A counterexample to the regularity of the degenerate complex Monge-Ampère equation

by Szymon Pliś (Kraków)

Abstract. We modify an example due to X.-J. Wang and obtain some counterexamples to the regularity of the degenerate complex Monge–Ampère equation on a ball in \mathbb{C}^n and on the projective space \mathbb{P}^n .

1. Introduction. The Monge-Ampère operator of a smooth plurisub-harmonic function u is given by

$$(dd^c u)^n = 4^n n! \det(u_{i\bar{j}}) d\mathcal{L}, \quad \text{where} \quad u_{i\bar{j}} = \frac{\partial^2 u}{\partial z_i \partial \bar{z}_j}$$

and \mathcal{L} is the 2n-dimensional Lebesgue measure. For an arbitrary continuous plurisubharmonic function u one can define $(dd^cu)^n$ as a regular Borel measure. Let Ω be a strictly pseudoconvex domain in \mathbb{C}^n (throughout the note we always assume $n \geq 2$). Then for any nonnegative f which is continuous in Ω and for φ continuous on $\partial\Omega$ the Dirichlet problem

(1.1)
$$\begin{cases} u \in \mathrm{PSH}(\Omega) \cap \mathcal{C}(\overline{\Omega}), \\ (dd^c u)^n = f d\mathcal{L} \quad \text{in } \Omega, \\ u = \varphi \quad \text{on } \partial\Omega, \end{cases}$$

has a unique solution (see [B-T]).

Below we list some regularity results for solutions of (1.1):

- (1) $\partial \Omega \in \mathcal{C}^{\infty}$, $\varphi \in \mathcal{C}^{\infty}(\partial \Omega)$, $f \in \mathcal{C}^{\infty}(\overline{\Omega})$, $f > 0 \Rightarrow u \in \mathcal{C}^{\infty}(\overline{\Omega})$ (Caffarelli, Kohn, Nirenberg and Spruck [C-K-N-S]);
- (2) $\partial\Omega \in \mathcal{C}^{3,1}, \ \varphi \in \mathcal{C}^{3,1}(\partial\Omega), \ f^{1/n} \in \mathcal{C}^{1,1}(\overline{\Omega}), \ f \geq 0 \Rightarrow u \in \mathcal{C}^{1,1}(\overline{\Omega})$ (Krylov [Kr1, Kr2]).

There are analogous regularity theorems for the real Monge–Ampère equations on a strongly convex domain Ω in \mathbb{R}^n (see [C-K-N] and [G-T-W]). In a forthcoming paper about the degenerate Monge–Ampère equation on

²⁰⁰⁰ Mathematics Subject Classification: 32W20, 35J70. Key words and phrases: complex Monge-Ampère operator.

172 S. Pliś

strongly pseudo-convex domains in \mathbb{C}^n , the author proves the following complex version of a result from [G-T-W]:

(3) $\partial \Omega \in \mathcal{C}^{3,1}$, $\varphi \in \mathcal{C}^{3,1}(\partial \Omega)$, $f^{1/(n-1)} \in \mathcal{C}^{1,1}(\overline{\Omega})$, $f \geq 0 \Rightarrow u$ is almost $\mathcal{C}^{1,1}$ (i.e. mixed complex derivatives $u_{i\bar{i}}$ are bounded).

Similar results are true for Kähler manifolds. Let M be a compact Kähler manifold of complex dimension n, with the Kähler form ω . We will say that a continuous function ϕ on M is admissible if $dd^c\phi + \omega \geq 0$. For any nonnegative f which is continuous on M and satisfies the necessary condition

$$\int_{M} f\omega^{n} = \int_{M} \omega^{n}$$

the Monge-Ampère equation

(1.3)
$$\begin{cases} \phi \text{ is admissible,} \\ (dd^c \phi + \omega)^n = f\omega^n \text{ in } M, \end{cases}$$

has a unique (up to a constant) continuous solution (see [K1, K2, B3]).

We have the following results about regularity of (1.3):

- (4) $f \in \mathcal{C}^{\infty}(M)$, $f > 0 \Rightarrow \phi \in \mathcal{C}^{\infty}$ (Yau [Y]); (5) $f^{1/(n-1)} \in \mathcal{C}^{1,1}(M)$, $f \geq 0 \Rightarrow \phi$ is almost $\mathcal{C}^{1,1}$ (Błocki [B2]).

In [W] Wang proved that the exponent 1/(n-1) is optimal for analogous results in the real case. In this paper we show that in (3) and (5) the constant 1/(n-1) is also optimal. Our examples are very similar to Example 3 in [W]but in the proof of Lemma 2.1 below, although the idea is also similar to [W], at some point we proceed quite differently than in the real case.

2. Examples. Let

(2.1)
$$f(z) = A\eta\left(\frac{|z_n|}{|z'|^{\alpha}}\right)|z'|^{\beta}, \quad (z_1, \dots, z_{n-1}, z_n) = (z', z_n) = z \in \mathbb{C}^n,$$

where $\alpha, \beta > 2, A > 0$ and

$$\eta(t) = \begin{cases} e^{-1/(1-t^2)}, & |t| < 1, \\ 0, & |t| \ge 1. \end{cases}$$

Let B be the unit ball in \mathbb{C}^n .

We need the following lemma:

LEMMA 2.1. Let $u \in PSH \cap C(B)$ be such that $u|_{\{0\} \times \mathbb{C} \cap B}$ is not constant,

$$(dd^c u)^n = f d\mathcal{L} \quad \text{in } B$$

where f is given by (2.1) and

$$(2.2) u(z', z_n) = u(w', w_n) if |z'| = |w'| and |z_n| = |w_n|.$$

Then

$$u(0, \varepsilon_k) - u(0) \ge C\varepsilon_k^{(2\alpha + 2(n-1) + \beta)/n\alpha}$$

for some sequence $\varepsilon_k \setminus 0$ and C > 0 depending only on α , β and n. In particular, if $\beta < 2(n-1)(\alpha-1)$, then u is not $C^{1,a}$ smooth for some a < 1.

Proof. 1. By the maximum principle, if $|z'| \leq |w'|$ and $|z_n| \leq |w_n|$, then $u(z', z_n) \leq u(w', w_n)$.

2. Let $h(x) = u(0, e^x)$ for $x \in [-\infty, 0)$. Then h is convex and reaches its strict minimum at $x = -\infty$. Indeed, suppose that $m = \sup\{x : h(x) = h(-\infty)\} \neq -\infty$. There are $\mu > 0$ such that

$$h(m+2\mu) < u(e^{(m-2\mu)/\alpha}, 0, \dots, 0, e^{m-2\mu})$$

and an affine function l such that $l(m-\mu)=h(m-\mu)$ and $l(m+\mu)=h(m+\mu)$. So

$$\overline{\{u(z',z_n) < l(\log|z_n|)\}} \subset V = \{\max\{e^{m-2\mu}, |z'|^{\alpha}\} < |z_n| < e^{m+2\mu}\}.$$

But u is maximal in V, so this is impossible.

- 3. There is a sequence $\varepsilon_k \setminus 0$ such that $u(z',z_n) = u(0,\varepsilon_k)$ for $|z'|^{\alpha} < |z_n| = \varepsilon_k$. Indeed, there is a sequence $\varepsilon_k \setminus 0$ such that h is strictly convex in ε_k for $k \in \mathbb{N}$, i.e. there is an affine function l such that $\{l(x) < h(x)\} = [-\infty,0) \setminus \{\varepsilon_k\}$. From continuity and maximality of u (in int $\{f=0\}$) it is clear that for every small s>0 we have $l(\log|z_n|)+s\geq u(z)$ for $z=(z',z_n)$ whenever $|z_n|=\varepsilon_k$ and $|z'|^{\alpha}<|z_n|$.
- 4. Let $\varepsilon = \varepsilon_k$ and $\lambda = \varepsilon^{1/\alpha}$. Let T denote the transformation $(w', w_n) = T(z', z_n) = (z'/\lambda, z_n/\varepsilon)$, and let

$$v(w', w_n) = \frac{u(\lambda w', \varepsilon w_n) - u(0, \varepsilon)}{(\varepsilon \lambda^{n-1})^{2/n}}.$$

Then v < 0 in B and $(dd^c v)^n = f \circ T^{-1}$.

5. Let $\psi = |z|^2 - 1$. Then $\psi \in \mathrm{PSH}^-(B)$, $\lim_{z \to \partial B} \psi = 0$ and $\psi < -1/2$ on $\frac{1}{2}B$. So [B1, Corollary 2.3] gives us

$$\frac{1}{2^n} \int_{\frac{1}{2}B} (dd^c v)^n \le \int_B |\psi|^n (dd^c v)^n \le ||v||_B^n \int_B (dd^c \psi)^n = C_1 ||v||_B^n.$$

6. Let

$$D = \left\{ z : |z_n| < \frac{1}{2} \left(\frac{\lambda}{8} \right)^{\alpha}, \frac{\lambda}{8} < |z'| < \frac{\lambda}{4} \right\}.$$

Then $D \subset T^{-1}(\frac{1}{2}B)$ and $\mathcal{L}(D) \geq C_2 \varepsilon^2 \lambda^{2(n-1)}$ and

$$\min_{D} f = f\left(\frac{\lambda}{8}, 0, \dots, 0, \frac{1}{2} \left(\frac{\lambda}{8}\right)^{\alpha}\right) \ge C_3 \lambda^{\beta}.$$

174 S. Pliś

7. Let $\widetilde{B} = \frac{1}{2}T^{-1}(B)$. We thus obtain

$$-v(0) = ||v||_B \ge \left(C_4 \int_{\frac{1}{2}B} (dd^c v)^n\right)^{1/n} = \left(\frac{C_4}{\varepsilon^2 \lambda^{2(n-1)}} \int_{\widetilde{B}} f \, d\mathcal{L}\right)^{1/n}$$
$$\ge \left(\frac{C_4}{\varepsilon^2 \lambda^{2(n-1)}} \mathcal{L}(D) \min_D f\right)^{1/n} \ge C_5 \lambda^{\beta/n} = C_5 \varepsilon^{\beta/\alpha n}.$$

8. We therefore conclude

$$u(0,\varepsilon) - u(0) = (\varepsilon \lambda^{n-1})^{2/n} v(0) \ge C_5 \varepsilon^{\frac{2}{n} + \frac{2(n-1)}{n\alpha} + \frac{\beta}{\alpha n}} = C_5 \varepsilon^{\frac{2\alpha + 2(n-1) + \beta}{n\alpha}}.$$

Now we can give our example for the unit ball in \mathbb{C}^n .

EXAMPLE 2.2. Let f be given by (2.1) where A=1, $\beta=2(n-1)(\alpha-1)-1$ and a>1/(n-1). Choose α such that $a\geq 2\alpha/\beta$. Then f^a is $\mathcal{C}^{1,1}$ but the solution u of (1.1) with $\Omega=B$ and $\varphi\equiv 0$ is not $\mathcal{C}^{1,1}$.

Proof. Since f and φ satisfy condition (2.2), by the uniqueness of solution, u also satisfies (2.2). From Lemma 2.1 we conclude that u is not $\mathcal{C}^{1,1}$.

For \mathbb{P}^n we have the following example:

EXAMPLE 2.3. Let $\varrho:[0,\infty)\to [0,1]$ be a function of class \mathcal{C}^∞ such that $\varrho|_{[0,1]}\equiv 1$ and $\varrho|_{[2,\infty)}\equiv 0$. View \mathbb{P}^n as a Kähler manifold carrying the Fubini–Study metric $\omega=\sum g_{i\bar{j}}dz_i\wedge d\bar{z}_j$. Write $\mathbb{P}^n=\mathbb{C}^n\cup\mathbb{P}^{n-1}$ where \mathbb{P}^{n-1} is the hyperplane at infinity. Let $\widetilde{f}:\mathbb{P}^n\to\mathbb{R}_+$ be a continuous function given in local coordinates in \mathbb{C}^n by

$$\widetilde{f} = \frac{\varrho(|z|)f}{4^n n! \det(g_{i\bar{j}})},$$

where f is given by (2.1), A is such that \widetilde{f} satisfies the necessary condition (1.2), $\beta = 2(n-1)(\alpha-1) - 1$ and a > 1/(n-1). Choose α such that $a \geq 2\alpha/\beta$. Then \widetilde{f}^a is $\mathcal{C}^{1,1}$ but the solution ϕ of (1.3) with $M = \mathbb{P}^n$ and with \widetilde{f} in place of f is not $\mathcal{C}^{1,1}$.

Proof. In local coordinates in \mathbb{C}^n , $g_{i\bar{j}}$ are given by $g_{i\bar{j}} = (\frac{1}{2}\log(1+|z|^2))_{i\bar{j}}$. Let $u = \phi + \frac{1}{2}\log(1+|z|^2)$. Then u is a continuous solution of the Monge–Ampère equation

$$(dd^c u)^n = f \varrho \quad \text{in } \mathbb{C}^n.$$

Since ϕ is bounded, we have $\lim_{|z_n|\to+\infty} u = +\infty$. Then from the same argument as in the proof of Lemma 2.1 we see that the function $z_n \mapsto v(0, z_n)$ reaches its strict minimum at $z_n = 0$. Since ω and \widetilde{f} satisfy condition (2.2), by the uniqueness of solution ϕ satisfies (2.2) and so does u. From Lemma 2.1, u is not $\mathcal{C}^{1,1}$, so neither is ϕ .

Acknowledgments. I would like to express my gratitude to Professor Z. Błocki for his support and assistance.

References

- [B-T] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44.
- [B1] Z. Błocki, Estimates for the complex Monge-Ampère operator, Bull. Polish Acad. Sci. 41 (1993), 151–157.
- [B2] —, Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds, Math. Z. 244 (2003), 153-161.
- [B3] —, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 1697-1701.
- [C-K-N] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations I: Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), 369-402.
- [C-K-N-S] L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck The Dirichlet problem for nonlinear second-order elliptic equations II: Complex Monge-Ampère, and uniformly elliptic, equations, ibid. 38 (1985), 209-252.
- [G] P. Guan, C^2 a priori estimate for degenerate Monge-Ampère equations, Duke Math. J. 86 (1997), 323-346.
- [G-T-W] P. Guan, N. S. Trudinger and X.-J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations, Acta Math. 182 (1999), 87–104.
- [K1] S. Kołodziej, The complex Monge-Ampère equation, ibid. 180 (1998), 69-117.
- [K2] —, Stability of solutions to the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 667-686.
- [Kr1] N. V. Krylov, Smoothness of the payoff function for a controllable process in a domain, Izv. Akad. Nauk SSSR 53 (1989), 66–96 (in Russian); English transl.: Math. USSR-Izv. 34 (1990), 65–95.
- [Kr2] —, On analogues of the simplest Monge-Ampère equation, C. R. Acad. Sci. Paris 318 (1994), 321–325.
- [W] X.-J. Wang, Some countrexamples to the regularity of Monge-Ampère equations, Proc. Amer. Math. Soc. 123 (1995), 841-845.
- [Y] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339-411.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland

E-mail: Szymon.Plis@im.uj.edu.pl

Reçu par la Rédaction le 11.5.2005 Révisé le 24.6.2005 (1584)