)) > dim(Op*) — dim(Op?)
= dim(QA*() . dim(A) - dim(G) > p- (dim(G))? - dim(A)

by obvious linear algebra. m
APPENDIX

In this Appendix (which consists of Sections 12 and 13), we generalize the
results from [Mi2]. More precisely, given a ppb-functor H : M f — FM and
finite-dimensional real vector spaces V and W we classify all M f,,-natural
operators T*®@Virqy,, ~ (T*@W)H and TOO @V pqp ~ (T*@W)H lifting
V-valued 1-forms or V-valued maps on m-manifolds M to W-valued 1-forms
on H(M) (for V=W = R we recover the result from |[Mi2|). Without loss
of generality we assume that H = J4 : Mf — FM is the Weil functor of
A-velocities in the sense of A. Morimoto [Mo], where A = C°(RP)/A is a
Weil algebra with width(A) = p (here C§°(RP) is the local algebra of germs
at 0 of maps R? — R with the maximal ideal m and A is a finite codimension
ideal in C5°(RP), i.e. such that A D m"*! for some finite r). The equality
width(A) = p is equivalent to the inclusion m? D A. The precise definition
of J4 can also be found in [KMS]|. The content of Sections 12 and 13 is (in
fact) a suitably modified and extended material from |[Mi2].

12. The M fy,-natural operators T*®V| vy, ~ (I"@W)J4. We have
the following example of M fp,-natural operators T* @ V| vy, ~ (I @W)Ja
(in the sense of Definition [10.2]).
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EXAMPLE 12.1 ((A)-lift). Let A : V@ A — W be an R-linear map.
Consider a V-valued 1-form w € 2'(M,V) on an m-manifold M. Let w :
T (M) — V be the fibre linear map corresponding to w. Let nas : T'(Ja(M))
— JA(T(M)) be the exchange equivalence. Define w® : T'(J4(M)) — W by

(12.1) w = Ao Jy(w) o,

where the identification J4(V) = V ® A is the usual one. It is clear that
o],y (Ga(y(t,)) = £|,_,(ia(v(at,-))) for any 7 : R x R? — M and any
a € R, where - is the fibre multiplication of the tangent bundle T'(J4(M)).
Using this fact one can easily show that w®) is homogeneous on each fibre
of the tangent bundle T'(J4(M)). Hence it is linear on each fibre because of
the homogeneous function theorem. Therefore w® is a W-valued 1-form on
Ja(M). We put B (w) = w®. The family BX : T*@Vipmy,, ~ (T*@W)Ja
of functions BJ(Q) : QY (M, V) — 2Y(J4(M), W) for m-manifolds M is an
M f-natural operator.

To present the next example we need the following preparation.

DEFINITION 12.2. Let A =C§°(RP)/A, V and W be as above. Denote by
Q28(RP, V) the C§°(RP)-module of all germs at 0 of V-valued 1-forms on RP.
Let
(12.2) QY = Q(RP,V)/(A- (R, V) +C3°(RP, V) - dA)
be the factor module, where A- 2} (RP, V) is the product of 2L(RP, V) by A,
CS°(RP,V)-dA is the submodule in 23 (RP, V) spanned by dn®v for alln € A
(df denotes the differential of f) and v € V, and A- 2} (RP, V) +C§(RP, V) -
dA C QL(RP,V) is the algebraic sum of the modules A - 2L(RP, V) and
Ce°(RP, V) - dA. Given a V-valued 1-form w on RP, the equivalence class of
germg(w) modulo A - 2§(RP, V) + C5°(RP, V) - dA will be denoted by [w]4,

i.e.
(12.3) [w]a = germo(w)mod(a-03 ®e,v)+cee (Re,v)da) € @Y
We will keep this notation throughout the rest of Appendix.

LEMMA 12.3. Q%Y is a finite-dimensional vector space over R. More-
over, dim(Q4Y) > p - dim(V).

Proof. Tt is a simple observation that Q#+V is finite-dimensional over R.
The inequality holds because we have the linear epimorphism Q%Y —
T;RP ® V given by [w]a — w(0) (it is well-defined as m? D> A). =

EXAMPLE 12.4 ({¢)-lift). Let ¢ : QY — W be an R-linear map. Let w
be a V-valued 1-form on an m-manifold M. Define wl?) : J4(M) — W by

(12.4) W (ja(7) = e([y*w]a)
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for any v : RP — M, where v*w is the pull-back of w with respect to ~.
If n: RP — M is another map such that ja(y) = ja(n), then [y*w]s =
[n*w]a. To see this one can assume that M = R™ and n(0) = ~v(0) = 0.
Let w = Y aidzi, n = (n'y...on™), v = (Y, ...,9™), a; : R™ — V.
Then germg(r’ —47) € A and germg(a; oy — a; on) € C(RP, V)A for any
i,j=1,...,m. So

germg(y*w — *w) = _ germg((a; oy — a; o n)d(v"))
i=1

+ Y germy((a; om)d(y' —n')) € A- 25(RP, V) +C5°(RP, V) - dA,
=1

as well. Therefore w!?! is well-defined. Define

(12.5) W = d(wll),

the differential of wl¥!. We put B]<\§> (w) = W) The family B¢ : T* @
Vimpy ~ (T* @ W)Ja of functions Bﬁ? QY M, V) — QY (Ja(M), W) for

m-manifolds M is an M f,,-natural operator.

LEMMA 12.5. The set T(A,V,W,m) of all M f,-natural operators B :
T* @ Vipy,, ~ (T* @ W)Ja is a C°(QMY)-module.

Proof. For any B,C € T(A,V,W,m) and f,g € C>°(Q*") we define

(12.6)  (fB+gC)m(w)(ja(v))
= f(y'wla) - Bu(w)(Ga(7)) + 9(v*wla) - Crr(w)(Ga(7)),
where w € QY (M, V), v: RP — M, M € Obj(Mf,,). =
The main result of this section is the following classification theorem.

THEOREM 12.6. Let m be a natural number and A = C5°(RP)/A be a
Weil algebra with width(A) = p. Let V' and W be finite-dimensional vector
spaces over R. Let qi,...,qx be a basis of the vector space QY , uy, ..., ur
be a basis of V®@ A and wy,...,wq be a basis of W. Let ¢;; = qf @ w; for
1=1,....,.K and j =1,...,Q be the corresponding basis of the vector space
Hom(Q4Y, W), and My = up @wy fork =1,...,L andl = 1,...,Q be
the corresponding basis of the vector space Hom(V @ A,W). If m > p+ 2,
then the M fy,-natural operators (described in Examples and ) Bl#is)
and B&M fori=1,..., K, k=1,...,L and j,l = 1,...,Q form a basis
of the C*°(Q™Y)-module T (A, V,W,m) of all M f,-natural operators T* @
Virfpm ~ (T* @ W)J 4.

The proof of Theorem [12.6] will occupy the rest of this section.
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DEFINITION 12.7. Let t', ..., t? be the coordinates on R? and z!, ..., 2™
be the coordinates on R™. If m > p+1, let e := ja(t',...,t7,0,...,0) €
JA(R™). Given B € T(A,V,W,m) we define &g : 2(R™, V) — W by

d
(127) 2(0) = ((Ban @)1 (505 )(©)):
where J4(X) is the flow lift of a vector field X on M to Ja(M).

Using the invariance of B we obtain

LEMMA 12.8. If ¢ : R™ — R™ is an embedding preserving .7,4(8%,1)(6),
then @p(w) = Pp(p*w) for any B € T(A,V,W,m) and any V -valued 1-form
w on R™.

The main part of the proof of Theorem [12.6] is to show the following
proposition.

PROPOSITION 12.9. Assume m > p + 2. For any B € T(A,V,W,m)
there exists a (well-defined) map Gp : QMY x QMY x V@ A — W such that

(12.8)  GB([wola, [wi]a,ja(H)) = Pp(q"(wo) + 2™ q"(w1) + (H o g)dz™)
for any V-valued 1-forms wo,w1 on RP and any map H : RP — V| where
q: R™ = RP x R™"P — RP s the usual projection, q¢* denotes the pull-
back with respect to q and @ is as in Definition [12.7| The function G :
T(A,V,W,m) — C®(QY x QY x V@ A, W) given by G(B) = Gp is a
monomorphism of C>(Q™Y)-modules, provided the C®(Q4Y)-module struc-
ture in C®(QY x QA x V@A, W) is given by (\f)(a,b,c) = Ma)f(a,b,c),
where A € C®(QAY), f € C®(QYY x QY xV @ A, W) and (a,b,c) €
QY x QY x V@ A.

To prove the proposition we need some lemmas. We start with

LEMMA 12.10. Let B € T(A,V,W,m). Assume that m > p+ 1 and
&g =0. Then B=0.

Proof. Tt is clear that {(z!,..., 2™ 1, 2™ +) }4cr is the flow of 81%. Then

{Ja(zt, ..., am L 2™ 4 #) }er is the flow of jA(&ELm). Then jA(amim)(e) is
the velocity at 0 € R of the curve t +— ja(t!,...,#,0,...,0,1), ie.

JA<8jn)<e> -4

An arbitrary element of T'(J4(R™)) is of the form % ‘t:O (ja(y(t,-))) for some
v : RxRP — R™. If 7 is of maximal rank at 0 € RP*!, then (by the rank the-
orem) there is an embedding ¢ : R™ — R™ such that (¢ ov)(¢,7) = (7,0,¢)
€ R™ for any (¢, 7) in some neighbourhood of (0,0) € R x RP. Consequently,
the M fy,-orbit of jA(%)(e) is dense in T'(J4(R™)). Then, using the in-
variance of B and the assumption @5 = 0, we derive that (Bgrm (w),v) = 0 for

(jA(tlv s 7tp>07 s 701t))
t=0
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any V-valued 1-form w on R™ and any v in some dense subset in T'(J4(R™)).
Then Bgm(w) = 0 for any V-valued 1-form w on R™, i.e. Bgm = 0. Hence
B =0, as any natural operator B is uniquely determined by Bgm. =

Using Lemma [12.10| we prove

LEMMA 12.11. Let B € T(A,V,W,m). Assume that m > p + 1 and
&p(w) =0 for any w € Y (R™, V) of the form
(12.9)  w=(fro(z",...,2P,a™))da" + -+ (fpo (z', ... 2P, 2™))daP

+(go(z,. .. aP,2™))da",

where f1,..., fp,9: RPH — V' are some maps. Then B = 0.

Proof. Let w be a V-valued 1-form on R™. The embedding got (z!,... 2P,
taPt Ltz ™) R™ — R™ t £ 0 preserves e and 3 —. Then, by

Lemma for ¢y, we get Pp((¢t)*w) = Pp(w) for any t # 0. If t — 0, we
obtain

Pp(w) = Pp((¢0)'w) =0
because (¢p)*w is of the form (12.9)). Now, the lemma is a consequence of
Lemma 12,10l =

LEMMA 12.12. If m > p + 2, then Pp(w) = Pp(w + hdzPtl) for any
natural operator B € T (A, V,W,m), any V -valued 1-form w on R™ and any
map h : R™ = V.

Proof. Let @9 = (z!,...,27,0,...,0,2™) : R™ — R™. It is clear that
(v0)*w = (p0)*(w + hdzPT1) (as m > p + 2). Now, by the proof of Lemma
12.11] we have

&p(w) = Pp((wo)*'w) =Pp((¢o)" (w+ hdmpﬂ)) — p(w+ hdxp+1). .

LEMMA 12.13. Let B € T(A,V,W,m). Assume that m > p + 1 and
&p(0) =0 for any © € 21 (R™, V) of the form

(12.10) @ =q" (wo) +2"¢" (w1) + (H o q)dz™,

where wo, w1 are V-valued 1-forms on R™, H : RP — V and q : R™ =
RP x R™™P — RP 4s the projection. Then B = 0.

Proof. Let w be the V-valued 1-form as in formula . By Lemma
[12.11]it is sufficient to show that ®p(w) = 0. By [KMS, Corollary 19.8] (of the
non-linear Peetre theorem) for the (7 : J4(R™) — R™)-local operator D =
(Brm, Ja(52)) : CO(R™, T*(R™) @ V) D QYR™, V) — C®(Ja(R™), W)
with Whitney-extendible domain E = QY(R™,V), f =w € 21(R™,V) and
a compact set K = {e} C J4(R™), there is a natural number r = r(w) such
that

@B(E) = @B(w)
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for any V-valued 1-form @ on R™ with jj(@) = jf(w). So, one can assume that
w is as in with f1,..., fp,g : RPT! — V being polynomials of degree
< r. Denote by @', the restriction of @ to the finite-dimensional vector space
of all forms as in with fi,..., fp, g being polynomials of degree < r.
Since B satisfies the regularity condition, @’; is smooth. Using the invariance
of B with respect to the embedding 1, = (x!,..., 2™ ! tz™) : R™ — R™,

t # 0, preserving e and sending aam to t 88m we deduce (as in the proof of

Lemma [12.11] m ) that

t@%(w) = ¢%(n:w) = dy%((fl o (mla s 7ajp7t$n))d$1 +--
+ (fpo(zh,. .. aP tx™))da? +t(go (x',. .. ,xP ta™))da™).

Differentiating both sides of this formula and of a similar formula with

S <(f1°($17~-756p,0))+ <(9f1 O(ml,...,xp,()))xm>dxl+~-

oxm

+ ((fp o(z',...,2",0)) + <8fp o(z!,... ,xp,()))xm)dxp

ox™
+(go(x Lo P ,0))dz™

instead of w with rebpect to t and then putting ¢ = 0 we deduce that &5 (w)

DPp(0), ie. Pp(w) = Pp(w). Of course, w is as in (12.10). Thus ¢p(w) = 0.
SO, @B(w) =0.u

LEMMA 12.14. Let B € T(A,V,W,n). Let wy,w1,Wo, w1 be V-valued 1-
forms on RP and H,H : RP — V be mappings such that
Ja(H) =ja(H), [wola = [Wola, [wi]a = [01]a,
where [ |4 is as in Definition[12.2] Write w = ¢*(wo)+2™q*(w1)+ (Hoq)dz™
and W = ¢*(wWp) + 2™q*(w1) + (H o q)dz™, where q : R™ = RP x R™™P — RP
is the projection. If m > p+ 2, then Pp(w) = Pp(w).

Proof. The proof will be completed once we show that

(12.11) Pp(w) = Pp(w + ¢"(Fdn)),
(12.12) Pp(w) = Pp(w + a™q"(Fdn)),
(12.13) Op(w) =Pp(w+ ((nG) o q)dx])
(12.14) Pp(w) = Pp(w + ((nG) ° q)dz™),
(12.15) Op(w) =Pp(w+ ((nG) o q)xmd:z])

for any V-valued 1-forms wg,w; on RP, j € {1,...,p} and maps H, F,G :
RP — V,n: RP — R with germg(n ) e A and G = const, where w =
q*(wo) +2™q" (w1) + (H o q)dz™

Let 1 = (z!,..., 2P, 2PTt + (noq),2P™2 ... 2™) : R™ — R™. This is a
diffeomorphism. Of course, it preserves e and B:cim Then using Lemma
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and Lemma for 11 in place of ¢ and again Lemma we have
Dp(w) = Pp(w + (Foq)da*!) = Op(if(w + (F o g)daPt1))
= Op(w + ¢ (Fdn) + (F o q)da™*') = dp(w + ¢* (Fdn)).
Formula (|12.11]) is verified.
Replacing F' o g by (F o ¢)x™ in the proof of (12.11)) we obtain (12.12]).
Let o = (z!,..., 2P, 2Pt + (noq)a’,zPT2, ... 2™) : R™ — R™. This
is a dlffeomorphlsm It preserves e and a . Then using Lemma [12. 12L

Lemma|12.§ _ 8 for 15 in place of ¢, Lemma and formula (12.11)) with w+
(Gn o q)dx’ playing the role of w, we have

Pp(w) = Pp(w + GdaP™) = Bp(s(w + GdzPt))
= &p(w + (Gnoq)dx! + Galq* (dn) + GdzPT™)
= &p(w + (Gn o q)dz’ + Galq*(dn))
= @p(w + (Gnog)da’ + ¢* (Y Gdn)) = Pp(w + (G o g)da?).

Formula 1) is proved.
Let 13 = (! , P acpH—l—(noq) ,aP2 0 a™)  R™ — R™. Thisis a

diffeomorphism that preserves jA(ﬁxm )(e) = %{tzo(jA(tl, o, tP0, .. 0,)).
Then using Lemma [12.12] Lemma [I2.§] for 3 in place of ¢, Lemma
and formula (12.12)) with w + ((Gn) o ¢)dz™ playing the role of w, we have

Ip(w) = Pp(w + GdaP™) = (Y} (w + GdaPT))
= Op(w+ 2™¢* (Gdn) + ((Gn) o q)dz™ + GdxP™)
= By(w + (Cn) o Q)da™ + ™" (Gn)
= Op(w+ ((Gn) © ¢)dz™).
Formula is proved.
Let ¢y = (2%, ..., 2P, 2Pt + (no @)xla™, 2P*2, ... 2™) : R™ — R™.

This is a diffeomorphism that preserves Ja m)(e). Using Lemma 12.12L
Lemma for 14 in place of ¢, Lemma [12.12] formula (12.14]) with w +

((Gn) o q)x™dxi + ™27 q*(Gdn) playing the role of w and with t/n playing
the role of  and formula (12.12]) with w + ((Gn) o ¢)x™da’ playing the role
of w, we have

Pp(w) = Pp(w + GdaPth) = Pp(Yf(w + GdaP ™))

w+ ((Gn) o Q)2 dx™ + 27 2™ q* (Gdn)
(Gn) o q)z™dz? + GdxPT!)
Pp(w + a7 2™q* (Gdn) + ((Gn) o @)a™da’ + ((G) o g)a dz™)
= &p(w + 2 2™¢* (Gdn) + ((Gn) o @)x™dx’ + ((Gt'n) o q)dz™)
Pp(w+ ((Gn) o q)z™dx? + 2/ 2™ ¢* (Gdn))
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= dp(w+ ((Gn) o q)z™dx? + ™¢* (Gt dn))
= @p(w + ((Gn) 0 q)x"™dz).

The proof of the lemma is complete. m

Proof of Proposition [12.9 By Lemma [12.14] Gp is well-defined. It is
smooth because of the regularity condition on B. Directly from the defini-
tions of the module structures it is easy to verify that G is a homomorphism

of C>®(Q*"V)-modules. By Lemma [12.13] G is injective. u
Using Proposition [12.9 we can prove Theorem as follows.

Proof of Theorem 2.6. We fix bases of the vector spaces Q4Y, W and
JA(V) =V®A. Let B€ T(A,V,W,m).Let G : QMY xQAY xVRA - W
be as in Proposition From the invariance of B with respect to the
diffeomorphisms (2!, ..., 2™ 1 t2™) : R™ — R™ for ¢ # 0 it follows that

(12.16) tGp(a,b,c) = Gp(a,tb,tc)

for any (a,b,c) € QP x QY x V® A and any t € R\ {0} (because

each diffeomorphism (2!, ..., 2™~! t2™) preserves e and sends 8%” to tazim).

Then, by the homogeneous function theorem, G g is a linear combination of
the coordinates of b and ¢ with respect to the bases with coefficients being
C>®-maps QY — W depending on a. Thus owing to Proposition we
see that the proof of Theorem [I2.6] will be complete once we show that

(12.17) Gpn(a,b,c) =) and Gp(a,b,c) = p(b)

for any A € Hom(V ® A, W) and any ¢ € Hom(Q*V, W).

To prove (12.17) write i = (¢!,...,7,0) : R? — R™ and let ¢ =
(x',...,2P) : R™ = RP x R™P — RP be the usual projection. Let wp,w;
be V-valued 1-forms on RP and let H : RP — V be a mapping. Let A €
Hom(V ® A, W) and ¢ € Hom(Q*"Y,W). We have

GB(/\) ([WO]A7 [Wl]AajA(H))

- <B]§Q,{(q*(w0) + 2™q" (w) + (H o q)dxm)(e),jA(a — (e)>
= (Ao Ja(q"(wo) + 2" q" (w1) + (H o q)da™) o nrm) | J

A
= (voaa (o) +ama o) + 0 e, 520N ) ) € = Aiata)
0

Similarly, since v; = (z',..., 2™~ 2™ +t) is the flow of g and e = ja(i),
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G gt ([wola, [wi]a, ja(H))

= (B o) + 2 ) + (1 2 ™), T (5 ) )

= {at(a" ) + 2™ on) + (1 0 da™ ), T (57 ) €))

= 8 (0 + a7 )+ ( 0 ™) P a3 0))
t=0

= 1 plllwo i " (w0) + 4" () + (H o g)dx™))
t=0

= G|, (pllsn 1) = o((erl).

COROLLARY 12.15. Let m be a natural number and A = C§°(RP)/A be
a Weil algebra with width(A) = p. Let V' and W be finite-dimensional vec-
tor spaces over R. Let qi,...,qx be a basis of the vector space (QY)*,
ut,...,ur, be a basis of V& A and wi,...,wg be a basis of W. Let @;; =
¢ @wj fori =1,...,K and j = 1,...,Q be the corresponding basis of
Hom(Q4Y, W), and \y = up @y fork=1,...,Landl=1,...,Q be the
corresponding basis of Hom(V @ A, W). If m > p+ 2, then the linear M f,,-
natural operators B¥ii) and B™ for i, j,k, 1 as above form a basis (over R)
of the wvector space of all linear M fm-natural operators T* @ Viryg,, ~
(T* ® W)JA.

Proof. Let B:T*®V ~» (T*®@W)J4 be a linear M f,,,-natural operator.
By Theorem we can write B = ZfijB<%j> + 32 g BY) for some
uniquely determined maps f;;, gi; : Q4V — R. Using the linearity of B we
have By (tw) = tBy(w) for any w € 21(M,V) and any ¢t € R. This gives
the homogeneity conditions f;;(tu) = fij(u) and gg(tu) = gr(u) for any
u=[y*'wls € QY and any t € R. Then f;; = const and gi; = const. =

13. The M f,,-natural operators 7% @ Virpn ~ (T*@W)Ja. We
have the following M f,,-natural operators T(°%) @ Virfp, ~ (T @W)J 4.

EXAMPLE 13.1 ((A)-lift). Let A: V® A — W be an R-linear map. Con-
sider a map f : M — V on an m-manifold M. Define f® : Ja(M) — W by

(13.1) FN = Xo Ja(f),
where the identification J4(V) =V ® A is the usual one. Let
(13.2) BN(f) = df™.

The family B® : T(O’O)®V|Mfm ~ (T*®@W')J 4 of functions B](Q) :C®(M,V)
— Y (Ja(M), W) for m-manifolds M is a natural operator.
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LEMMA 13.2. The set T,(A,V,W,m) of all natural operators B
7(0.0) QVimp, ~ (T* @W)Ja is a C*°(A @ V)-module.

Proof. For any B,C € T,(A,V,W,m) and g,h € C*°(A® V) we define

(13.3) (9B +hC)m(f)(v)
= g(Ja(f)()) - Bu(f)(v) + h(Ja(f)(v)) - Cu(f)(v),
where f: M — V,ve Jy(M), M € Obj(Mfp,). =
The main result of this section is the following classification theorem.

THEOREM 13.3. Let m be a natural number and A = C3°(RP)/A be a
Weil algebra with width(A) = p. Let V' and W be finite-dimensional vector
spaces over R. Let ui,...,ur, be a basis of V® A and wr, ..., wg be a basis
of W. Let Ny = u, @wy fork =1,...,L andl = 1,...,Q be the corre-
sponding basis of the vector space Hom(V @ A,W). If m > p + 2, then the
M fr,-natural operators (described in Example BXe) fork=1,...,L
and 1l = 1,...,Q form a basis of the C*°(V ® A)-module To(A,V,W,m) of
all M f-natural operators T(O0) @ Vimp, ~ (T @W)Ja.

The proof of Theorem which is a modification of the one of Theorem
[12.6] will occupy the rest of this section.

DEFINITION 13.4. Let t!,...,t? be the coordinates on R? and z!,..., 2™
be the coordinates on R™. If m > p+ 1, let e := ja(t',...,t7,0,...,0) €
JA(R™). Given B € T,(A,V,W,m) we define &5 : C*(R™, V) — W by

(134 #()i= ( (Ben (1)), 90 50 ) )
where J4(X) is the flow lift of a vector field X on M to Ja(M).

Using the invariance of B we obtain

LEMMA 13.5. If ¢ : R™ — R™ is an embedding preserving jA(%im)(e),
then @p(f) = Pp(p*f) for any B € T,(A,V,W,m) and any f: R™ — V.

The main part of the proof of Theorem is to show the following
proposition.

PROPOSITION 13.6. Assume m > p + 2. For any B € T,(A,V,W,m)
there exists a (well-defined) map G : (V ® A) x (V® A) — W such that
(13.5) Gp(ja(h),ja(H)) = Pp(hoq+ (Hoq)z™)
for any maps h,H : RP — V where ¢ : R™ = RP x R™P — RP is
the usual projection and Pp is as in Definition [I3.4 The function G :
To(A, V,W,m) — C®(V®A) x (Ve A),W) given by G(B) = G is a
monomorphism of C*°(V®A)-modules, provided the C*°(V®A)-module struc-
ture in C* (V@A) x (V@ A), W) is given by (Af)(a,b) = Aa) f(a,b), where
AEC®(VRA), felC®(VeA)x(VeA),W) and (a,b) € (VRA)X(VRA).
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To prove the proposition we need some lemmas.

LEMMA 13.7. Let B € T,(A,V,W, m). Assume thatm > p+1. If®p =0,
then B = 0.

Proof. The proof is similar to the one of Lemma [12.10] =

LEMMA 13.8. Let B € T,(A,V,W,m). Assume that m > p + 1. If
&p(f) =0 for any f: R™ — V of the form
(13.6) f=ho(zl,...,aP, ™),
where h : RPYL — V| then B = 0.

Proof. The proof is similar to the one of Lemma [12.11] We use Lemma
instead of Lemma 1270 =

LEMMA 13.9. Ifm > p+2, then ®g(f) = ®p(f+FzP*L) for any natural
operator B € T,(A,V,W,m) and any f,F :R™ — V.

Proof. The proof is similar to the one of Lemma [12.12] u

LEMMA 13.10. Let B € T,(A,V,W,m). Assume that m > p + 1. If
Op(f) =0 for any f :R™ —V of the form

(13.7) f=hoq+a™(Hoq),

where h, H : RP — V and q : R™ = RP x R™™P — RP is the projection, then
B =0.

Proof. The proof is similar to the one of Lemma [I2.13] We use Lemma
[[3.8instead of Lemma [12.11] =

LEMMA 13.11. Let B € T,(A,V,W,n). Let h,h, H,H : R? — V be map-
pings such that

ja(h) = ja(h),  ja(H) = ja(H).
Define f = hoq+x™(Hoq) and f = hoq+ 2™(H o q), where q : R™ =

RP x R™™P — RP is the projection. If m > p + 2, then @p(f) = @p(f).

Proof. The proof is similar to the one of Lemma [12.14] It suffices to
show that

(13.8) Pp(f) =Pp(f +Gnogq),
(13.9) Pp(f) =Pp(f +Ga™(noq)),
forall h, H : RP — V and n : RP — R with germ(n) € Aand G = const € V,
where f =hoq+ 2™(H o q).

Let 1 = (a!,..., 2P, 2PTt 4+ (noq),zP*2,...,2™) : R™ — R™. This is
a diffeomorphism that preserves e and Mim Using Lemma and Lemma
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[13.5] for 1 in place of ¢ and again Lemma [13.9] we have
Dp(f) = p(f + GaP™) = Pp(Yi(f + GaP*h))
=Dp(f +Gnogq+ GaP) = Pp(f +Gnoq).

Formula ((13.8) is verified. Replacing G by Gz™ in the proof of (13.8) we
obtain (13.9). m
Proof of Proposition [13.6, By Lemma [I3.11] Gp is well-defined. It is

smooth because of the regularity condition on B. Directly from the defini-
tions of the module structures it is easy to verify that G is a homomorphism
of C*(V ® A)-modules. From Lemma [13.10]it follows that G is injective. m

Proof of Theorem 13.3. We fix bases of the vector spaces V ® A and W.
Let B € T,(A,V,W,m). Let Gg : (V® A) x (V® A) — W be as in Propo-
sition From the invariance of B with respect to the diffeomorphisms
(x',... 2™t tz™) : R™ — R™ for t # 0 it follows that

(13.10) Gpla,thb) = tGp(a,b)
for any (a,b) € (V® A) x (V® A) and any t € R\ {0} (because each dif-

feomorphism (z!,...,2™~ !, t2™) preserves e and sends B:cim to taxim) Then,
by the homogeneous function theorem, Gp is a linear combination of the
coordinates of b with respect to the bases, with coefficients being C°°-maps
V ® A — W depending on a. Thus owing to Proposition [13.6] it suffices to
show that

(13.11) Gpo(a,b) = (D)
for any A € Hom(V ® A, W). But (13.11)) can be proved just as (12.17)). =

COROLLARY 13.12. Let V and W be finite-dimensional vector spaces
over R, let m be a natural number and let A = C§°(R™)/A be a Weil al-
gebra with width(A) = p. Let uq, ..., ur be a basis of the vector space V@ A
and wy,...,wg be a basis of W. Let Ay = up @ w; for k = 1,...,L and
l=1,...,Q be the corresponding basis of Hom(V @A, W). If m > p+2, then
the linear natural operators B for k.1 as above form a basis of the vector
space of all linear M f,-natural operators T(O9) @ Virpy, — (T @W)Ja.

Proof. The proof is similar to the one of Corollary [I2.15 =

REMARK 13.13. (a) In [D1], J. Debecki essentially generalized the linear
part of results from [Mi2]| and obtained a full description of linear liftings
of p-forms to g-forms on Weil bundles for almost all non-negative integers
p and ¢. So, Corollaries 12.15 and 13.12 for V = W = R also recover the
results from |D1] for (p,q) = (1,1) and (p,q) = (0,1).

(b) Corollaries 12.15 and 13.12 for V.= W = R (or the results from
[D1] for (p,q) = (1,1) and (p,q) = (0,1)) imply Corollaries 12.15 and 13.13
because (for example) any linear M f,,,-natural operator B : T* ® Rﬁ/l o
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(T* ® RE)TA is determined by the system of linear M f,,,-natural operators
BH T, ™ T*T4 given by (0,..., B (w),...,0) := By(0,...,w,...,0),
with B (w) at position [ and w at position k, k=1,...,K,l=1,...,L.
(¢) Theorems 12.6 and 13.3 are not consequences of the same theorems
for V.= W = R (or the results from [Mi2]) because a trick similar to that
in (b) is not available for arbitrary (not necessarily linear) M f,,-natural

operators.

Acknowledgements. The author would to thank the reviewer for sev-
eral helpful remarks.
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