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A counterexample to the regularity of the
degenerate complex Monge—Ampére equation

by SzymoN PL1S (Krakow)

Abstract. We modify an example due to X.-J. Wang and obtain some counterex-
amples to the regularity of the degenerate complex Monge—Ampére equation on a ball in
C™ and on the projective space P".

1. Introduction. The Monge-Ampére operator of a smooth plurisub-
harmonic function u is given by

0u
8z,~82j
and L is the 2n-dimensional Lebesgue measure. For an arbitrary continuous
plurisubharmonic function u one can define (dd“u)™ as a regular Borel mea-
sure. Let {2 be a strictly pseudoconvex domain in C™ (throughout the note

we always assume n > 2). Then for any nonnegative f which is continuous
in {2 and for ¢ continuous on 0f2 the Dirichlet problem

(dd°u)" = 4"nldet(u;;)dL, where wu,;=

u € PSH(2)NC(£2),
(1.1) (dd°u)™ = fdL in (2,
u=¢ on df2,

has a unique solution (see [B-T]).
Below we list some regularity results for solutions of (1.1):

(1) 02 €C=,p € C®(9N), f € C®(2), f > 0= u € C®(£2) (Caffarelli,
Kohn, Nirenberg and Spruck [C-K-N-S]);
(2) 002 € C¥, p € C3(AN), f/m e CVYR), f > 0 = u e CVY(D)
(Krylov [Krl, Kr2]).
There are analogous regularity theorems for the real Monge—Ampeére
equations on a strongly convex domain {2 in R" (see [C-K-N| and [G-T-W]).
In a forthcoming paper about the degenerate Monge—Ampére equation on
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strongly pseudo-convex domains in C", the author proves the following com-
plex version of a result from [G-T-W]:
(3) 92 € C31, p € 31 (0N), /=1 ¢ CLY(D), f > 0 = u is almost
Ch! (i.e. mixed complex derivatives u, ; are bounded).

Similar results are true for Kahler manifolds. Let M be a compact Kéahler
manifold of complex dimension n, with the K&hler form w. We will say
that a continuous function ¢ on M is admissible if dd°¢ + w > 0. For any
nonnegative f which is continuous on M and satisfies the necessary condition

(1.2) S fw" = S w"
M M
the Monge-Ampeére equation
¢ is admissible,
{ (dd°¢ +w)"* = fw™ in M,

has a unique (up to a constant) continuous solution (see [K1, K2, B3]).

(1.3)

We have the following results about regularity of (1.3):

(4) feC®M), f>0=¢eC>® (Yau [Y]);
(5) fY=D e cBY (M), f>0= ¢ is almost C1! (Blocki [B2]).

In [W] Wang proved that the exponent 1/(n — 1) is optimal for analogous
results in the real case. In this paper we show that in (3) and (5) the constant
1/(n — 1) is also optimal. Our examples are very similar to Example 3 in [W]
but in the proof of Lemma 2.1 below, although the idea is also similar to [W],
at some point we proceed quite differently than in the real case.

2. Examples. Let

(2.1) f(z) = AU(,ZTL) |z,|ﬁv (Z15+ - 201, 2n) = (Zlv zn) =z € C",

where a, 3 > 2, A > 0 and

e~ /A=) 1y < 1,
n(t) = i
0, It > 1.

Let B be the unit ball in C™.
We need the following lemma:

LEMMA 2.1. Letu € PSHNC(B) be such that u|{0yxcnp is not constant,
(dd“u)" = fdL in B
where f is given by (2.1) and

(2.2) w(Z, zp) = u(w' wy) if |2 = W] and |z,] = |wa.
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Then
u(0,5) — u(0) > Cel2et2n=lHo)/na

for some sequence €, \, 0 and C > 0 depending only on «, B and n. In
particular, if B < 2(n—1)(a — 1), then u is not C1* smooth for some a < 1.

Proof. 1. By the maximum principle, if |2/| < |w
w(?, zn) < u(w',wy).

2. Let h(z) = u(0,e") for € [—00,0). Then h is convex and reaches
its strict minimum at x = —oco. Indeed, suppose that m = sup{z : h(z) =
h(—o0)} # —oo. There are > 0 such that

h(m + 2p) < w(e=20/ 0, .. 0,em )

'I'and |z, | < |wy|, then

and an affine function [ such that [(m — u) = h(m — p) and I(m + p) =
h(m + p). So

{u(2', zn) < l(log|zn|)} CV = {max{em_Q“, 12|19} < |zn| < em+2“}.

But v is maximal in V, so this is impossible.

3. There is a sequence ¢ \, 0 such that u(z’, z,) = u(0,e;) for |2/|* <
|zn| = k. Indeed, there is a sequence e \, 0 such that h is strictly convex
in g for k € N, i.e. there is an affine function [ such that {i(z) < h(z)} =
[—00,0) \ {ex}. From continuity and maximality of u (in int{f = 0}) it is
clear that for every small s > 0 we have [(log|z,|) + s > u(z) for z = (2/, z,,)
whenever |z,| = g and [2/|% < |z,].

4. Let € = g and A\ = £/, Let T denote the transformation (w’,wy,) =
T(2',zn) = (Z'/A, zn/€), and let

u(Aw', ewy,) — u(0,¢€)
(EAn—l)Q/n

Then v < 0 in B and (dd“v)" = fo T~ 1.
5. Let ¢ = |2|> — 1. Then ¢ € PSH™(B), lim, 9% = 0 and ¢ < —1/2
on %B. So [B1, Corollary 2.3] gives us

1
o ) (ddv)" < | || (ddov)" < [|olf § (dd°p)" = Cullol[h-

omn
B B B

T/ A, A

Then D C T~1(3B) and £(D) > C2e2A\"~1) and

. A 1A\
ménf=f<§,0,,0,§<§> )ZC:;)\ﬁ

v(w', wy) =

N[ =

6. Let
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7. Let B = 1T-1(B). We thus obtain

~o(0) = [lols > (s § (davo)") " = (L) | fd£> o
B

) 22)\2(n—1
§B

C4 . 1n B/n B/an

8. We therefore conclude

(n—1) a+2(n—1)+p
w(0,8) — u(0) = (A" N2/ Mp(0) > Cyert ma Tan = Cyeo e m

Now we can give our example for the unit ball in C".

EXAMPLE 2.2. Let f be given by (2.1) where A =1, 8 = 2(n—1)(a—1)—1
and a > 1/(n —1). Choose o such that a > 2a/3. Then f@ is CY1 but the
solution u of (1.1) with 2 = B and ¢ = 0 is not C1.

Proof. Since f and ¢ satisfy condition (2.2), by the uniqueness of so-
lution, w also satisfies (2.2). From Lemma 2.1 we conclude that w is not
Cll. u

For P" we have the following example:

EXAMPLE 2.3. Let ¢ : [0,00) — [0,1] be a function of class C* such
that oljo,) = 1 and o|2,00) = 0. View P" as a Kdhler manifold carrying the
Fubini—Study metric w = gi]fdzi Ndzj. Write P" = C" U P~ where P71
1s the hyperplane at infinity. Let f: P — Ry be a continuous function given
in local coordinates in C" by

F el
4rnldet(g;;)’

where f is given by (2.1), A is such that f satisfies the necessary condition
(1.2), B = 2(n—1)(a—1)—1 and a > 1/(n—1). Choose o such that
a>2a/B. Then f* is CYt but the solution ¢ of (1.3) with M = P" and with
]7 in place of f is not C1.

Proof. Inlocal coordinates in C", g, are given by g,z = (% log(1—|—|z|2))i]f.
Let u = ¢ + 1 log(1 + |2|?). Then u is a continuous solution of the Monge-
Ampeére equation

(dd°u)" = fo in C".
Since ¢ is bounded, we have lim|, | ;o u = +oc. Then from the same
argument as in the proof of Lemma 2.1 we see that the function z,, — v(0, z,,)
reaches its strict minimum at z,, = 0. Since w and fsatisfy condition (2.2),
by the uniqueness of solution ¢ satisfies (2.2) and so does u. From Lemma
2.1, u is not CH!, so neither is ¢. w
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