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Projections onto the spaces of Toeplitz operators

by Marek Ptak (Kraków)

Abstract. Projections onto the spaces of all Toeplitz operators on the N -torus
and the unit sphere are constructed. The constructions are also extended to generalized
Toeplitz operators and applied to show hyperreflexivity results.

1. Introduction. Arveson [1] defined a projection from the algebra
B(H2(T)) of all bounded linear operators on the Hardy space on the unit
circle onto the space of all Toeplitz operators on H2(T). He used the classical
Banach limit. We construct a projection from the algebra B(H2(TN )) of all
bounded linear operators on the Hardy space on the N -torus onto the space
of all Toeplitz operators on H2(TN ). We use the extension of the Banach
limit to N -parameter sequences, given in Section 2.

In Section 4 we will use the above projection to show that the subspace
of all Toeplitz operators on the N -torus is 2-hyperreflexive (for definition
see Section 4). The single variable case was considered in [7].

A natural generalization of the unit circle is not only the N -torus but
also the unit sphere ∂BN . In Section 5 we construct a projection from the
algebra B(H2(∂BN )) of all bounded linear operators on the Hardy space on
the unit sphere onto the space of all Toeplitz operators on H2(∂BN ).

In Section 6 we extend the idea of such a projection to generalized
Toeplitz operators which were introduced in [10], [11]. We consider both
one and multi-variable cases. In Section 7 we give a hyperreflexivity result
for generalized Toeplitz operators. The one variable case was considered
in [8].

2. Multi-variable Banach limit. There is a functional on all bounded
sequences in ℓ∞, which to any convergent sequence {x(n)}n∈N assigns its
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limit (see e.g. [4]). It is called the Banach limit. We extend this idea to
multi-variable bounded sequences in ℓ∞(NN ).

Theorem 2.1. There is a linear functional Λ : ℓ∞(NN , C) → C (resp.
Λ : ℓ∞(NN , R) → R) such that

(a) ‖Λ‖ = 1 and Λ(1) = 1, where 1 is the constantly 1 sequence,
(b) if x ∈ ℓ∞(NN ) converges, then Λ(x) = limk→∞, k∈NN x(k),

(c) if x ∈ ℓ∞(NN ) is nonnegative, i.e. x(k) ≥ 0 for all k ∈ N
N , then

Λ(x) ≥ 0,
(d) for any sequence x ∈ ℓ∞(NN ) and any i = 1, . . . , N , let x(i) denote

the sequence x(i)(k) = x(k + ei), where ei = (0, . . . , 1, . . . , 0); then

Λ(x) = Λ(x(i)).

Proof. First we deal with the case of a real-valued functional, i.e. Λ:
ℓ∞(NN , R) → R. For each i, set Mi = {x − x(i) : x ∈ ℓ∞(NN , R)}, where
x(i) is defined as in (d). Note that Mi is a linear manifold. Let M be the
subspace spanned by all Mi, i = 1, . . . , N . We show first that

(1) d(1,M) = 1,

where d denotes the distance from the sequence 1 to the subspace M. Since
0 ∈ M we have d(1,M) ≤ 1. Assume that there are ε > 0 and xi ∈ Mi and
αi ∈ R with ‖αi xi‖∞ ≤ M , i = 1, . . . , N , such that

∥

∥

∥
1 −

N
∑

i=1

αi(xi − x
(i)
i )

∥

∥

∥

∞
< 1 − ε.

In particular, for fixed n ∈ N, for all k = (k1, . . . , kN ) ∈ N
N such that

|k|∞ = max |ki| ≤ n, we have

1 −
N

∑

i=1

αi(xi(k) − x
(i)
i (k)) < 1 − ε.

Summation over k gives

nN −
N

∑

i=1

αi

(

∑

|k|∞≤n
ki=1

xi(k) −
∑

|k|∞≤n
ki=n

xi(k + ei)
)

< nN − nNε.

Thus

nNε <

N
∑

i=1

|αi|
(

∑

|k|∞≤n
ki=1

|xi(k)| +
∑

|k|∞≤n
ki=n

|xi(k + ei)|
)

≤ 2nN−1NM.

Hence nε < 2NM and we have a contradiction for n large enough, so (1)
follows.

The Hahn–Banach theorem yields a linear functional Λ on ℓ∞(NN , R)
such that Λ(1) = 1, Λ(M) = 0 and ‖Λ‖ = 1.
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To see (b), for a given sequence x ∈ ℓ∞(NN , R) and for all multi-indices
in N

N , define by multi-induction the following sequences:

x(ei) = x(i) and x(k+ei) = (x(k))
(i).

Note that the definition is correct since (x(k−ei))
(j) = (x(k−ej))

(i). For fixed

k = (k1, . . . , kN ) ∈ N
N we have

x(k) − x = (x(k) − x(k−eN )) + · · · + (x(k1,..., k2,1) − x(k1,...,k2,0))

+ · · · + (x(k1,0,...,0) − x(k1−1,0,...,0)) + · · · + (x(1,0,...,0) − x).

Thus Λ(x) = Λ(x(k)). If x is convergent and α = limk′→∞, k′∈NN x(k′), then

|Λ(x) − α| = |Λ(x(k) − α · 1)| ≤ ‖x(k) − α · 1‖∞

≤ sup{|x(k′
1, . . . , k

′
N ) − α| : k′

i > ki for all i}.

Thus |Λ(x) − α| is arbitrarily small and we get (b).
Condition (c) and extension to the case of complex-valued sequences can

be shown as in the single variable case (see for example [4]).

3. Projection onto Toeplitz operators on the N-torus. Let T be
the unit circle on the complex plane C. Set L2(T) = L2(T, m) and L∞(T) =
L∞(T, m), where m is the normalized Lebesgue measure on T. Let H2(T) be
the Hardy space corresponding to L2(T) and let PH2(T) be the orthogonal

projection from L2(T) onto H2(T). We denote by H∞(T) the Hardy space
corresponding to L∞(T), i.e. the space of those functions from L∞(T) which
have an analytic extension to the whole unit disc D.

For each ϕ ∈ L∞(T) we define Tϕ ∈ B(H2(T)) by Tϕf = PH2(T)(ϕf) for

f ∈ H2(T). The operator Tϕ is called a Toeplitz operator with symbol ϕ.
Let T (T) denote the space of all Toeplitz operators, and A(T) the space
of Toeplitz operators with symbols from H∞(T). We have ([6, Corollary to
Problem 194])

(2) T (T) = {A ∈ B(H2(T)) : A = T ∗
z ATz},

and by [6, Problem 116],

(3) A(T) = {A ∈ B(H2(T)) : ATz = TzA}.

Similarly we denote the corresponding spaces on the N -torus, L2(TN ),
L∞(TN ), H2(TN ), H∞(TN ) and the projection PH2(TN ) :L

2(TN )→H2(TN ).

For each ϕ ∈ L∞(TN ) we define the Toeplitz operator Tϕ ∈ B(H2(TN ))
by Tϕf = PH2(TN )(ϕf). We denote by T (TN ) the space of all Toeplitz

operators and by A(TN ) the space of all Toeplitz operators with symbols
from H∞(TN ). By Tzi

, i = 1, . . . , N , we denote the multiplication operators
by the independent variables. Since the operators Tzi

commute we can set

Tzk = T k1
z1

· · ·T kN

zN for k = (k1, . . . , kn) ∈ N
N (zk = zk1

1 · · · zkN

N ).
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Similarly to the one variable case we have the following characterizations
(see [9, Proposition 3.3]):

T (TN ) = {A ∈ B(H2(TN )) : A = T ∗
zi

ATzi
, i = 1, . . . , N},(4)

A(TN ) = {A ∈ B(H2(TN )) : ATzi
= Tzi

A, i = 1, . . . , N}.(5)

We will construct a projection onto the space of all Toeplitz operators
on the N -torus.

Theorem 3.1. There is a positive linear projection π : B(H2(TN )) →
T (TN ) such that

(a) π(I) = I, ‖π‖ = 1,
(b) π(T ) = T for T ∈ T (TN ),
(c) π(ATϕ) = π(A)Tϕ for A ∈ B(H2(TN )) and Tϕ ∈ A(TN ),
(d) π(A) belongs to the weakly-closed convex hull of {T ∗

zkATzk : k ∈ N
N}

for A ∈ B(H2(TN )),
(e) π(Pk) = 1, where Pk is the orthogonal projection on the range of

Tzk .

Proof. For A ∈ B(H2(TN )) and x, y ∈ H2(TN ) we define

[x, y] = Λ({(T ∗
zk ATzk x, y)}k∈NN ),

where Λ denotes the multi-variable Banach limit given in Theorem 2.1.
Since (x, y) 7→ [x, y] is a bounded sesquilinear form, there is an operator
π(A) ∈ B(H2(TN )) such that

(6) (π(A)x, y) = Λ({(T ∗
zk ATzk x, y)}k∈NN ).

From the definition it is easy to see that π(I) = I. Note that for any i, by
Theorem 2.1(d),

(T ∗
zi

π(A)Tzi
x, y) = (π(A)Tzi

x, Tzi
y) = Λ({(T ∗

zkATzkTzi
x, Tzi

y)}k∈NN )

= Λ({(T ∗
zk+ei

ATzk+ei x, y)}k∈NN )

= Λ({(T ∗
zkATzkx, y)}k∈NN ) = (π(A)x, y).

Thus T ∗
z1

π(A)Tz1
= π(A) and, by the characterization (4) of Toeplitz oper-

ators, we see that π(A) ∈ T (TN ).

If A ∈ T (TN ) then, by (4), {(T ∗
zk ATzkx, y)}k∈NN = {(Ax, y)}k∈NN is a

constant sequence for all x, y and (π(A)x, y) = (Ax, y) by Theorem 2.1(b),
thus π(A) = A.

Formula (6) also implies that π is positive. If (d) is not satisfied then
for a given operator A ∈ B(H2(TN )) there are x, y ∈ H2(TN ) such that
(π(A)x, y) 6= 0, but (Bx, y) = 0 for all B in the weakly-closed convex hull of
{(T ∗

zkATzk x, y) : k ∈ N
N}. This contradicts Theorem 2.1(c). The remaining

properties follow from formula (6).
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4. 2-hyperreflexivity of Toeplitz operators on the N-torus. As
before, for a given complex separable Hilbert space H we denote by B(H)
the algebra of all bounded linear operators on H. It is well known that the
space of trace class operators τc is predual to B(H) with the dual action
〈A, f〉 = tr(Af) for A ∈ B(H) and f ∈ τc. The trace norm in τc will be
denoted by ‖ · ‖1. Denote by Fk the set of operators of rank at most k.
Every rank-one operator may be written as x ⊗ y for some x, y ∈ H, where
(x ⊗ y)z = (z, y)x for z ∈ H. Moreover, tr(T (x ⊗ y)) = (Tx, y).

Let S ⊂ B(H) be a norm-closed subspace. We denote by d(T,S) the
standard distance from an operator T to the subspace S. It is known that
when S is weak∗-closed, d(T,S) = sup{|tr(Tf)| : f ∈ S⊥, ‖f‖1 ≤ 1}, where
S⊥ denotes the preannihilator of S.

Recall that if S is a weak∗-closed subspace of B(H), then S is reflexive

if and only if S⊥ is a closed linear span of rank-one operators contained
in S⊥ (i.e., S⊥ = span(S⊥ ∩ F1)). At the other extreme, if S⊥ ∩ F1 = {0}
then we call S transitive. A weak∗-closed subspace S ⊂ B(H) is called
k-reflexive if S⊥ = span(S⊥ ∩ Fk). We also have a stronger property: S is
called hyperreflexive if there is a constant a such that

(7) d(T,S) ≤ a sup{|〈T, x ⊗ y〉| : x ⊗ y ∈ S⊥, ‖x ⊗ y‖1 ≤ 1}

for all T ∈ B(H), and k-hyperreflexive if there is a such that for any T ∈
B(H),

(8) d(T,S) ≤ a sup{|tr(Tf)| : f ∈ S⊥ ∩ Fk, ‖f‖1 ≤ 1}.

The distance on the right hand side will be denoted by αk(T,S). Let κk(S)
be the infimum of the constants a in (8); we call it the k-hyperreflexivity

constant. For further properties of k-reflexivity and k-hyperreflexivity the
reader is referred to [3] and [7].

Analyzing the spaces of all Toeplitz operators on the unit circle T (T)
and on the N -torus T (TN ) from the reflexivity point of view, note first
that the characterizations (2) and (4) allow us to see that both spaces are
weak∗-closed. The space T (T) is transitive, but 2-reflexive (see [2]) and even
2-hyperreflexive (see [7]).

In [9] it was shown that T (TN ) is transitive, thus not reflexive, but that
it is 2-reflexive. Now we will show the stronger condition: 2-hyperreflexivity.

Theorem 4.1. The space of all Toeplitz operators on the torus T (TN )
is 2-hyperreflexive and κ2(T (TN )) ≤ 2.

Proof. Let A ∈ B(H2(TN )). Since π(A) belongs to the weakly-closed
convex hull of the set {T ∗

zkATzk : k ∈ N
N}, we have
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d(A, T (TN )) ≤ ‖A − π(A)‖ ≤ sup
k∈NN

‖A − T ∗
zkATzk‖

≤ sup
k∈NN

sup{|((A − T ∗
zkATzk)x, y)| : x, y ∈ H2(TN ), ‖x ⊗ y‖1 = 1}

≤ sup
k∈NN

sup{|(Ax, y) − (Azkx, zky)| : x, y ∈ H2(TN ), ‖x ⊗ y‖1 = 1}

≤ sup
k∈NN

sup{|tr(A(x ⊗ y − zkx ⊗ zky))| : x, y ∈ H2(TN ), ‖x ⊗ y‖1 = 1}.

Since rank(x⊗y−zkx⊗zky) ≤ 2 and ‖x⊗y−zkx⊗zky‖1 ≤ 2 if ‖x⊗y‖1 = 1,
it follows that d(A, T (TN )) ≤ 2α2(A, T (TN )).

5. Projection onto Toeplitz operators on the unit ball. Let BN

be the unit ball in C
N and denote by σ the normalized surface measure

on the unit sphere ∂BN . We set L2(∂BN ) = L2(∂BN , σ) and L∞(∂BN ) =
L∞(∂BN , σ) and denote by H2(∂BN ), PH2(∂BN ) etc. the corresponding
spaces and operators on ∂BN . Also the symbols Tzi

and Tzk have the same
meaning as before.

In [5] it was shown that

T (∂BN ) =
{

A ∈ B(H2(∂BN )) : A =
N

∑

i=1

T ∗
zi

ATzi

}

,(9)

A(∂BN ) = {A ∈ B(H2(∂BN )) : ATzi
= Tzi

A, i = 1, . . . , N}.(10)

For a given operator A ∈ B(H2(∂BN )) we define by induction a sequence
{A(n)}n∈N in B(H2(∂BN )):

(11) A(0) = A, A(n+1) =

N
∑

i=1

T ∗
zi

A(n)Tzi
.

Note that I(n) = I and if T ∈ T (∂BN ), then T (n) = T by (9). Moreover, by
(10),

(12) (ATϕ)(n) = A(n) Tϕ for A ∈ B(H2(∂BN )) and Tϕ ∈ A(∂BN ).

Lemma 5.1. If A ∈ B(H2(∂BN )), then ‖A(n)‖ ≤ 2‖A‖.

Proof. For k = (k1, . . . , kN ) ∈ N
N we write k! = k1! · · · kN ! and |k| =

k1 + · · · + kN . One can easily note that

(13) A(n) =
∑

|k|=n

n!

k!
T ∗

zkATzk .

If x ∈ H2(∂BN ), then

|(A(n)x, x)| ≤
∑

|k|=n

n!

k!
|(Azkx, zkx)| ≤ ‖A‖

∑

|k|=n

n!

k!
‖zkx‖2
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= ‖A‖
∑

|k|=n

n!

k!

\
∂BN

|zkx(z)|2 dσ(z) = ‖A‖
\

∂BN

|x(z)|2
∑

|k|=n

n!

k!
|zk|2 dσ(z)

= ‖A‖
\

∂BN

|x(z)|2(|z1|
2 + · · · + |zn|

2)n dσ(z) = ‖A‖ ‖x‖2.

Thus the numerical range satisfies w(A(n)) ≤ ‖A‖ and ‖A(n)‖ ≤ 2‖A‖
by [6].

Theorem 5.2. There is a positive linear projection π : B(H2(∂BN )) →
T (∂BN ) such that

(a) π(I) = I, ‖π‖ ≤ 2,
(b) π(T ) = T for T ∈ T (∂BN ),
(c) π(ATϕ) = π(A)Tϕ for A ∈ B(H2(∂BN )) and Tϕ ∈ A(∂BN ),
(d) π(A) belongs to the weakly-closed convex hull of {A(n) : n ∈ N} for

A ∈ B(H2(∂BN )).

Proof. For A ∈ B(H2(∂BN )) and x, y ∈ H2(∂BN ) we define

[x, y] = Λ({(A(n)x, y)}n∈N),

where Λ denotes the one-dimensional Banach limit (see Theorem 2.1). Note
that {(A(n)x, y)}n∈N ∈ ℓ∞(N, C) by Lemma 5.1. Since (x, y) 7→ [x, y] is a
bounded sesquilinear form, there is an operator π(A) ∈ B(H2(∂BN )) such
that

(14) (π(A)x, y) = Λ({(A(n)x, y)}n∈N).

Since I(n) = I, we have π(I) = I.
Now, by Theorem 2.1(d), we get

(

N
∑

i=1

T ∗
zi

π(A)Tzi
x, y

)

=
N

∑

i=1

(π(A)zix, ziy)

=
N

∑

i=1

Λ({(A(n)zix, ziy)}n∈N) = Λ
({(

N
∑

i=1

T ∗
zi

A(n)Tzi
x, y

)}

n∈N

)

= Λ
(

{(A(n+1)x, y)}n∈N

)

= (π(A)x, y).

Thus π(A) ∈ T (∂BN ) by (9).
If A ∈ T (∂BN ) then A(n) = A for all n, and thus π(A) = A. Property (c)

is a consequence of (12), and the proof of (d) is similar to that of Theorem
3.1(d).

6. Projection onto generalized Toeplitz operators. The idea of
generalized Toeplitz operators is to replace in the characterization (2) the
backward shift T ∗

z by any contraction. Precisely, for given contractions S, T
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in B(H), an operator X ∈ B(H) is called a generalized Toeplitz operator

with respect to S and T if X = SXT ∗. These operators were investigated in
[11]. The space of all such operators is denoted by T (S, T ). Note that this
definition implies weak∗-closedness of T (S, T ).

In [10] this idea was extended to two variables. It is easy to extend
it to the multi-variable case. Having in mind the characterization (4) of
Toeplitz operators on the N -torus we make the following definition. For
given N -tuples S = (S1, . . . , SN ) and T = (T1, . . . , TN ) of commuting con-
tractions on H, an operator X ∈ B(H) is called a generalized Toeplitz op-

erator with respect to S and T if X = SiXT ∗
i for i = 1, . . . , N . The space

of all such operators is denoted by T (S,T). It is also weak∗-closed. For a

given commuting N -tuple S = (S1, . . . , SN ) we set Sk = Sk1

1 · · ·SkN

N for
k = (k1, . . . , kN ) ∈ N

N .

Now we extend the definition of the projection considered in Section 3 to
generalized Toeplitz operators. We formulate the theorem for arbitrary N ,
but even the case N = 1 is worth noting.

Theorem 6.1. Let S and T be two N -tuples of commuting contractions

on H. There is a linear projection π : B(H) → T (S,T) such that

(a) ‖π‖ ≤ 1,
(b) π(X) = X for X ∈ T (S,T),
(c) if A ∈ B(H) then π(A) belongs to the weakly-closed convex hull of

{SkAT∗k : k ∈ N
N}.

Proof. Let Λ be the functional from Theorem 2.1. For A ∈ B(H) and
x, y ∈ H we define

(π(A)x, y) = Λ({(SkAT∗kx, y)}k∈NN ).

To check the details, one can follow the proof of Theorem 3.1.

7. 2-hyperreflexivity of generalized Toeplitz operators. The re-
flexive behavior of the space T (S, T ) of generalized Toeplitz operators de-
pends on the contractions S, T . For example if the underlying Hilbert space is
the Hardy space on the unit circle and S = T = T ∗

z then T (T ∗
z , T ∗

z ) = T (T)
is transitive. On the other hand, the space T (S, T ) might be even (hy-
per)reflexive. For example, if S = T = IH then T (IH , IH) = B(H), which is
(hyper)reflexive. However, we can estimate the reflexive behavior even for
arbitrary N by

Theorem 7.1. Let S and T be two N -tuples of commuting contractions

on H. Then T (S,T) is 2-hyperreflexive.

Proof. By Theorem 6.1(c), for any A ∈ B(H), π(A) belongs to the
weakly-closed convex hull of {SkAT∗k : k ∈ N

N}. As in the proof of Theorem
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4.1 we can show that

d(A, T (S,T)) ≤ ‖A − π(A)‖ ≤ sup
k∈NN

‖A − SkAT∗k‖

≤ sup
k∈Nk

sup{|tr(A(x ⊗ y − T∗kx ⊗ S∗ky))| : ‖x ⊗ y‖1 = 1}.

Since rank(x ⊗ y − T∗kx ⊗ S∗ky) ≤ 2 and ‖x ⊗ y − T∗kx ⊗ S∗ky‖1 ≤ 2 for
‖x ⊗ y‖1 = 1, we have

d(A, T (S,T)) ≤ 2α2(A, T (S,T)).

Theorem 7.1 for N = 1 is also a consequence of [8].

Added in proof. D. Timotin (private communication) has shown that the norm of
the projection in Theorem 5.2 is equal to 1, ‖π‖ = 1.
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