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Exceptional values of meromorphic functions
and of their derivatives on annuli

by Yuxian Chen (Xinyu) and Zhaojun Wu (Xianning)

Abstract. This paper is devoted to exceptional values of meromorphic functions and
of their derivatives on annuli. Some facts on exceptional values for meromorphic functions
in the complex plane which were established by Singh, Gopalakrishna and Bhoosnurmath
[Math. Ann. 191 (1971), 121–142, and Ann. Polon. Math. 35 (1977/78), 99–105] will be
considered on annuli.

1. Introduction. In [KK1] and [KK2], we can find analogues of Jensen’s
formula and the First Fundamental Theorem, the lemma on logarithmic
derivative and the Second Fundamental Theorem of Nevanlinna theory for
meromorphic functions on annuli. After [KK1] and [KK2], Fernández [F] and
Cao, Yi and Xu [CY]–[CYX] studied the value distribution and uniqueness
of meromorphic functions on a doubly connected domain. In this paper, we
shall extend the facts which were established by Singh, Gopalakrishna and
Bhoosnurmath in [SG], [GB2] to meromorphic functions on annuli.

2. Nevanlinna theory on annuli. In this section, we recall the defi-
nitions, notation and results of [KK1] and [KK2] which will be used in this
paper.

Let f(z) be a meromorphic function on the annulus

A(R0) := {z : 1/R0 < |z| < R0},

where 1 < R0 ≤ +∞. Denote

m

(
R,

1

f − a

)
=

1

2π

2π�

0

log+
1

|f(Reiθ)− a|
dθ,
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m(R, f) =
1

2π

2π�

0

log+ |f(Reiθ)| dθ,

where a ∈ C and 1/R0 < R < R0. Let

m0

(
R,

1

f − a

)
= m

(
R,

1

f − a

)
+m

(
1

R
,

1

f − a

)
, 1 < R < R0,

m0(R, f) = m(R, f) +m(1/R, f), 1 < R < R0.

Put

N1

(
R,

1

f − a

)
=

1�

1/R

n1
(
t, 1
f−a
)

t
dt, N2

(
R,

1

f − a

)
=

R�

1

n2
(
t, 1
f−a
)

t
dt,

where 1 < R < R0, n1
(
t, 1
f−a
)

is the counting function of poles of the

function 1
f−a in {z : t < |z| ≤ 1} and n2

(
t, 1
f−a
)

is the counting function of

poles of the function 1
f−a in {z : 1 < |z| ≤ t}. Denote also

N1(R, f) =

1�

1/R

n1(t, f)

t
dt, N2(R, f) =

R�

1

n2(t, f)

t
dt,

where 1 < R < R0, n1(t, f) is the counting function of poles of f in {z :
t < |z| ≤ 1}, and n2(t, f) is the counting function of poles of f in {z : 1 <
|z| ≤ t}. Let

N0(R, a, f) = N0

(
R,

1

f − a

)
= N1

(
R,

1

f − a

)
+N2

(
R,

1

f − a

)
,

N0(R,∞, f) = N0(R, f) = N1(R, f) +N2(R, f).

Finally, we define the Nevanlinna characteristic of f on A(R0), 1 < R0 ≤
+∞, by

T0(R, f) = m0(R, f)− 2m(1, f) +N0(R, f), 1 < R < R0,

where R0 ≤ +∞. Suppose that f, g are two meromorphic functions on
A(R0), 1 < R0 ≤ +∞. Then

max{T0(R, f + g), T0(R, fg), T0(R, f/g)} ≤ T0(R, f) + T0(R, g) +O(1).

Definition 2.1. Let f be a nonconstant meromorphic function onA(∞).
Then the order of f(z) is defined by

λ(f) = lim sup
R→+∞

log T0(R, f)

logR
.

Theorem A (The First Fundamental Theorem, see [KK1, Theorem 2]).
Let f be a nonconstant meromorphic function on A(R0), 1 < R0 ≤ +∞, and
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let T0(R, f) be its Nevanlinna characteristic. Then

T0

(
R,

1

f − a

)
= T0(R, f) +O(1), 1 < R < R0,

for every fixed a ∈ C.

Theorem B (Lemma on the logarithmic derivative, see [KK2, Theo-
rem 1]). Let f be a nonconstant meromorphic function on A(R0), 1 < R0 ≤
+∞, and let λ ≥ 0. Then

(i) in the case R0 = +∞,

m0(R, f
′/f) = O(log(RT0(R, f)))

for all R ∈ (1,+∞) except for a set 4 such that
	
4R

λ−1dR < +∞;

(ii) in the case R0 < +∞,

m0

(
R,

f ′

f

)
= O

(
log

(
T0(R, f)

R0 −R

))
for all R ∈ (1, R0) except for a set 4′ such that

	
4′

dR
(R0−R)λ−1 < +∞.

Theorem C (The Second Fundamental Theorem, see [KK2, Theorem 2]).
Let f be a nonconstant meromorphic function on A(R0), 1 < R0 ≤ +∞. Let
a1, . . . , ap be distinct finite complex numbers and λ ≥ 0. Then

m0(R, f) +

p∑
ν=1

m0

(
R,

1

f − aν

)
≤ 2T0(R, f)−N (1)

0 (R, f) + S(R, f),

where

N
(1)
0 (R, f) = N0(R, 1/f

′) + 2N0(R, f)−N0(R, f
′),

and

(i) in the case R0 = +∞,

S(R, f) = O(log(RT0(R, f)))

for all R ∈ (1,+∞) except for a set 4 such that
	
4R

λ−1dR < +∞;

(ii) in the case R0 < +∞,

S(R, f) = O

(
log

(
T0(R, f)

R0 −R

))
for all R ∈ (1, R0) except for a set 4′ such that

	
4′

dR
(R0−R)λ−1 < +∞.

3. Exceptional values of a meromorphic function. Let f be a
meromorphic function of order ρ on A(∞), and let a ∈ C∞ := C∪{∞}. We
denote by n1(t, f, a) the number of distinct zeros of f−a in {z : t < |z| ≤ 1}
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(ignoring multiplicity) and by n2(t, f, a) the number of distinct zeros of f−a
in {z : 1 < |z| ≤ t} (ignoring multiplicity), and

N0(R, f, a) =

1�

1/R

n1(t, f, a)

t
dt+

R�

1

n2(t, f, a)

t
dt.

For any positive integer k, we denote by nk1(t, f, a) the number of distinct
zeros of order ≤ k of f − a in {z : t < |z| ≤ 1} (ignoring multiplicity)
and by nk2(t, f, a) the number of distinct zeros of order ≤ k of f − a in
{z : 1 < |z| ≤ t} (ignoring multiplicity). We define

N
k
0(R, f, a) =

1�

1/R

nk1(t, f, a)

t
dt+

R�

1

nk2(t, f, a)

t
dt.

We also denote by nk1(t, f, a) the number of zeros of f−a in {z : t < |z| ≤ 1}
and by nk2(t, f, a) the number of zeros of f − a in {z : 1 < |z| ≤ t}, where a
zero of order < k is counted according to its multiplicity and a zero of order
≥ k is counted exactly k times. We set

Nk
0 (R, f, a) =

1�

1/R

nk1(t, f, a)

t
dt+

R�

1

nk2(t, f, a)

t
dt.

We further define

ρk(a, f) = lim sup
R→∞

N
k
0(R, f, a)

logR
,

ρ(a, f) = lim sup
R→∞

N0(R, f, a)

logR
,

ρ(a, f) = lim sup
R→∞

N0(R, f, a)

logR
.

Definition 3.1. Let f be a meromorphic function of order ρ on A(∞),
and let a ∈ C∞. We say that a is

(i) an evB (exceptional value in the sense of Borel) for f for distinct
zeros of order ≤ k if ρk(a, f) < ρ,

(ii) an evB (exceptional value in the sense of Borel) for f for distinct
zeros if ρ(a, f) < ρ,

(iii) an evB (Borel exceptional value) for f if ρ(a, f) < ρ.

In [CYX], Cao, Yi and Xu proved

Theorem D. Let f be a nonconstant meromorphic function on A(R0),
1 < R0 ≤ +∞. Let a[1], . . . , a[q] be distinct complex numbers in C∞ and kj
(j = 1, . . . , q) be positive integers or +∞. Then
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(3.1)

(
q −

q∑
j=1

1

kj + 1
− 2

)
T0(R, f) ≤

q∑
j=1

kj
kj + 1

N
kj
0 (R, f, a[j]) + S(R, f).

Main Theorem 3.2. Let f be a meromorphic function of order ρ on
A(∞). Let a[1], . . . , a[q] be distinct complex numbers in C∞ and kj (j =
1, . . . , q) be positive integers or +∞. If a[j] is an evB for f for distinct zeros
of order ≤ kj (j = 1, . . . , q), then

q∑
j=1

(
1− 1

kj + 1

)
≤ 2.

Proof. By hypothesis, we have

ρkj (a
[j], f) < ρ, j = 1, . . . , q.

Then there is a positive number µ < ρ such that for j = 1, . . . , q,

(3.2) N
kj
0 (r, f, a[j]) ≤ rµ.

Using (3.2) to (3.1), we have

(3.3)

[ q∑
j=1

(
1− 1

kj + 1

)
− 2

]
T0(R, f) ≤

q∑
j=1

kj
kj + 1

Rµ + S(R, f).

Then, by Theorem C and (3.3),

(3.4)

[ q∑
j=1

(
1− 1

kj + 1

)
−2

]
T0(R, f) ≤

q∑
j=1

kj
kj + 1

Rµ+O(log(RT0(R, f)))

for all R ∈ (1,+∞) except a set 4 such that
	
4R

µ−1 dR < +∞. Suppose

I ⊂ 4 is an interval. Let R ∈ I and let R′ is the right endpoint of I. Then

R′µ −Rµ = µ

R′�

R

rµ−1dr ≤ µ
�

4
Rµ−1dR = O(1).

From (3.4), we get

(3.5)

[ q∑
j=1

(
1− 1

kj + 1

)
− 2

]
T0(R, f)

≤
q∑
j=1

kj
kj + 1

Rµ +O(log(RT0(R, f)))

≤
q∑
j=1

kj
kj + 1

R′µ +O(log(RT0(R, f)))

≤
q∑
j=1

kj
kj + 1

Rµ +O(logR)
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for all R. Thus it follows from 0 < µ < ρ and (3.5) that
q∑
j=1

(
1− 1

kj + 1

)
≤ 2.

Let q = r + t+ s and kj ≡ k (j = 1, . . . , r), kj ≡ l (j = r + 1, . . . , r + t)
and kj ≡ m (j = r + t + 1, . . . , r + t + s) in Theorem 3.1. Then we get the
following corollary.

Corollary 3.3. Let f be a meromorphic function of order ρ on A(∞).
If there exist distinct elements

a[1], . . . , a[r]; b[1], . . . , b[t]; c[1], . . . , c[s]

in C∞ such that a[1], . . . , a[r] are evB for f for distinct zeros of order ≤ k,
b[1], . . . , b[t] are evB for f for distinct zeros of order ≤ l, c[1], . . . , c[s] are evB
for f for distinct zeros of order ≤ m, where k, l,m are positive integers, then

rk

k + 1
+

tl

l + 1
+

sm

m+ 1
≤ 2.

Remark. The result corresponding Main Theorem 3.2 and Corollary 3.3
in the whole complex plane was obtained by Yang [Y] and Gopalakrishna
and Bhoosnurmath [GB1].

4. Exceptional values of meromorphic functions and of their
derivatives. If f is a meromorphic function in the whole complex plane,
Singh, Gopalakrishna and Bhoosnurmath [SG], [GB2] have proved

Theorem E (see [SG, Theorem 6]). Let f be a meromorphic function
on the plane of order ρ (0 < ρ < +∞). Let ρ(∞, f) < ρ and ρ(a, f) < ρ for
some a ∈ C. Then, for each integer k ≥ 1, ρ1(b, f

(k)) = ρ for all b 6= 0,∞.

Theorem F (see [GB2, Theorem 1]). Let f be a meromorphic function
on the plane and k be a positive integer. Suppose that ∞ is an evB for f for
distinct zeros of order ≤ l, where l is an integer ≥ 1. If there exist a, b ∈ C
with b 6= 0 such that a is an evB for f for distinct zeros of order ≤ p, and
b is an evB for f (k) for distinct zeros of order ≤ q, where p, q are positive
integers, then

q + 1 + k

(q + 1)(l + 1)
+
k + 1

p+ 1
+

1

q + 1
≥ 1.

In this section, we extend Theorem F to meromorphic functions on annuli
by applying the techniques of [GB2].

Main Theorem 4.1. Let f be a meromorphic function of order ρ (0 <
ρ < +∞) on A(∞). Suppose that ∞ is an evB for f for distinct zeros of
order ≤ l, where l is an integer ≥ 1. If there exist a, b ∈ C with b 6= 0 such
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that a is an evB for f for distinct zeros of order ≤ p and b is an evB for
f (k) for distinct zeros of order ≤ q, where p, q are positive integers, then

(4.1)
q + 1 + k

(q + 1)(l + 1)
+
k + 1

p+ 1
+

1

q + 1
≥ 1.

Proof. From [KL], we have

(4.2) T0(R, f
′) = T0(R, ff

′/f) ≤ T0(R, f) + T0(R, f
′/f) +O(1)

= T0(R, f) +m0(R, f
′/f) +N0(R, f

′/f)− 2m(1, f ′/f) +O(1)

≤ T0(R, f) +N0(R, f) + S(R, f)

≤ 2T0(R, f) + S(R, f),

and

(4.3) m0

(
R,

f (k)

f − a

)
= S(r, f) = S(R, f (k))

for any positive integer k and any a ∈ C . Hence,

(4.4) T0

(
R,

1

f − a

)
= m0

(
R,

1

f − a

)
+N0

(
R,

1

f − a

)
≤ N0

(
R,

1

f − a

)
+m0

(
R,

f (k)

f − a

)
+m0

(
R,

1

f (k)

)
≤ N0

(
R,

1

f − a

)
+ T0

(
R,

1

f (k)

)
−N0

(
R,

1

f (k)

)
+ S(R, f).

By Theorem A and (4.4), we have

(4.5) T0(R, f) ≤ N0

(
R,

1

f − a

)
+ T0

(
R,

1

f (k)

)
−N0

(
R,

1

f (k)

)
+S(R, f).

Applying Theorems A and C to f (k) and invoking (4.3), we have

T0(R, f
(k)) ≤ N0(R, f

(k)) +N0

(
R,

1

f (k)

)
+N0

(
R,

1

f (k) − b

)
(4.6)

−
(
N0

(
R,

1

f (k+1)

)
+ 2N0(R, f

(k))−N0(R, f
(k+1))

)
+ S(R, f (k))

= N0(R, f
(k+1))−N0(R, f

(k)) +N0

(
R,

1

f (k)

)
+N0

(
R,

1

f (k) − b

)
−N0

(
R,

1

f (k+1)

)
+ S(R, f (k))
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= N0(r, f) +N0

(
R,

1

f (k)

)
+N0

(
R,

1

fk) − b

)
−N0

(
R,

1

f (k+1)

)
+ S(R, f),

since

N0(R, f
(k+1))−N0(R, f

(k)) = N0(r, f
(k)) = N0(r, f).

In [GB2], Gopalakrishna and Bhoosnurmath indicated that a zero of
f − a of order j > k is a zero of f (k+1) of order j − (k + 1) and a zero of
f (k) − b of order m is a zero of f (k+1) of order m − 1. Moreover, zeros of
f − a of order > k are zeros of f (k) and so are not zeros of f (k) − b since
b 6= 0. Hence

(4.7) N0

(
R,

1

f − a

)
+N0

(
R,

1

f (k) − b

)
−N0

(
R,

1

f (k+1)

)
≤ Nk+1

0

(
r,

1

f − a

)
+N0

(
R,

1

f (k) − b

)
.

Substituting (4.6), (4.7) to (4.5), we obtain

(4.8) T0(R, f) ≤ N0(r, f)+Nk+1
0

(
R,

1

f − a

)
+N0

(
R,

1

f (k) − b

)
+S(R, f).

Since

Nk+1
0

(
R,

1

f − a

)
≤ (k + 1)N0

(
R,

1

f − a

)
(4.9)

≤ k + 1

p+ 1

{
pN

p
0

(
R,

1

f − a

)
+N0

(
R,

1

f − a

)}
≤ k + 1

p+ 1

{
pN

p
0

(
R,

1

f − a

)
+ T0(R, f)

}
+O(1),

and

(4.10)

N0

(
R,

1

f (k) − b

)
≤ 1

q + 1

{
qN

q
0

(
R,

1

f (k) − b

)
+ T0(R, f

(k))

}
+O(1),

and since

(4.11) N0(r, f) ≤ 1

l + 1
{lN l

0(R, f) + T0(R, f)},

and

(4.12) T0(R, f
(k)) = m0(r, f

(k)) +m0(R, f
(k))−m(1, f (k))

≤ m0(R, f) +m0

(
R,

f (k)

f

)
+N0(R, f) + kN0(R, f) +O(1)

= T0(R, f) + kN0(R, f) + S(R, f),
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it follows that

T0(R, f) = N0(r, f) +
p(k + 1)

p+ 1
N
p
0

(
R,

1

f − a

)
+

q

q + 1
N
q
0

(
R,

1

f (k) − b

)
+
k + 1

p+ 1
T0(R, f) +

1

q + 1
T0(R, f

(k)) + S(R, f)

≤
(

1 +
k

q + 1

)
N0(r, f) +

p(k + 1)

p+ 1
N
p
0

(
R,

1

f − a

)
+

q

q + 1
N
q
0

(
R,

1

f (k) − b

)
+

(
k + 1

p+ 1
+

1

q + 1

)
T0(R, f) + S(R, f)

≤ q + 1 + k

(q + 1)(l + 1)
N
l
0(R, f) +

p(k + 1)

p+ 1
N
p
0

(
R,

1

f − a

)
+

q

q + 1
N
q
0

(
R,

1

f (k) − b

)
+

(
k + 1

p+ 1
+

1

q + 1
+

q + 1 + k

(q + 1)(l + 1)

)
T0(R, f) + S(R, f).

Hence,

(4.13)

{
1− k + 1

p+ 1
− 1

q + 1
− q + 1 + k

(q + 1)(l + 1)

}
T0(R, f)

≤ q + 1 + k

(q + 1)(l + 1)
N
l
0(R, f) +

p(k + 1)

p+ 1
N
p
0

(
R,

1

f − a

)
+

q

q + 1
N
q
0

(
R,

1

f (k) − b

)
+ S(R, f).

Since ∞ is an evB for f for distinct zeros of order ≤ l, and a is an evB for
f for distinct zeros of order ≤ p, and since b is an evB for f (k) for distinct
zeros of order ≤ q, it follows that there is a positive number µ < ρ such
that

(4.14) N
l
0(R, f) ≤ Rµ, N

p
0

(
R,

1

f − a

)
≤ Rµ, N

q
0

(
R,

1

f (k) − b

)
≤ Rµ.

Substituting (4.14) to (4.13) and invoking Theorem B, we have

(4.15){
1− k + 1

p+ 1
− 1

q + 1
− q + 1 + k

(q + 1)(l + 1)

}
T0(R, f) ≤ O(Rµ)+O(log(RT0(R, f)))

for all R ∈ (1,+∞) except for a set 4 such that
	
4R

µ−1 dR < +∞. Sup-

pose I ⊂ 4 is an interval. Let R ∈ I and let R′ be the right endpoint of I.
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Then

R′µ −Rµ = µ

R′�

R

rµ−1 dr ≤ µ
�

4
Rµ−1 dR = O(1).

From (4.15), we can get

(4.16)

{
1− k + 1

p+ 1
− 1

q + 1
− q + 1 + k

(q + 1)(l + 1)

}
T0(R, f)

= O(Rµ) +O(log(RT0(R, f)))

= O(R′µ) +O(log(RT0(R, f)))

= O(Rµ) +O(logR)

for all R. It follows from 0 < µ < ρ and (4.16) that (4.1) holds.

Remark. If ∞, a are evB for f for distinct zeros, i.e. letting l, p tend
to infinity in (4.2), we can get 1

q+1 ≥ 1. This means that for each integer

k, q ≥ 1, ρq(b, f
(k)) = ρ for all b 6= 0, 6=∞. Hence, we get

Corollary 4.2. Let f be a meromorphic function of order ρ (0 < ρ <
+∞) on A(∞). Let ρ(∞, f) < ρ and ρ(a, f) < ρ for some a ∈ C. Then,
for each integer k ≥ 1, ρ1(b, f

(k)) = ρ for all b 6= 0, 6=∞. Consequently, the
order of f (k) is ρ in this case.
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