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Long time behaviour of a Cahn–Hilliard system
coupled with viscoelasticity

by Irena Pawłow and Wojciech M. Zajączkowski (Warszawa)

Abstract. The long-time behaviour of a unique regular solution to the Cahn–Hilliard
system coupled with viscoelasticity is studied. The system arises as a model of the phase
separation process in a binary deformable alloy. It is proved that for a sufficiently regular
initial data the trajectory of the solution converges to the ω-limit set of these data. More-
over, it is shown that every element of the ω-limit set is a solution of the corresponding
stationary problem.

1. Introduction. As a continuation of [5], we study the asymptotic
behaviour as t → ∞ of a regular solution to the following Cahn–Hilliard
system coupled with viscoelasticity:

(1.1)
utt −∇ · [W,ε(ε(u), χ) + νAε(ut)] = b in Ω∞ = Ω × (0,∞),
u(0) = u0, ut(0) = u1 in Ω,

u = 0 on S∞ = S × (0,∞),

(1.2)
χt −∆µ = 0 in Ω∞,

χ(0) = χ0 in Ω,

n · ∇µ = 0 on S∞,

(1.3)
µ = −γ∆χ+ ψ′(χ) +W,χ(ε(u), χ) in Ω∞,

n · ∇χ = 0 on S∞,

where Ω ⊂ R3 is a bounded domain with a smooth boundary S; the un-
knowns are the fields u : Ω∞ → R3, χ : Ω∞ → R, and µ : Ω∞ → R,
representing respectively the displacement vector, the order parameter and
the chemical potential; ε(u) = 1

2(∇u+(∇u)T ) is the linearized strain tensor;
the functions W (ε(u), χ) and ψ(χ) are specified below, and ν, γ are positive
constants.

2010 Mathematics Subject Classification: 35K50, 35K60, 35L20, 35Q72.
Key words and phrases: Cahn–Hilliard, viscoelasticity system, phase separation, long-time
behaviour.

DOI: 10.4064/ap98-1-1 [1] c© Instytut Matematyczny PAN, 2010



2 I. Pawłow and W. M. Zajączkowski

The system arises as a model, regularized by a viscous damping, of the
phase separation process in a deformable two-component a-b alloy cooled
below a critical temperature. In the previous paper [5] we have proved the
existence and uniqueness of a global in time, regular solution to this system.
Moreover, we have shown the existence of an absorbing set. Our objective
in the present paper is to study the asymptotic behaviour of the solution as
t→∞.

System (1.1)–(1.3) represents balance laws of linear momentum, mass,
and the equation for the chemical potential. The associated free energy den-
sity has the Landau–Ginzburg form

(1.4) f(ε(u), χ,∇χ) = W (ε(u), χ) + ψ(χ) +
γ

2
|∇χ|2,

where

(1.5) W (ε(u), χ) =
1
2

(ε(u)− ε̄(χ)) ·A(ε(u)− ε̄(χ)),

and

(1.6) ψ =
1
4

(1− χ2)2

represent respectively the elastic energy and the double-well potential; the
positive constant γ is related to the surface tension.

The order parameter χ characterizes the material phase. In case of a
binary alloy it is related to the volumetric fraction of one of the two phases,
characterized by different crystalline structures of the components. We shall
assume that χ = −1 is identified with phase a and χ = 1 with phase b.

The elasticity tensor A = (Aijkl) and the eigenstrain tensor ε̄(χ) =
(ε̄ij(χ)) are given by

(1.7) Aε(u) = λ̄ tr ε(u)I + 2µ̄ε(u), ε̄(χ) = (1− z(χ))ε̄a + z(χ)ε̄b,

where I is the identity tensor, λ̄, µ̄ are the Lamé constants satisfying µ̄ > 0,
3λ̄+ 2µ̄ > 0, ε̄a, ε̄b are the constant eigenstrains of phases a, b, and z : R→
[0, 1] is a sufficiently smooth interpolation function such that

(1.8) z(χ) = 0 for χ ≤ −1 and z(χ) = 1 for χ ≥ 1.

The term νAε(ut), with ν = const > 0, represents the viscous stress tensor;
ν is the viscosity coefficient. The derivatives of W (ε(u), χ) with respect to
ε and χ, given by

W,ε(ε(u), χ) = A(ε(u)− ε̄(χ)),
W,χ(ε(u), χ) = −ε̄′(χ) ·A(ε(u)− ε̄(χ)),

denote respectively the elastic stress tensor and the elastic contribution to
the chemical potential. For a detailed description of system (1.1)–(1.3) and
a discussion of related literature we refer to [5].
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By introducing the linear elasticity operator

(1.9) u 7→ Qu = ∇ · (Aε(u)) = µ̄∆u+ (λ̄+ µ̄)∇(∇ · u)

with the domain D(Q) = H2(Ω)∩H1
0(Ω), and the auxiliary constant quan-

tities

(1.10) B = −A(ε̄b − ε̄a), D = −B · (ε̄b − ε̄a), E = −B · ε̄a,
we have

(1.11)
W,ε(ε(u), χ) = Aε(u)−Aε̄a + z(χ)B,
W,χ(ε(u), χ) = z′(χ)(B · ε(u) +Dz(χ) + E),
∇ ·W,ε(ε(u), χ) = Qu+ z′(χ)B∇χ.

On account of (1.9)–(1.11) it is convenient to recast system (1.1)–(1.3) into
the following simplified form:

(1.12)
utt −Qu− νQut = z′(χ)B∇χ+ b in Ω∞,

u(0) = u0, ut(0) = u1 in Ω,

u = 0 on S∞,

(1.13)
χt −∆µ = 0 in Ω∞,

χ(0) = χ0 in Ω,

n · ∇µ = 0 on S∞,

(1.14)
µ = −γ∆χ+ ψ′(χ) + z′(χ)(B · ε(u) +Dz(χ) + E) in Ω∞,

n · ∇χ = 0 on S∞.

It has been proved in [5] (see Theorem 2.1 below) that system (1.1)–(1.3)
admits a unique global solution (u, χ, µ) such that

u ∈ C1([0,∞);H2(Ω) ∩H1
0(Ω)) ∩ C2([0,∞);H1

0(Ω)),

χ ∈ C([0,∞);H2
N (Ω)) ∩ C1([0,∞);L2(Ω)),

µ ∈ C([0,∞);H2
N (Ω)),

�

Ω

χ(t) dx = χm :=
�

Ω

χ0 dx for all t ∈ [0,∞),

for initial data satisfying
(u(0),ut(0),utt(0), χ(0), χt(0)) ∈ W
:= {(H2(Ω) ∩H1

0(Ω))×(H2(Ω) ∩H1
0(Ω))×H1

0(Ω)×H2
N (Ω)× L2(Ω)},

where
H2
N (Ω) = {ξ : ξ ∈ H2(Ω), n · ∇ξ = 0 on S}.

Thus, the solution defines a nonlinear, strongly continuous semigroup

S(t) :W 3 (u(0),ut(0),utt(0), χ(0), χt(0)) 7→
(u(t),ut(t),utt(t), χ(t), χt(t)) ∈ W, t ∈ [0,∞).
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In this paper we prove that for any initial data belonging toW the trajectory
of the solution converges as t→∞ to the ω-limit set of these data.

Moreover, we show that the ω-limit set is a compact and connected subset
of the space

Z := H1
0(Ω)×H1

0(Ω)×L2(Ω)×H1(Ω)× (H1(Ω))′,

and enjoys the standard properties, namely it is positive invariant with re-
spect to semigroup S(t) defined by the solution, and the total energy func-
tional is constant on this set. We also prove that every element of the ω-limit
set is a solution of the corresponding stationary problem.

In the proof of these results we use arguments similar to those applied
in [7] for the single Cahn–Hilliard equation, and the procedure of long-time
analysis devised in [1], [2] for phase-field models.

We use the same notation as in [5]. Vectors and tensors are denoted by
bold letters. A dot designates the inner product irrespective of the space
in question, e.g. for vectors a = (ai), ã = (ãi) and tensors B = (Bij),
B̃ = (B̃ij) we write a · ã = aiãi, B · B̃ = BijB̃ij . Here and throughout the
summation convention over repeated indices is used.

The symbols ∇ and ∇· denote the gradient and the divergence operators.
For the divergence we use the convention of contraction over the last index,
e.g. ∇ · ε = (∂εij/∂xj).

For simplicity, the space and time derivatives (material) are denoted by
f,i = ∂f/∂xi, ft = ∂f/∂t. Moreover, for ε = (εij) we write W,ε(ε, χ) =
(∂W (ε, χ)/∂εij). We use the standard Sobolev space notation. In addition,
the spaces of vector- or tensor-valued functions are indicated by bold letters.

2. Main results. First we recall the existence and uniqueness result for
(1.1)–(1.3), proved in [5] under the following assumptions:

(A1) Ω ⊂ R3 is a bounded domain with the boundary S of class at least
C2, T > 0 is an arbitrary fixed number.

(A2) The Lamé coefficients µ̄, λ̄ satisfy

µ̄ > 0, 3λ̄+ 2µ̄ > 0.

This ensures that the elasticity tensor A is coercive and bounded, i.e.,

(2.1) c∗|ε|2 ≤ ε ·Aε ≤ c∗|ε|2

for all symmetric second order tensors ε in R3, with positive constants
c∗ and c∗. Moreover, due to this condition the operator Q given by
(1.9) is strongly elliptic and satisfies

(2.2) cQ‖u‖H2(Ω) ≤ ‖Qu‖L2(Ω) for u ∈ D(Q) = H2(Ω) ∩H1
0(Ω)

with a positive constant cQ.
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(A3) W (ε(u), χ) is given by (1.5); the function z : R→ [0, 1] is of class C2

satisfying (1.8) and

|z′(χ)|+ |z′′(χ)| ≤ c for all χ ∈ R.
The auxiliary quantities B, D and E are defined in (1.10).

(A4) ψ(χ) is given by (1.6).
(A5) γ and ν are positive constants.

The next assumption concerns the initial data. In addition to

u(0) = u0, ut(0) = u1, χ(0) = χ0 in Ω,

we introduce in compatibility with (1.12)–(1.14) the initial conditions corre-
sponding to utt(0) and χt(0):
u2 := utt(0) = Qu0 + νQu1 + z′(χ0)B∇χ0 + b(0),
χ1 := χt(0) = ∆µ(0)

= − γ∆2χ0 +∆[ψ′(χ0) + z′(χ0)(B · ε(u0) +Dz(χ0) + E)] in Ω.
We assume

(A6) u0,u1 ∈H2(Ω)∩H1
0(Ω), u2 ∈H1

0(Ω), χ0 ∈ H2
N (Ω) := {ξ ∈ H2(Ω) :

n · ∇ξ = 0 on S}, χm :=
�
Ω χ0 dx < ∞, χ1 ∈ L2(Ω), which implies

that u0 ∈H3(Ω) ∩H1
0(Ω), χ0 ∈ H4(Ω) ∩H2

N (Ω).

As regards the external force, we require

(A7) b ∈ L1(0,∞;L2(Ω)) ∩W 1
∞(0,∞;H1

0(Ω)).

The existence theorem is as follows:

Theorem 2.1 (see [5, Thms. 2.1, 2.3]). Let assumptions (A1)–(A7) hold
true. Then problem (1.1)–(1.3) (in simplified formulation (1.12)–(1.14)) ad-
mits a unique global solution (u, χ, µ) on [0,∞) such that

(2.3)

u ∈ C1([0,∞);H2(Ω) ∩H1
0(Ω)) ∩ C2([0,∞);H1

0(Ω)),

χ ∈ C([0,∞);H2
N (Ω)) ∩ C1([0,∞);L2(Ω)),

µ ∈ C([0,∞);H2
N (Ω)),

�

Ω

χ(t) dx = χm for all t ∈ [0,∞),

ut ∈ L2(0,∞;H1
0(Ω)), ∇µ ∈ L2(0,∞;L2(Ω)),

(2.4) u(0) = u0, ut(0) = u1, utt(0) = u2, χ(0) = χ0, χt(0) = χ1,

and, for any t ∈ [0,∞) and any fixed number T > 0,

(2.5)

utt ∈ L2(t, t+ T ;H2(Ω) ∩H1
0(Ω)), uttt ∈ L2(t, t+ T ; (H1

0(Ω))′),

χt ∈ L2(t, t+ T ;H2
N (Ω)), χtt ∈ L2(t, t+ T ; (H2

N (Ω))′),

µ ∈ L2(t, t+ T ;H1(Ω)), µt ∈ L2(t, t+ T ;L2(Ω)).

Furthermore, the solution satisfies the following estimates:
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• uniformly in time,

(2.6) ‖u‖C([0,∞);H1
0(Ω)) + ‖ut‖C([0,∞);L2(Ω)) + ‖χ‖C([0,∞);H1(Ω))

+ ‖ut‖L2(0,∞;H1
0(Ω)) + ‖∇µ‖L2(0,∞;L2(Ω)) ≤ c0,

(2.7) ‖u‖C1([0,∞);H2(Ω)) + ‖utt‖C([0,∞);H1
0(Ω)) + ‖χ‖C([0,∞);H2

N (Ω))

+ ‖χt‖C([0,∞);L2(Ω)) + ‖µ‖C([0,∞);H2
N (Ω)) ≤ c,

where

c0 = c0(‖u0‖H1
0(Ω), ‖u1‖L2(Ω), ‖χ0‖H1(Ω), ‖b‖L1(0,∞;L2(Ω))),

c = c(‖u0‖H2(Ω), ‖u1‖H2(Ω), ‖u2‖H1(Ω), ‖χ0‖H2
N (Ω), ‖χ1‖L2(Ω),

‖b‖W 1
∞(0,∞;L2(Ω)))

are positive constants;
• for any t ∈ [0,∞) and any fixed T > 0,

(2.8) ‖χ‖L2(t,t+T ;H2
N (Ω)) + ‖µ‖L2(t,t+T ;H1(Ω)) ≤ c(c0)(T 1/2 + 1),

(2.9) ‖utt‖L2(t,t+T ;H2(Ω)) + ‖χt‖L2(t,t+T ;H2
N (Ω)) ≤ c(T 1/2 + 1),

(2.10) ‖uttt‖L2(t,t+T ;(H1
0(Ω))′) + ‖χtt‖L2(t,t+T ;(H2

N (Ω))′)

+ ‖µt‖L2(t,t+T ;L2(Ω)) ≤ c(T 1/2 + 1)

with constants c0, c as above.

Let us introduce the spaces

(2.11)

W := (H2(Ω) ∩H1
0(Ω))× (H2(Ω) ∩H1

0(Ω))

×H1
0(Ω)×H2

N (Ω)× L2(Ω),

Z := H1
0(Ω)×H1

0(Ω)×L2(Ω)×H1(Ω)× (H1(Ω))′.

In view of (2.7) the solution in Theorem 2.1 generates a strongly continuous,
nonlinear semigroup

(2.12) S(t) : ζ0 ∈ W 7→ ζ(t) ∈ W, t ≥ 0,

where

ζ0 := (u0,u1,u2, χ0, χ1), ζ(t) := (u(t),ut(t),utt(t), χ(t), χt(t)).

Let us introduce the ω-limit set of the initial data ζ0 ∈ W:

(2.13) ω(ζ0) := {ζ∞ = (u∞,u∞,t,u∞,tt, χ∞, χ∞,t) ∈ W ⊂ Z :
∃{tn} ⊂ (0,∞), tn →∞ and
ζ(tn) = S(tn)ζ0 → ζ∞ strongly in Z}.

The main result of this paper is stated in the following
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Theorem 2.2. Assume that (A1)–(A7) hold. Let S(t) :W →W, t ≥ 0,
be the nonlinear semigroup generated by the unique solution of system (1.1)–
(1.3). Then

(i) The ω-limit set ω(ζ0) of the initial data ζ0 = (u0,u1,u2, χ0, χ1) ∈
W ⊂ Z is a nonempty, compact and connected subset of Z. Further-
more, ω(ζ0) is positive invariant with respect to S(t), i.e.,

S(t)ω(ζ0) ⊂ ω(ζ0) for any t ≥ 0.

(ii) If b = 0 then the map FΩ :W → R defined by

(2.14) FΩ(ζ(t)) =
�

Ω

[
1
2
|ut(t)|2+W (ε(u(t), χ(t))+ψ(χ(t))+

γ

2
|∇χ(t)|2

]
dx

is the Lyapunov functional for the semigroup S(t), i.e.,

FΩ(S(t)ζ0) ≤ FΩ(ζ0) for any ζ0 ∈ W, t ≥ 0;

FΩ is constant on the ω-limit set ω(ζ0).
(iii) Every element ζ∞ = (u∞,u∞,t,u∞,tt, χ∞, χ∞,t) of the ω-limit set

ω(ζ0) is characterized by

(2.15) ζ∞ ≡ (u∞,0,0, χ∞, 0)

with functions u∞, χ∞ independent of time, solving the stationary
problem corresponding to (1.1)–(1.3):

(2.16)
−∇ ·W,ε(ε(u∞), χ∞) = 0 a.e. in Ω,
u∞ = 0 a.e. on S,

(2.17)

−γ∆χ∞ + ψ′(χ∞) +W,χ(ε(u∞), χ∞) = µ̄ a.e. in Ω,
n · ∇χ∞ = 0 a.e. on S,�

Ω

χ∞ dx = χm :=
�

Ω

χ0 dx,

where µ̄ is a constant to be determined along with the functions
u∞, χ∞.

In the proof of Theorem 2.2 a crucial role is played by uniform in time
estimates (2.6) and (2.7). In particular, L2 estimates of ε(ut) and ∇µ on the
infinite time interval (0,∞) (which are due to the mechanical and diffusive
dissipation) ensure that ut and ∇µ vanish in the limit t→∞.

3. Outline of the existence proof. Basic estimates. In this section
we present the main ideas of the proof of Theorem 2.1 (see [5] for details) with
complementary estimates needed in the study of the asymptotic behaviour.

The proof consists in prolonging the local solution on the intervals [kT,
(k+1)T ], T > 0, k ∈ N∪{0}, up to k =∞. The existence of a local solution
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is obtained by implementing a Galerkin method and passing to the limit with
the approximation. A crucial role in prolonging local solutions is played by
absorbing type estimates. They have the property of time-decreasing influ-
ence of the initial data. We use two kinds of estimates: energy and regularity
estimates. The energy estimates are derived on the basis of the original form
(1.1)–(1.3) of the system whereas the regularity estimates on the basis of its
time-differentiated form.

3.1. Energy estimates

3.1.1. Energy identity. A characteristic property of system (1.1)–(1.3) is
the mass conservation

d

dt

�

Ω

χ(t) dx = 0 for t > 0,

which follows from (1.2)1 and (1.2)3, and shows that the mean value of χ is
preserved, i.e.,

(3.1)
�

Ω

χ(t) dx =
�

Ω

χ0 dx =: χm for t > 0.

Another property is the energy identity

(3.2)
d

dt
F (t) + ν

�

Ω

ε(ut(t)) ·Aε(ut(t)) dx+
�

Ω

|∇µ(t)|2 dx

=
�

Ω

b(t) · ut(t) dx for t > 0,

with the function F : [0,∞)→ [0,∞), given by

F (t) =
�

Ω

[
1
2
|ut(t)|2 +W (ε(u(t)), χ(t)) + ψ(χ(t)) +

γ

2
|∇χ(t)|2

]
dx,

representing the total energy of the system. The two nonnegative integrals
on the left-hand side of (3.2) correspond to the mechanical and diffusive
dissipation.

Formally, (3.2) results by testing (1.1)1 with ut(t), (1.2)1 with µ(t), and
(1.3)1 with −χt(t), integrating over Ω and by parts, and summing up the
resulting identities.

From (3.2) we infer the Lyapunov property: if b = 0 then

(3.3)
d

dt
F (t) ≤ 0,

which shows that F is nonincreasing on solution paths, i.e.,
F (t) ≤ F (0) for t ≥ 0.

On account of the structure assumptions (A3)–(A5),
(3.4) F (t) ≥ cF (‖u(t)‖2

H1
0(Ω)

+ ‖ut(t)‖2L2(Ω) + ‖χ(t)‖2H1(Ω))− c
′
F
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with some explicitly computable positive constants cF and c′F . Hence, F (t)
provides estimates for (u(t),ut(t), χ(t)) in the energy norms of H1

0(Ω) ×
L2(Ω) × H1(Ω). Integrating (3.2) with respect to time from t = 0 to t ∈
(0,∞), we get

(3.5) ‖u‖L∞(0,∞;H1
0(Ω)) + ‖ut‖L∞(0,∞;L2(Ω)) + ‖χ‖L∞(0,∞;H1(Ω))

+ ‖ut‖L2(0,∞;H1
0(Ω)) + ‖∇µ‖L2(0,∞;L2(Ω)) ≤ c0

with constant c0 = c(‖(u0,u1, χ0)‖H1
0(Ω)×L2(Ω)×H1(Ω), ‖b‖L1(0,∞;L2(Ω))).

Since F (·) is continuous on [0,∞) this shows estimate (2.6).

3.1.2. Additional estimates. From (1.14) it follows, on account of (3.5),
that

(3.6)
∣∣∣ �
Ω

µdx
∣∣∣ ≤ c �

Ω

(|χ|3 + |ε(u)|+ 1) dx ≤ c(c0) for t ≥ 0.

Hence, by the Poincaré inequality, estimates (3.5) and (3.6) imply that for
any t ≥ 0 and any fixed T > 0,

‖µ‖2L2(t,t+T ;L2(Ω)) ≤ c
t+T�

t

(
‖∇µ‖2L2(Ω) +

∣∣∣ �
Ω

µdx
∣∣∣2) dt(3.7)

≤ c‖∇µ‖2L2(t,t+T ;L2(Ω)) + cT sup
t∈[t,t+T ]

∣∣∣ �
Ω

µdx
∣∣∣2

≤ c(c0)(T + 1).

Thus,
‖µ‖2L2(t,t+T ;H1(Ω)) ≤ c(c0)(T + 1),

which yields the second estimate in (2.8).
The first estimate in (2.8) follows by testing (1.14) with ∆χ and using

the Cauchy–Schwarz inequality, which on account of (3.7) and (3.5) yields

γ‖∆χ‖L2(t,t+T ;L2(Ω)) ≤ ‖µ‖L2(t,t+T ;L2(Ω)) + ‖χ3 − χ‖L2(t,t+T ;L2(Ω))

+ c(‖ε(u)‖L2(t,t+T ;L2(Ω)) + 1) ≤ c(c0)(T 1/2 + 1).

This together with (3.1), by the ellipticity of the Laplace operator, shows
(2.8)1.

3.2. Energy estimates of absorbing type

3.2.1. A differential inequality for a modified energy function. Let G :
[0,∞)→ [0,∞) be defined by

(3.8) G(t) = F (t) +
νc∗d1

2

�

Ω

[
ut(t) · u(t) +

ν

2
ε(u(t)) ·Aε(u(t))

]
dx
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with the constant c∗ > 0 given in the coercivity condition (2.1) and d1 > 0
denoting the constant from the Korn inequality

d
1/2
1 ‖u‖H1

0(Ω) ≤ ‖ε(u)‖L2(Ω) for u ∈H1
0(Ω).

By definition of G(t),

G(t) ≥ F (t)− 1
4
‖ut(t)‖2L2(Ω).

Hence, similarly to F (t), the functionG(t) provides estimates on (u,ut,χ)
in the energy norms of H1

0(Ω)×L2(Ω)×H1(Ω).
It has been proved (see [5, Lemma 3.3]) that solutions of (1.1)–(1.3)

satisfy the differential inequality

(3.9)
d

dt
G(t) + β1G(t) +

νc∗d1

8
‖ut(t)‖2H1

0(Ω)
+

1
2
‖∇µ(t)‖2L2(Ω)

≤ Λ1‖b(t)‖2L2(Ω) + Λ2 for t > 0,

with some explicitly computable positive constants β1, Λ1, Λ2.
The proof of (3.9) is based on three identities: the energy identity (3.2),

the identity

γ
�

Ω

|∇χ|2 dx+
�

Ω

[ψ′(χ)χ+W,χ(ε(u), χ)χ] dx =
�

Ω

µχdx,

resulting from testing equation (1.3)1 with χ(t), and the identity

d

dt

�

Ω

ut · u dx+
�

Ω

W,ε(ε(u), χ) · ε(u) dx+ ν
�

Ω

ε(u) ·Aε(ut) dx

=
�

Ω

b · u dx+
�

Ω

|ut|2 dx,

following by testing (1.1)1 with u(t). An appropriate technical construc-
tion based on the structure assumptions on W (ε(u), χ) and ψ(χ) and us-
ing straightforward calculations allows us to deduce (3.9) from the above-
mentioned identities.

3.2.2. Absorbing estimate for G(t). From (3.9) it follows that

(3.10) G(t) ≤ A1(1− e−β1t) +G(0)e−β1t ≡ Ḡ(t), t ≥ 0,

where

A1 =
1
β1

(Λ1 sup
t∈(0,∞)

‖b(t)‖2L2(Ω) + Λ2).

This estimate is of key importance for prolonging the solution step by step
on [kT, (k + 1)T ], k ∈ N ∪ {0}, up to k = ∞. In particular, it provides the
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estimate

‖u(t)‖H1
0(Ω) + ‖ut(t)‖L2(Ω) + ‖χ(t)‖H1(Ω) ≤ G(t) + c′F(3.11)

≤ A1 +G(0) + c′F ≡ c1
on each time interval [kT, (k + 1)T ] with constant c1 independent of k.

3.2.3. Absorbing set in energy norms. Inequality (3.10) implies that

lim sup
t→∞

G(t) ≤ A1.

Let us consider two cases:

A1 < G(0) and A1 ≥ G(0).

In the first case
Ḡ′(t) = (A1 −G(0))β1e

−β1t < 0,

so Ḡ(t) decreases from G(0) to A1. Let A′1 be any positive number such that
A′1 > A1. Then there exists a time t1 = t1(G(0), A′1) given by

t1 =
1
β1

log
G(0)

A′1 −A1

such that G(t) < A′1 for all t ≥ t1. Hence
(3.12) ‖u(t)‖H1

0(Ω) + ‖ut(t)‖L2(Ω) + ‖χ(t)‖H1(Ω)

< A′1 + c′F ≡ c1a for all t ≥ t1.
This shows the absorbing set for (u,ut, χ) in the energy norms of H1

0(Ω)×
L2(Ω)×H1(Ω).

In the second case (A1 ≥ G(0)), Ḡ′(t) > 0 so Ḡ(t) is increasing from
G(0) to A1. Hence (3.12) is automatically satisfied.

3.3. Regularity estimates of absorbing type

3.3.1. A differential inequality in higher norms. Let N : [0,∞)→ [0,∞)
be the function constructed from a regular solution, defined as a linear com-
bination with appropriately chosen coefficients (depending on the constant
c1 in (3.11)) of the modified energy G(t) and the norms

‖Qu(t)‖2L2(Ω), ‖Q
1/2ut(t)‖2L2(Ω), ‖Qut(t)‖

2
L2(Ω), ‖Q

1/2utt(t)‖2L2(Ω),

‖χ(t)‖2L2(Ω), ‖∆χ(t)‖2L2(Ω), ‖χt(t)‖2L2(Ω).

Here Q1/2 stands for the fractional power of the operator Q with the domain
D(Q1/2) = H1

0(Ω), satisfying

‖Q1/2u‖2L2(Ω) = (−Qu,u)L2(Ω)

= µ̄‖∇u‖2L2(Ω) + (λ̄+ µ̄)‖∇ · u‖2L2(Ω) for u ∈ D(Q).
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By construction, the function N(t) satisfies the bound

N(t) ≥ cN (‖u(t)‖2
H2(Ω)

+ ‖ut(t)‖2H2(Ω)
+ ‖utt(t)‖2H1

0(Ω)
(3.13)

+ ‖χ(t)‖2H2
N (Ω) + ‖χt(t)‖2L2(Ω))− c

′
N

with explicitly computable, positive constants cN and c′N depending on c1.
Thus,N(t) provides estimates for (u(t),ut(t),utt(t), χ(t), χt(t)) in the norms
of H2(Ω)×H2(Ω)×H1

0(Ω)×H2
N (Ω)× L2(Ω).

It has been proved in [5, Lemma 4.5] that solutions of (1.1)–(1.3) satisfy
the differential inequality

(3.14)
d

dt
N(t) + β5N(t) + β̃5Ñ(t)

≤ Λ3‖b(t)‖2L2(Ω) + Λ4‖bt(t)‖2L2(Ω) + Λ5 for t > 0,

where
Ñ(t) = ‖utt(t)‖2H2(Ω)

+ ‖χt(t)‖2H2(Ω),

and β5, β̃5, Λ3, Λ4, Λ5 are explicitly computable positive constants depending
on c1.

Derivation of that inequality is based on differentiating system (1.12)–
(1.14) with respect to time. A straightforward but technical procedure con-
sists of the following main steps. In the first step we derive a differential
inequality corresponding to the elasticity system (1.12):

d

dt
H(t) + β2H(t) + β̃2H̃(t)(3.15)

≤ cH(‖∇χ(t)‖2L2(Ω) + ‖χt(t)∇χ(t)‖2L2(Ω) + ‖∇χt(t)‖2L2(Ω)

+ ‖b(t)‖2L2(Ω) + ‖bt(t)‖2L2(Ω)) for t > 0,

where H : [0,∞)→ [0,∞) is a linear combination of the norms

‖Qu(t)‖2L2(Ω), ‖Q1/2ut(t)‖2L2(Ω), ‖Qut(t)‖2L2(Ω), ‖Q1/2utt(t)‖2L2(Ω),

and
H̃(t) = ‖utt(t)‖2L2(Ω) + ‖Qutt(t)‖2L2(Ω),

and β2, β̃2, cH are explicitly computable positive constants.
In the second step we derive a differential inequality corresponding to

system (1.13), (1.14) which allows one to handle the terms on the right-hand
side of (3.15). The inequality has the form

(3.16)
d

dt
J(t)+β3J(t)+β̃3J̃(t) ≤ cJ(‖ε(ut(t))‖2L2(Ω)+χ2

m+1) for t > 0,

where J : [0,∞)→ [0,∞) is a linear combination of the norms

‖χ(t)‖2L2(Ω), ‖∆χ(t)‖2L2(Ω), ‖χt(t)‖2L2(Ω),
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and
J̃(t) = ‖χt(t)‖2H2(Ω),

and β3, β̃3, cJ are positive constants.
In the third step we combine (3.15) and (3.16) to deduce the differential

inequality

(3.17)
d

dt
K(t) + β4K(t) + β̃4K̃(t)

≤ cK(‖ε(ut(t))‖2L2(Ω) + ‖b(t)‖2L2(Ω) + ‖bt(t)‖2L2(Ω) + 1) for t > 0,

where K : [0,∞)→ [0,∞) is a linear combination of the terms of H(t) and
J(t); moreover,

K̃(t) = H̃(t) + J̃(t),

and β4, β̃4, cK are positive constants.
Finally, combining inequalities (3.17) and (3.9) allows us to absorb the

term ‖ε(ut(t)‖2L2(Ω) on the right-hand side of (3.17) and thereby deduce
(3.14).

3.3.2. Absorbing estimate for N(t). On account of (3.14) we have
(3.18) N(t) ≤ A2(1− e−β5t) +N(0)e−β5t

where

A2 =
1
β5

(Λ3 sup
t∈(0,∞)

‖b(t)‖2L2(Ω) + Λ4 sup
t∈(0,∞)

‖bt(t)‖2L2(Ω) + Λ5).

Estimate (3.18) allows one to prolong a regular solution step by step on the
intervals [kT, (k+ 1)T ], k ∈ N. It provides the following bound uniform in k:

(3.19) sup
k∈N∪{0}

max
t∈[kT,(k+1)T ]

N(t) ≤ A2 +N(0).

Moreover, by integrating (3.14) with respect to time, it follows that

(3.20) sup
k∈N∪{0}

(k+1)T�

kT

β̃5Ñ(t) dt ≤ TA2β5 +A2 +N(0).

In view of the definitions of N(t) and Ñ(t), estimates (3.19) and (3.20) imply
the corresponding bounds on u and χ in (2.7)–(2.9).

Furthermore, testing (1.2)1 with ∆µ and using estimate (2.7) on χt gives

‖∆µ‖C([0,∞);L2(Ω)) ≤ c.
Hence, recalling (3.6), the ellipticity of the Laplace operator with homoge-
neous boundary condition implies that

‖µ‖C([0,∞);H2
N (Ω)) ≤ c

(
‖∆µ‖C([0,∞);L2(Ω)) + sup

t∈[0,∞)

∣∣∣ �
Ω

µdx
∣∣∣) ≤ c,

which provides the estimate on µ in (2.7).
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3.3.3. Additional estimates. On the basis of (2.6)–(2.9) we can deduce
additional estimates (2.10) which are used in the long-time analysis. The
estimate on µt in (2.10) follows from the identity (resulting by differentiating
(1.14)1 with respect to time)

µt = − γ∆χt + ψ′′(χ)χt + z′′(χ)χt(B · ε(u) +Dz(χ) + E)
+ z′(χ)(B · ε(ut) +Dz′(χ)χt)

by testing it with µt and applying the Cauchy–Schwarz inequality. Then

‖µt‖L2(t,t+T ;L2(Ω)) ≤ c(‖∆χt‖L2(t,t+T ;L2(Ω)) + ‖χ2χt‖L2(t,t+T ;L2(Ω)(3.21)

+ ‖χt‖L2(t,t+T ;L2(Ω)) + ‖χtε(u)‖L2(t,t+T ;L2(Ω))

+ ‖ε(ut)‖L2(t,t+T ;L2(Ω))) ≤ c(T 1/2 + 1),

where we used (2.7) and (2.9), in particular the bounds

‖χ‖L2(t,t+T ;L∞(Ω)) ≤ cT 1/2, ‖χt‖L2(t,t+T ;L∞(Ω)) ≤ c(T 1/2 + 1).

Estimate on uttt in (2.10) follows from equation (1.12)1 differentiated
with respect to t. Then for any test function η ∈ L2(t, t+ T ;H1(Ω)),∣∣∣t+T�
t

(uttt,η)L2(Ω) dt
′
∣∣∣ =

∣∣∣ t+T�
t

[−(Aε(ut) + νAε(utt), ε(η))L2(Ω)

+ (z′′(χ)χtB∇χ+ z′(χ)B∇χt,η)L2(Ω) + (bt,η)L2(Ω)] dt
′
∣∣∣

≤ c(‖ε(ut)‖L2(t,t+T ;L2(Ω)) + ‖ε(utt)‖L2(t,t+T ;L2(Ω)))‖∇η‖L2(t,t+T ;L2(Ω))

+ c(‖χt∇χ‖L2(t,t+T ;L2(Ω)) + ‖∇χt‖L2(t,t+T ;L2(Ω))

+ ‖bt‖L2(t,t+T ;L2(Ω)))‖η‖L2(t,t+T ;L2(Ω))

≤ c(T 1/2 + 1)‖η‖L2(t,t+T ;H1(Ω)),

where we used (2.7) and (2.9). This proves (2.10)1.
Similarly, by testing equation (1.13)1 differentiated with respect to time

with a function ξ ∈ L2(0, T ;H2
N (Ω)), and using (3.21), we get∣∣∣t+T�

t

(χtt, ξ)L2(Ω) dt
′
∣∣∣ =

∣∣∣t+T�
t

(µt, ∆ξ)L2(Ω) dt
′
∣∣∣

≤ ‖µt‖L2(t,t+T ;L2(Ω))‖ξ‖L2(t,t+T ;H2
N (Ω)) ≤ c(T 1/2 + 1)‖ξ‖L2(t,t+T ;H2

N (Ω)).

This proves (2.10)2.

3.3.4. Absorbing set in stronger norms. For completeness we also recall
(see [5, Th. 2.2]) the absorbing set in the norms induced by the function
N(t).
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On account of the absorbing estimate (3.12) in energy norms one can
infer from inequality (3.18) that for all t ≥ t1,
(3.22) N(t) ≤ A2a(1− e−β5at) +N(0)e−β5at

where β5a and A2a are positive constants independent of the initial condition
N(0), obtained by replacing, in appropriate expressions, the constant c1 from
(3.11) by c1a from (3.12). From (3.22) it follows that

lim sup
t→∞

N(t) ≤ A2a.

Thus, for any positive number A′2 satisfying A′2 > A2a, there exists a time
t2 = t2(N(0), A′2),

t2 =
1
β5a

log
N(0)

A′2 −A2a
,

such that N(t) < A′2 for all t ≥ t∗ = max{t1, t2}. Hence, by (3.13),

cNa(‖u(t)‖2
H2(Ω)

+ ‖ut(t)‖2H2(Ω)
+ ‖utt(t)‖2H1

0(Ω)

+ ‖χ(t)‖2H2
N (Ω) + ‖χt(t)‖2L2(Ω)) < A′2 + c′Na for all t ≥ t∗

where cNa and c′Na are positive numbers independent of N(0). This estab-
lishes the absorbing set for (u,ut,utt, χ, χt) in H2(Ω)×H2(Ω)×H1

0(Ω)×
H2
N (Ω)× L2(Ω).

4. Proof of Theorem 2.2. (i) Due to (2.7) the orbit
⋃
t≥0 S(t)ζ0 start-

ing at ζ0 = (u0,u1,u2, χ0, χ1) is bounded in the spaceW, thus it is relatively
compact in Z. Hence, the ω-limit set ω(ζ0) is a nonempty and compact subset
of Z. Moreover, since by (2.3),

(u,ut,utt, χ, χt) ∈ C([0,∞);W) ⊂ C([0,∞);Z),

the known results of the theory of dynamical systems (see e.g. [3, Prop. 2.1])
show that this set is connected in Z, and positive invariant with respect to
S(t). Indeed, if ζ ∈ ω(ζ0), say ζ = limn→∞ S(tn)ζ0, then

S(t)ζ = lim
n→∞

S(t)S(tn)ζ0 = lim
n→∞

S(t+ tn)ζ0 ∈ ω(ζ0).

(ii) The map FΩ given by (2.14) coincides with the function F (t) defined
in the energy identity (3.2). Thus, the Lyapunov property of FΩ results
immediately from (3.3).

The claim that FΩ is constant on ω(ζ0) follows from a general result
in [3, Proposition 2.2], due to the continuity of FΩ. Indeed, let FΩ∞ :=
limt→∞ FΩ(S(t)ζ0). Choosing any ζ ∈ ω(ζ0), say ζ = limn→∞ S(tn)ζ0, we
deduce by the continuity of FΩ that

FΩ(ζ) = FΩ( lim
n→∞

S(tn)ζ0) = lim
n→∞

FΩ(S(tn)ζ0) = FΩ∞,

which implies that FΩ is constant on ω(ζ0).
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(iii) We shall characterize the elements of the ω-limit set. Let (u∞,u∞,t,
u∞,tt, χ∞, χ∞,t) ∈ ω(u0,u1,u2, χ0, χ1), and tn be a sequence of positive
numbers such that tn →∞ and

(4.1) (u(tn),ut(tn),utt(tn), χ(tn), χt(tn))
→ (u∞,u∞,t,u∞,tt, χ∞, χ∞,t) strongly in Z.

For a fixed number T > 0 and t ∈ [0, T ] we define the functions

(4.2)
un(t) := u(tn + t), un,t(t) := ut(tn + t), un,tt(t) := utt(tn + t),
χn(t) := χ(tn + t), χn,t(t) := χt(tn + t), µn(t) := µ(tn + t),
bn(t) := b(tn + t),

where (u, χ, µ) is the solution of (1.1)–(1.3) on [0,∞). Thus, (un, χn, µn)
solve the system

(4.3)

un,tt −Qun − νQun,t
= z′(χn)B∇χn + bn in ΩT = Ω × (0, T ),

un(0) = u(tn), un,t(0) = ut(tn) in Ω,

un = 0 on ST = S × (0, T ),

(4.4)

χn,t −∆µn = 0 in ΩT ,

χn(0) = χ(tn) in Ω,

n · ∇µn = 0 on ST ,

(4.5)

µn = −γ∆χn + ψ′(χn)

+ z′(χn)(B · ε(un) +Dz(χn) + E) in ΩT ,

n · ∇χn = 0 on ST .

By virtue of (2.6) and (2.7) the following estimates hold true independently
of T and n:

(4.6) ‖un‖L∞(0,T ;H1
0(Ω)) + ‖un,t‖L∞(0,T ;L2(Ω)) + ‖χn‖L∞(0,T ;H1(Ω))

+ ‖un,t‖L2(0,T ;H1
0(Ω)) + ‖∇µ‖L2(0,T ;L2(Ω)) ≤ c0,

(4.7) ‖un‖W 1
∞(0,T ;H2(Ω)) + ‖un,tt‖L∞(0,T ;H1

0(Ω)) + ‖χn‖L∞(0,T ;H2
N (Ω))

+ ‖χn,t‖L∞(0,T ;L2(Ω)) + ‖µn‖L∞(0,T ;H2
N (Ω)) ≤ c.

Moreover, by (2.8)–(2.10),

‖χn‖L2(0,T ;H2
N (Ω)) + ‖µn‖L2(0,T ;H1(Ω)) ≤ c(T ),(4.8)

‖un,tt‖L2(0,T ;H2(Ω)) + ‖χn,t‖L2(0,T ;H2
N (Ω)) ≤ c(T ),(4.9)
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(4.10) ‖un,ttt‖L2(0,T ;(H1
0(Ω))′) + ‖χn,tt‖L2(0,T ;(H2

N (Ω))′)

+ ‖µn,t‖L2(0,T ;L2(Ω)) ≤ c(T )

with a constant c(T ) depending on T but not on n.
The above estimates allow us to pass to the weak limit n→∞ in (4.3)–

(4.5). In fact, it follows from (4.6)–(4.10) that there exist functions (ū, χ̄, µ̄)
with

(4.11)

ū ∈W 1
∞(0, T ;H2(Ω) ∩H1

0(Ω)),

ūtt ∈ L∞(0, T ;H1
0(Ω)) ∩ L2(0, T ;H2(Ω)),

ūttt ∈ L2(0, T ; (H1
0(Ω))′), χ̄ ∈ L∞(0, T ;H2

N (Ω)),

χ̄t ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H2
N (Ω)),

χ̄tt ∈ L2(0, T ; (H2
N (Ω))′),

µ̄ ∈ L∞(0, T ;H2
N (Ω)), µ̄t ∈ L2(0, T ;L2(Ω)),

and subsequences of (un, χn, µn) (which we still denote by the same indices)
such that as n→∞,

un → ū weakly∗ in W 1
∞(0, T ;H2(Ω)),

un,tt → ūtt weakly∗ in L∞(0, T ;H1
0(Ω))

and weakly in L2(0, T ;H2(Ω)),
un,ttt → ūttt weakly in L2(0, T ; (H1

0(Ω))′),

(4.12)

χn → χ̄ weakly∗ in L∞(0, T ;H2
N (Ω)),

χn,t → χ̄t weakly∗ in L∞(0, T ;L2(Ω))
and weakly in L2(0, T ;H2

N (Ω)),
χn,tt → χ̄tt weakly in L2(0, T ; (H2

N (Ω))′),

(4.13)

µn → µ̄ weakly∗ in L∞(0, T ;H2
N (Ω)),

µn,t → µ̄t weakly in L2(0, T ;L2(Ω)).
(4.14)

Hence, by the standard compactness results (see e.g. [6]) it follows in partic-
ular that for n→∞,

un → ū, un,t → ūt strongly in C([0, T ];H1
0(Ω))

and a.e. in ΩT ,

un,tt → ūtt strongly in L2(0, T ;H1
0(Ω)) ∩ C([0, T ];L2(Ω))

and a.e. in ΩT ,

(4.15)

χn → χ̄ strongly in C([0, T ];H1(Ω))
and a.e. in ΩT ,

χn,t → χ̄t strongly in L2(0, T ;H1(Ω)) ∩ C([0, T ]; (H1(Ω))′)
and a.e. in ΩT ,

(4.16)



18 I. Pawłow and W. M. Zajączkowski

(4.17) µn → µ̄ strongly in C([0, T ];H1(Ω)) and a.e. in ΩT .

Moreover, due to the bounds on the dissipative terms (see (2.6))

‖ut‖L2(0,∞;H1
0(Ω)) + ‖∇µ‖L2(0,∞;L2(Ω)) ≤ c0,

we deduce that as n→∞ (tn →∞)

(4.18) un,t(·) = u,t(tn + ·)→ 0 strongly in L2(0,∞;H1
0(Ω))

and
∇µn(·) = ∇µ(tn + ·)→ 0 strongly in L2(0,∞;L2(Ω)).

Hence, in view of (4.15), (4.17),

(4.19) ūt = 0 and ∇µ̄ = 0.

This implies that ū does not depend on time and µ̄ does not depend on the
space variables. Consequently, by (4.15),

(4.20)

un → ū = ū(0) strongly in C([0, T ];H1
0(Ω)),

un,t → ūt = 0 strongly in C([0, T ];H1
0(Ω)),

un,tt → ūtt = 0 strongly in C([0, T ];L2(Ω)),

and by (4.14)1,

(4.21) ∆µn → ∆µ̄ = 0 weakly∗ in L∞(0, T ;L2(Ω)).

Since χn,t = ∆µn in ΩT , (4.16)2 and (4.21) imply that

(4.22) χn,t → χ̄t = ∆µ̄ = 0 strongly in C([0, T ]; (H1(Ω))′).

Hence, χ̄ does not depend on time, and in accordance with (4.16)1,

(4.23) χn → χ̄ = χ̄(0) strongly in C([0, T ];H1(Ω)).

Now, owing to (4.20)–(4.23) and recalling assumption (4.1), we deduce that

(4.24)

ū(t) = ū(0) = lim
n→∞

un(0) = lim
n→∞

u(tn) = u∞,

0 = ūt(t) = ūt(0) = lim
n→∞

un,t(0) = lim
n→∞

ut(tn) = u∞,t,

0 = ūtt(t) = ūtt(0) = lim
n→∞

un,tt(0) = lim
n→∞

utt(tn) = u∞,tt,

and

(4.25)
χ̄(t) = χ̄(0) = lim

n→∞
χn(0) = lim

n→∞
χ(tn) = χ∞,

0 = χ̄t(t) = χ̄t(0) = lim
n→∞

χn,t(0) = lim
n→∞

χt(tn) = χ∞,t.

This proves that any element ζ∞ = (u∞,u∞,t,u∞,tt, χ∞, χ∞,t) in ω(u0,u1,
u2, χ0, χ1) satisfies (2.15).
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It remains to prove (2.16), (2.17). To this end we pass to the limit n→∞
in the weak formulation of (4.3)–(4.5):

T�

0

(un,tt −Qun − νQun,t,η) dt =
T�

0

(z′(χn)B∇χn + bn,η) dt

∀η ∈ L2(0, T ;L2(Ω)),

(4.26)
T�

0

(χn,t, ξ) dt =
T�

0

(∆µn, ξ) dt ∀ξ ∈ L2(0, T ;L2(Ω)),

T�

0

(µn, ς) dt =
T�

0

(−γ∆χn + ψ′(χn) + z′(χn))

· (B · ε(un) +Dz(χn) + E, ς) dt ∀ς ∈ L2(0, T ;L2(Ω))

where (·, ·) denotes the scalar product in L2(Ω).
Clearly, by the weak convergences (4.12)–(4.14) the linear terms in (4.26)

converge to the corresponding limits. The convergence of the nonlinear terms
can be deduced with the help of the standard nonlinear convergence lemma
(see [4, Chapter 1, Lemma 1.3]).

In fact, recalling assumptions (A3), (A4) on z(·) and ψ(·) and using
estimates (4.6) we have

(4.27)

‖ψ′(χn)‖L∞(0,T ;L2(Ω)) ≤ c(‖χn‖3L∞(0,T ;L6(Ω)) + 1) ≤ c(c0),

‖z′(χn)B∇χn‖L∞(0,T ;L2(Ω)) ≤ c‖∇χn‖L∞(0,T ;L2(Ω)) ≤ c(c0),

‖z′(χn)(B · ε(un) +Dz(χn) + E)‖L∞(0,T ;L2(Ω))

≤ c(‖ε(un)‖L∞(0,T ;L2(Ω)) + 1) ≤ c(c0).

Thanks to these uniform estimates and the pointwise convergences (see
(4.15), (4.16), (4.24), (4.25))

un → ū = u∞, χn → χ̄ = χ∞ a.e. in ΩT ,

the nonlinear convergence lemma implies that

(4.28)

ψ′(χn) = χ3
n − χn → χ3

∞ − χ∞ = ψ′(χ∞)
weakly∗ in L∞(0, T ;L2(Ω)),

z′(χn)B∇χn → z′(χ∞)B∇χ∞ weakly∗ in L∞(0, T ;L2(Ω)),
z′(χn)(B · ε(un) +Dz(χn) + E)
→ z′(χ∞)(B · ε(u∞) +Dz(χ∞) + E)

weakly∗ in L∞(0, T ;L2(Ω)).

Moreover, since by assumption (A7), b ∈ L1(R+;L2(Ω)), we have

bn(·) = b(tn + ·)→ 0 strongly in L1(0,∞;L2(Ω)).

Consequently, passing to the limit n→∞ in (4.26) yields
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−
T�

0

(Qu∞,η) dt =
T�

0

(z′(χ∞)B∇χ∞,η) dt ∀η ∈ L2(0, T ;L2(Ω)),

T�

0

µ̄(1, ς) dt =
T�

0

(−γ∆χ∞ + ψ′(χ∞) + z′(χ∞)(4.29)

· (B · ε(u∞) +Dz(χ∞) + E), ς) dt ∀ς ∈ L2(0, T ;L2(Ω)).

Since u∞ and χ∞ do not depend on time, it follows from (4.29)2 that µ̄ does
not depend on time either, thus µ̄ = const. Moreover, the above identities
reduce to

(4.30)
−(Qu∞, η̄) = (z′(χ∞)B∇χ∞, η̄) ∀η̄ ∈ L2(Ω),
(µ̄, ς̄) = (−γ∆χ∞ + ψ′(χ∞) + z′(χ∞)(B · ε(u∞)

+Dz(χ∞) + E), ς) ∀ς̄ ∈ L2(Ω).

Hence, recalling that (see (4.11), (4.24), (4.25)) u∞ ∈ H2(Ω) ∩ H1
0(Ω),

χ∞ ∈ H2
N (Ω), it follows that u∞, χ∞ satisfy the system

(4.31)
−Qu∞ = z′(χ∞)B∇χ∞ in Ω,

u∞ = 0 on S,

(4.32)

−γ∆χ∞ + ψ′(χ∞)
+ z′(χ∞)(B · ε(u∞) +Dz(χ∞) + E) = µ̄ in Ω,

n · ∇χ∞ = 0 on S,�

Ω

χ∞ dx = χm,

where µ̄ is a constant.
Clearly, in view of (1.11) the above system is equivalent to (2.16), (2.17).

Thus the proof of Theorem 2.2 is complete.
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