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An intermediate value theorem in ordered Banach spaces

by GERD HERzOG (Karlsruhe)

Abstract. We prove an intermediate value theorem for certain quasimonotone in-
creasing functions in ordered Banach spaces, under the assumption that each nonempty
order bounded chain has a supremum.

1. Introduction. Let E be a real Banach space ordered by a cone K.
A cone K is a nonempty closed convex subset of E such that A\K C K
(A>0),and KN (—K)={0}. Asusual z < y: = y—z € K. For z <y let
[,y] denote the order interval of all z with x < z < y. Let K* denote the
dual wedge of K, that is, the set of all p € E* with ¢(x) >0 (z > 0).

For D C E a function f : D — F is called quasimonotone increasing (in
the sense of Volkmann [19]) if

r,ye D, x <y, pe K" o(x)=p(y) = o(f(x) <e(f(y))

For quasimonotone increasing functions several intermediate value (or
equivalently fixed point) theorems are known, for special spaces [4], [§], [14],
[15], under order conditions [6], [I§], and under compactness conditions [6],
[9], [10], [13, VIIIL.6], [I§]. For an application of such intermediate value
theorems to boundary value problems see [7].

In this paper we will prove the following version under the assumption
that the order defined by K (or K for short) has the following property:

(C) FEach chain C C E, C # 0, which is order bounded above has a
supremum.

THEOREM 1. Let E be ordered by a cone K with property (C), let D C E
be open, and let f : D — E be locally Lipschitz continuous and quasimono-
tone increasing. Moreover let a,b € D satisfy

a<b, [a,b]C D, and f(b) <0< f(a)
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Then
min f~1(0) N [a,b] and max f~1(0)N [a,b]

exist.

REMARKS. 1. Condition (C) is valid in particular if K is regular (that
is, each increasing and order bounded sequence in E is convergent; see [2]
Lemma 2] or [I1, Lemma 1]). For regular cones a related intermediate value
theorem is valid (see [0]). On the other hand, condition (C) implies that K
is normal (that is, 0 < x < y implies ||z|| < v||y|| for some constant v > 1;
see [Il, Lemma 2]), but normality for itself is not sufficient to guarantee the
intermediate value property. We repeat the following example from [6] for
the convenience of the reader:

Let E = ¢(N,R) be the Banach space of all convergent real sequences
x = (zk)ken, endowed with the supremum norm and ordered by the cone K
of all nonnegative sequences, which is normal. Let f : E — E be defined by

f(x)=(0,1,21, 22, 23,...) — x.

Then f is Lipschitz continuous and quasimonotone increasing, and

f((l)kEN) = (_170’0’0’ .. ) <0< (17 27070707 .o ) = f((_l)kGN)7

but f(z) = 0 is unsolvable in ¢(N, R), since the only coordinatewise solution
is

z=1(0,1,0,1,0,1,...).

2. An example of a nonregular cone with property (C) is the cone of all
nonnegative sequences in [*°(N,R). More generally, let J be a nonempty set
and let (Fj);cs be a family of Banach spaces, each ordered by a regular cone
K;. Consider

E={x=(2j)jes:z; € F;(j€J), |z = Sup ;]| < oo}
J
ordered by the cone

KZ{ZL’EE:J;J’GKJ‘ (]EJ)}
Then K has property (C) (see [I1, Lemma 2]).

2. Preliminaries. To prove Theorem 1 we will make use of the following
theorems. The first is a result on differential inequalities due to Volkmann
[20, Satz 2], and two of its immediate consequences on dynamical systems:

THEOREM 2. Let E be ordered by a cone K, let D C E be open, let
f D — FE be locally Lipschitz continuous and quasimonotone increasing,
and let u(-,x) : [0,T;) — D denote the solution of u'(t) = f(u(t)), u(0) =z
(nonextendable to the right). Then:
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1. Ifv,w:[0,T) — D satisfy v'(t)— f(v(t)) < w'(t)— f(w(t)) (t € [0,T))
and v(0) < w(0), then v(t) < w(t) (t € [0,T)).

2. z,ye D,z <y=u(tz) <u(t,y) (t €[0,min{T,,T,})).

3.z € D, f(z) > 0 [< 0] = t — u(t,x) is increasing [decreasing] on
[0, T5).

Second, we will use the following versions of Bourbaki’s and Tarski’s fixed
point theorems (see [3], [5, Proposition 1], [12]). For a function g : 2 — 2
we set

Fix(g) :={x € 2: g(x) = x}.

THEOREM 3. Let 2 # 0 be an ordered set such that each chain ) #
C C 2 has a supremum. Let g : 2 — (2 satisfy x < g(x) (x € 2). Then

Fix(g) # 0.

THEOREM 4. Let 2 # () be an ordered set such that min {2 exists, and
such that each chain O # C C {2 has a supremum. Let g : 2 — §2 be

increasing. Then min Fix(g) exists.

3. Proof of Theorem 1. We consider the set
Q:={zxeclabl: f(x)>0,z<z(ze f10)N][a,b)}.
First, observe that a € 2, so 2 # (). Next, let x € [a,b]. According to
Theorem 2 we have
u(t,z) € [a,b] (t €[0,T)).
If in addition f(x) > 0 then t — wu(t, z) is increasing on [0,7}), so
flu(t,z)) >0 (t€[0,T)),
and if in addition
x <z (z€ fH(0)N[a,b])
then
u(t,e) Sult,z) == (EE0,T), 2 € F71(0) N [a,b]).

Thus z € 2 implies u([0, T} ), z) C 2. Note that u([0,T;),x) is a chain in 2
for each z € (2.

Let ) # C C 2 be a chain with ¢ := sup C. We prove ¢ € 2. Clearly
¢ € la,b]. According to Theorem 2 we have

z<u(t,c) (te][0,T¢), zeC),
and therefore
c<u(t,e) (tel0,Te)).

Hence u/(0,¢) = f(c¢) > 0. Moreover
r<z (zeC, ze fH0)N]a,b)),

thus
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c<z (z€f7H0)N[a,b]),

and summing up we have c € 2.

We define

g:92— 90, g(x)=suwpu(0,Ty),z).
Now, z < g(z) (z € 2), and according to Theorem 3, g has a fixed point
z € (2. Since t — u(t, z) is increasing on [0,7}) we conclude T, = oo and
ult,z) =z (t €0,00)),

hence f(z) = 0. To prove the minimality of z observe that z € [a,b], f(z) =0
implies z < z by the definition of 2. Thus z = min f~1(0) N [a, b].

To prove the existence of a greatest solution in [a,b] of f(z) = 0 we
consider

h:—-D — E, h(z)=—f(—x).
Now, h is locally Lipschitz continuous, quasimonotone increasing, and
h(—a) <0 < h(=b).
Thus, in [—b, —a] the equation h(z) = 0 has a smallest solution w, and
Z:=—w=max f~1(0)N[a,b]. =

REMARK. If it is assumed in addition that f(B) is bounded for each
bounded subset B C D then T, = oo for each x € [a, b], and the proof above
can be changed by applying Theorem 4 to 2 = {z € [a,b] : f(x) > 0} and
g : £2 — {2 defined by g(z) = u(T, z) for any fixed T > 0.

4. Discontinuous functions. Following the idea in [I8] we can extend
Theorem 1 the following way.
Let D C E be open, let a,b € D satisfy a < b, [a,b] C D, and let
F:DxJa,bl —E, f:la,b—FE
satisfy
(a) © +— F(z,y) is locally Lipschitz continuous and quasimonotone in-

creasing for each y € [a, b],
(b) y — F(x,y) is monotone increasing for each = € D,

(c) f(z) = F(z,z) (z € [a,b]), and f(b) <0 < f(a).
Under these assumptions f is quasimonotone increasing, and allows upward
jumps (see [18]). We have
THEOREM 5. Let E be ordered by a cone K with property (C), let D C E
be open, let a < b with [a,b] C D, and let F': D x [a,b] — E and f : [a,b] —
E satisfy (a)—(c) above. Then
min f1(0) N [a,b] and max f~1(0) N [a, b]

exist.



Intermediate value theorem 67

5. Proof of Theorem 5. Let y € [a,b]. Then

F(b,y) < f(b) <0 < f(a) < F(a,y).
According to Theorem 1 the mapping z +— F(x,y) has in [a,b] a smallest

zero g(y). We obtain a function ¢ : [a,b] — [a,b] and we prove that g is
increasing. Indeed, let y, z € [a,b] with y < z. Now

F(g(2),y) < F(g(2),2) =0 < F(a,y).

Thus x — F(z,y) has in [a, g(z)] a zero v, which is a zero in [a, b]. Therefore

9(y) < v <g(2).

According to Theorem 4 (applied to 2 = [a,b]) z := min Fix(g) exists, and
clearly f(z) = 0. Now, let z € [a,b] satisfy f(z ) = 0 Then z is a zero of
x +— F(x,z) in [a,b], hence g(z) < z. Thus ¢([a, z]) C [a, ] and so g has a
fixed point w in [a, z] which is a fixed point in [a, b]. Thu

z=minFix(g9) <w < z.

Therefore z = min f~1(0) N [a, b].
Application of this state of knowledge to H : (—D) x [—-b, —a] — E and
h:[—=b,—a] — E defined by

H(z,y) = —F(-z,—y), h(z)=H(z, )

proves the existence of Z = max f~1(0) N [a,b]. =

6. Example. Let F' be a Banach space ordered by a regular cone Kp
with nonempty interior, let E = [*°(Z, F') be ordered by the cone

K= {($n)n€Z txp € Kp (TL € Z)}’

and let ¢ : I — F be locally Lipschitz continuous and quasimonotone
increasing. We can apply Theorem 1 to prove

THEOREM 6. Let (wp)nez € E, and let a,b € F be such that
a<b, qb)<w,<qla) (nez).
Then the second order difference equation
Zntl — 22n + 2n—1+ q(zn) =w, (n€Z)
has in [(a)nez, (b)nez] a smallest and a greatest solution.

Proof. According to Remark 2. the order on E defined by K has prop-
erty (C). We consider f : F — E defined by

f((xn)nEZ) = (xn+1 —2xp + Tp—1 + Q($n) - wn)nEZ'

It is clear that f is locally Lipschitz continuous and, using Uhl’s criterion
for quasimonotonicity [17, Theorem 2], it is not hard to see that f is quasi-



68

G. Herzog

monotone increasing. We have

F((0)nez) = (q(b) — wn)nez < (O)nez < (¢(a) — wn)nez = f((@)nez)-

Thus, according to Theorem 1, the maximum and the minimum of

FH(0)nez) N [(@)nez, (b)nez

exist. m

Consider for example F' = R? ordered by the ice-cream cone

Kp={e=(n0): (= V& +n*}

and g : F' — F defined by

—n — 2§
q(&,n,¢) = §—2n¢
_§2 _ 772 o <2

Obviously ¢ is locally Lipschitz continuous, and ¢ is quasimonotone increas-
ing since ¢'(£,7,¢) : R? — R3 is a linear quasimonotone increasing mapping
for each (£,71,¢) € R3 (see [16, Theorem 3.31]). Since p = (0,0,)) € Int K
for each A > 0, and since ¢(0,0,\) = —(0,0, A2) we can apply Theorem 6 if
(wn)nez is a bounded sequence in —Kp, by setting

a=(0,0,0), b=(0,0,)),

with A > 0 sufficiently large.
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